Ground state of fermions in quasi-1D honeycomb optical lattices

dc.contributor.advisorSilva Valencia, Jereson
dc.contributor.authorPadilla González, Daniel Camilo
dc.contributor.researchgroupGrupo de Sistemas Correlacionados SISCOspa
dc.date.accessioned2022-10-31T15:36:22Z
dc.date.available2022-10-31T15:36:22Z
dc.date.issued2022
dc.descriptionilustraciones, gráficasspa
dc.description.abstractLattice models (tight-binding) for many-body systems give a good theoretical and experimental framework to study quantum phase transitions presented in several strongly correlated materials at low temperature. In general, those phase transitions are driven by a fine-tuning of non-thermal parameters such that each phase is determined by a fixed energy scale. In particular, the Ionic Hubbard model allows to study crystalline bipartite lattices where the possible phase transitions are induced by a competition between the on-site interaction U and the geometry of the lattice itself given by the staggered potential ∆. Furthermore, recent experimental and theoretical works on honeycomb lattice connect the model with phenomenon like unconventional superconductivity [Journal of the Physical Society of Japan 82 (2013) 034704] and topological correlated systems [PhysicaB 481 (2016) 53-58]. Motivated by this, we study the ground-state properties of the Ionic Hubbard model in two scenarios: a narrow honeycomb lattice regarding it as a quasi 1D lattice and a mass-imbalanced chain. To explore those systems, we use a density renormalization group (DMRG) finite algorithm with a matrix product state (MPS) method. (Texto tomado de la fuente)eng
dc.description.abstractLos modelos de redes (tight-binding) para sistemas de muchos cuerpos dan un buen marco teórico y experimental para estudiar transiciones de fases cuánticas presentes en diversos materiales fuertemente correlacionados a bajas temperaturas. En general, estas transiciones de fases pueden ocurrir debido a un ajuste fino de parámetros no térmicos tal que cada fase se determina por una escala fija de energı́a. En particular, el modelo Iónico de Hubbard permite estudiar una red cristalina bipartita donde dos fases son inducidas debido a la competencia entre la interacción local U y la geometrı́a de la red misma dada por el potencial escalonado ∆. Además, trabajos experimentales y teóricos recientes sobre redes de tipo panal relacionan el modelo con fenómenos como superconductividad no convencional [Journal of the Physical Society of Japan 82 (2013) 034704] y sistemas topológicos correlacionados [PhysicaB 481 (2016) 53-58]. Motivados por esto, nosotros estudiamos las propiedades del estado base del modelo Iónico de Hubbard en dos escenarios: una red delgada tipo panal, estudiada a través de un mapeo cuasi 1D, y una cadena con imbalance de masas. Para explorar estos sistemas, usamos un algoritmo finito del grupo de renormalización de la matriz densidad (DMRG) y un método de producto de estados de matrices (MPS).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaCondensed Matterspa
dc.format.extentxi, 66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82564
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesM. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269(5221):198–201, 1995.spa
dc.relation.referencesTsuneya Ando, Yukio Matsumoto, and Yasutada Uemura. Theory of hall effect in a two-dimensional electron system. Journal of the Physical Society of Japan, 39(2):279–288, 1975.spa
dc.relation.referencesM. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne. Precise determination of 6 Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett., 94:103201, Mar 2005.spa
dc.relation.referencesL. Barbiero, M. Casadei, M. Dalmonte, C. Degli Esposti Boschi, E. Erco- lessi, and F. Ortolani. Phase separation and pairing regimes in the one- dimensional asymmetric hubbard model. Phys. Rev. B, 81:224512, Jun 2010.spa
dc.relation.referencesVincent Barbé, Alessio Ciamei, Benjamin Pasquiou, Lukas Reichsöllner, Florian Schreck, Piotr S. Zuchowski, and Jeremy M. Hutson. Observation of feshbach resonances between alkali and closed-shell atoms. Nature Physics, 14(9):881–884, Sep 2018.spa
dc.relation.referencesSoumen Bag, Arti Garg, and H. R. Krishnamurthy. Phase diagram of the half-filled ionic hubbard model. Phys. Rev. B, 91:235108, Jun 2015.spa
dc.relation.referencesK. Buchta, Ö. Legeza, E. Szirmai, and J. Sólyom. Mott transition and dimerization in the one-dimensional SU(n) hubbard model. Phys. Rev. B, 75:155108, Apr 2007.spa
dc.relation.referencesJ. G. Bednorz and K. A. Muller. Possible high-tc superconductivity in the ba-la-cu-o system. Zeitschrift ur Physik B Condensed Matter, 64(2):189– 193, Jun 1986.spa
dc.relation.referencesK. Bouadim, N. Paris, F. Hébert, G. G. Batrouni, and R. T. Scalettar. Metallic phase in the two-dimensional ionic hubbard model. Phys. Rev. B, 76:085112, Aug 2007.spa
dc.relation.referencesPeter Broecker and Simon Trebst. Entanglement and the fermion sign problem in auxiliary field quantum monte carlo simulations. Phys. Rev. B, 94:075144, Aug 2016.spa
dc.relation.referencesAnwesha Chattopadhyay, Soumen Bag, H. R. Krishnamurthy, and Arti Garg. Phase diagram of the half-filled ionic hubbard model in the limit of strong correlations. Phys. Rev. B, 99:155127, Apr 2019.spa
dc.relation.referencesWen-Ling Chan and Shi-Jian Gu. Entanglement and quantum phase tran- sition in the asymmetric hubbard chain: density-matrix renormalization group calculations. Journal of Physics: Condensed Matter, 20(34):345217, aug 2008.spa
dc.relation.referencesCheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010.spa
dc.relation.referencesSteven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55:48–51, Jul 1985.spa
dc.relation.referencesY. Castin, K. Mϕlmer, J. Dalibard, and C. Cohen-Tannoudji. New physical mechanisms in laser cooling. pages 2 – 7, 1989.spa
dc.relation.referencesAgnieszka Cichy and Andrzej Ptok. Reentrant fulde-ferrell-larkin-ovchinnikov superfluidity in the honeycomb lattice. Phys. Rev. A, 97:053619, May 2018.spa
dc.relation.referencesJ. Ignacio Cirac, David Pérez-Garcı́a, Norbert Schuch, and Frank Verstraete. Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod. Phys., 93:045003, Dec 2021.spa
dc.relation.referencesShu Chen, Li Wang, Yajiang Hao, and Yupeng Wang. Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition. Phys. Rev. A, 77:032111, Mar 2008.spa
dc.relation.referencesHui-Min Chen, Hui Zhao, Hai-Qing Lin, and Chang-Qin Wu. Bond-located spin density wave phase in the two-dimensional (2d) ionic hubbard model. New Journal of Physics, 12(9):093021, sep 2010.spa
dc.relation.referencesJacques Des Cloizeaux and Michel Gaudin. Anisotropic linear magnetic chain. Journal of Mathematical Physics, 7(8):1384–1400, 1966.spa
dc.relation.referencesH.G. Dehmelt. Radiofrequency spectroscopy of stored ions i: Storage**part ii: Spectroscopy is now scheduled to appear in volume v of this series. 3:53 – 72, 1968.spa
dc.relation.referencesH.G. Dehmelt. Radiofrequency spectroscopy of stored ions ii: Spec- troscopy**part i, sections 1 and 2 of this article appear in volume 3 of this series. 5:109 – 154, 1969.spa
dc.relation.referencesDavid P. DiVincenzo. The physical implementation of quantum computa- tion. Fortschritte der Physik, 48(9-11):771–783, 2000.spa
dc.relation.referencesB. DeMarco and D. S. Jin. Onset of fermi degeneracy in a trapped atomic gas. Science, 285(5434):1703–1706, 1999.spa
dc.relation.referencesTilman Esslinger. Fermi-hubbard physics with atoms in an optical lattice. Annual Review of Condensed Matter Physics, 1(1):129–152, 2010.spa
dc.relation.referencesP. Farkašovský. Ferromagnetism in the asymmetric hubbard model. The European Physical Journal B, 85(8):253, Jul 2012.spa
dc.relation.referencesGianluca Fiori, Francesco Bonaccorso, Giuseppe Iannaccone, Tomás Pala- cios, Daniel Neumaier, Alan Seabaugh, Sanjay K. Banerjee, and Luigi Colombo. Electronics based on two-dimensional materials. Nature Nan- otechnology, 9(10):768–779, Oct 2014.spa
dc.relation.referencesPavol Farkašovský. Phase diagram of the asymmetric hubbard model. Phys. Rev. B, 77:085110, Feb 2008.spa
dc.relation.referencesGábor Fáth, Zbigniew Domański, and Romuald Lemański. Asymmetric hubbard chain at half-filling. Phys. Rev. B, 52:13910–13915, Nov 1995.spa
dc.relation.referencesPeter Fulde and Richard A. Ferrell. Superconductivity in a strong spin- exchange field. Phys. Rev., 135:A550–A563, Aug 1964.spa
dc.relation.referencesSerge Florens and Antoine Georges. Slave-rotor mean-field theories of strongly correlated systems and the mott transition in finite dimensions. Phys. Rev. B, 70:035114, Jul 2004.spa
dc.relation.referencesJ. N. Fuchs, D. M. Gangardt, T. Keilmann, and G. V. Shlyapnikov. Spin waves in a one-dimensional spinor bose gas. Phys. Rev. Lett., 95:150402, Oct 2005.spa
dc.relation.referencesMichele Fabrizio, Alexander O. Gogolin, and Alexander A. Nersesyan. From band insulator to mott insulator in one dimension. Phys. Rev. Lett., 83:2014–2017, Sep 1999.spa
dc.relation.referencesL. M. Falicov and J. C. Kimball. Simple model for semiconductor-metal transitions: Smb 6 and transition-metal oxides. Phys. Rev. Lett., 22:997– 999, May 1969.spa
dc.relation.referencesHélène Feldner, Zi Yang Meng, Andreas Honecker, Daniel Cabra, Stefan Wessel, and Fakher F. Assaad. Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum monte carlo simulations. Phys. Rev. B, 81:115416, Mar 2010.spa
dc.relation.referencesJ. Fernández-Rossier. Prediction of hidden multiferroic order in graphene zigzag ribbons. Phys. Rev. B, 77:075430, Feb 2008.spa
dc.relation.referencesMatthew P. A. Fisher, Peter B. Weichman, G. Grinstein, and Daniel S. Fisher. Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40:546–570, Jul 1989.spa
dc.relation.referencesMitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada, and Koichi Kusakabe. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65(7):1920–1923, 1996.spa
dc.relation.referencesMitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada, and Koichi Kusakabe. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65(7):1920–1923, 1996.spa
dc.relation.referencesMatthew Fishman, Steven R. White, and E. Miles Stoudenmire. the ITensor software library for tensor network calculations, 2020.spa
dc.relation.referencesFabrice Gerbier, Simon Fölling, Artur Widera, Olaf Mandel, and Immanuel Bloch. Probing number squeezing of ultracold atoms across the superfluid- mott insulator transition. Phys. Rev. Lett., 96:090401, Mar 2006.spa
dc.relation.referencesC. Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger. Ground states of the spinless falicov-kimball model. Phys. Rev. B, 41:2198–2209, Feb 1990.spa
dc.relation.referencesArti Garg, H. R. Krishnamurthy, and Mohit Randeria. Can correlations drive a band insulator metallic? Phys. Rev. Lett., 97:046403, Jul 2006.spa
dc.relation.referencesArti Garg, H. R. Krishnamurthy, and Mohit Randeria. Doping a correlated band insulator: A new route to half-metallic behavior. Phys. Rev. Lett., 112:106406, Mar 2014.spa
dc.relation.referencesAlaina Green, Hui Li, Jun Hui See Toh, Xinxin Tang, Katherine C. Mc- Cormick, Ming Li, Eite Tiesinga, Svetlana Kotochigova, and Subhadeep Gupta. Feshbach resonances in p-wave three-body recombination within fermi-fermi mixtures of open-shell 6 Li and closed-shell 173 Yb atoms. Phys. Rev. X, 10:031037, Aug 2020.spa
dc.relation.referencesI. Grusha, M. Menteshashvili, and G. I. Japaridze. Effective hamiltonian for a half-filled asymmetric ionic hubbard chain with alternating on-site interaction. International Journal of Modern Physics B, 30(03):1550260, 2016.spa
dc.relation.referencesMandel O. Esslinger T. et al. Greiner, M. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature., 415:39– 44, Jan 2002.spa
dc.relation.referencesSHI-JIAN GU. Fidelity approach to quantum phase transitions. Interna- tional Journal of Modern Physics B, 24(23):4371–4458, 2010.spa
dc.relation.referencesDaniel Greif, Thomas Uehlinger, Gregor Jotzu, Leticia Tarruell, and Tilman Esslinger. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science, 340(6138):1307–1310, 2013.spa
dc.relation.referencesRudolf Grimm, Matthias Weidemuller, and Yurii B. Ovchinnikov. Optical dipole traps for neutral atoms. volume 42 of Advances In Atomic, Molecular, and Optical Physics, pages 95 – 170. Academic Press, 2000.spa
dc.relation.referencesJ. Hubbard and Brian Hilton Flowers. Electron correlations in narrow en- ergy bands. ii. the degenerate band case. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 277(1369):237–259, 1964.spa
dc.relation.referencesJ. Hubbard and Brian Hilton Flowers. Electron correlations in narrow en- ergy bands iii. an improved solution. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 281(1386):401–419, 1964.spa
dc.relation.referencesToshiya Hikihara, Xiao Hu, Hsiu-Hau Lin, and Chung-Yu Mou. Ground- state properties of nanographite systems with zigzag edges. Phys. Rev. B, 68:035432, Jul 2003.spa
dc.relation.referencesKazuo Hida. Crossover between the haldane-gap phase and the dimer phase in the spin-1/2 alternating heisenberg chain. Phys. Rev. B, 45:2207–2212, Feb 1992.spa
dc.relation.referencesWei Han, Roland K. Kawakami, Martin Gmitra, and Jaroslav Fabian. Graphene spintronics. Nature Nanotechnology, 9(10):794–807, Oct 2014.spa
dc.relation.referencesW. Heitler and F. London. Wechselwirkung neutraler atome und homöopo- lare bindung nach der quantenmechanik. Zeitschrift für Physik, 44(6):455– 472, Jun 1927.spa
dc.relation.referencesI. Hagymási and Ö. Legeza. Entanglement, excitations, and correlation effects in narrow zigzag graphene nanoribbons. Phys. Rev. B, 94:165147, Oct 2016.spa
dc.relation.referencesA T Hoang. Metal-insulator transitions in the half-filled ionic hubbard model. Journal of Physics: Condensed Matter, 22(9):095602, 2010.spa
dc.relation.referencesT. W. Hänsch, I. S. Shahin, and A. L. Schawlow. High-resolution saturation spectroscopy of the sodium d lines with a pulsed tunable dye laser. Phys. Rev. Lett., 27:707–710, Sep 1971.spa
dc.relation.referencesJ. Hubbard and J. B. Torrance. Model of the neutral-ionic phase transfor- mation. Phys. Rev. Lett., 47:1750–1754, Dec 1981.spa
dc.relation.referencesElectron correlations in narrow energy bands. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 276(1365):238–257, 1963.spa
dc.relation.referencesKerson Huang and C. N. Yang. Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev., 105:767–775, Feb 1957.spa
dc.relation.referencesMasatoshi Imada, Atsushi Fujimori, and Yoshinori Tokura. Metal-insulator transitions. Rev. Mod. Phys., 70:1039–1263, Oct 1998.spa
dc.relation.referencesS. Inouye, J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and D. S. Jin. Observation of heteronuclear feshbach resonances in a mixture of bosons and fermions. Phys. Rev. Lett., 93:183201, Oct 2004.spa
dc.relation.referencesD. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81:3108–3111, Oct 1998.spa
dc.relation.referencesD. Jaksch, H.J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller. Entangle- ment of atoms via cold controlled collisions. Phys. Rev. Lett., 82:1975–1978, Mar 1999.spa
dc.relation.referencesY. Jompol, C. J. B. Ford, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. Ander- son, D. A. Ritchie, T. W. Silk, and A. J. Schofield. Probing spin-charge sep- aration in a tomonaga-luttinger liquid. Science, 325(5940):597–601, 2009.spa
dc.relation.referencesRobert Jö rdens, Niels Strohmaier, Kenneth Gü nter, Henning Moritz, and Tilman Esslinger. A mott insulator of fermionic atoms in an optical lattice. Nature, 455(7210):204–207, Sep 2008.spa
dc.relation.referencesMichael Jag, Matteo Zaccanti, Marko Cetina, Rianne S. Lous, Florian Schreck, Rudolf Grimm, Dmitry S. Petrov, and Jesper Levinsen. Obser- vation of a strong atom-dimer attraction in a mass-imbalanced fermi-fermi mixture. Phys. Rev. Lett., 112:075302, Feb 2014.spa
dc.relation.referencesNaoum Karchev. Quantum critical behavior in three-dimensional one-band hubbard model at half-filling. Annals of Physics, 333:206–220, 2013.spa
dc.relation.referencesS. S. Kancharla and E. Dagotto. Correlated insulated phase suggests bond order between band and mott insulators in two dimensions. Phys. Rev. Lett., 98:016402, Jan 2007.spa
dc.relation.referencesM. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky. Intermediate-spin state and properties of lacoo 3 . Phys. Rev. B, 54:5309–5316, Aug 1996.spa
dc.relation.referencesAkihisa Koga, Takuji Higashiyama, Kensuke Inaba, Seiichiro Suga, and Norio Kawakami. Supersolid state in fermionic optical lattice systems. Phys. Rev. A, 79:013607, Jan 2009.spa
dc.relation.referencesNobuyuki Katoh and Masatoshi Imada. Phase diagram of s=1/2 antifer- romagnetic heisenberg model on a dimerized square lattice. Journal of the Physical Society of Japan, 62(10):3728–3740, 1993.spa
dc.relation.referencesNobuyuki Katoh and Masatoshi Imada. Phase diagram of s=1/2 quasi-one- dimensional heisenberg model with dimerized antiferromagnetic exchange. Journal of the Physical Society of Japan, 63(12):4529–4541, 1994.spa
dc.relation.referencesTom Kennedy and Elliott H. Lieb. An itinerant electron model with crys- talline or magnetic long range order. Physica A: Statistical Mechanics and its Applications, 138(1):320–358, 1986.spa
dc.relation.referencesJ. I. Krugler, C. G. Montgomery, and H. M. McConnell. Collective electronic states in molecular crystals. The Journal of Chemical Physics, 41(8):2421– 2428, 1964.spa
dc.relation.referencesMasatsune Kato, Kazunori Shiota, and Yoji Koike. Metal-insulator tran- sition and spin gap in the spin-1/2 ladder system sr 14−x a x cu 24 o 41 (a: Ba and ca). Physica C: Superconductivity, 258(3):284–292, 1996.spa
dc.relation.referencesAtsushi Kawamoto, Hiromi Taniguchi, and Kazushi Kanoda. Superconductor-insulator transition controlled by partial deuteration in bedt-ttf salt. Journal of the American Chemical Society, 120(42):10984– 10985, Oct 1998.spa
dc.relation.referencesA. J. Leggett. On the superfluid fraction of an arbitrary many-body system at t=0. Journal of Statistical Physics, 93(3):927–941, Nov 1998.spa
dc.relation.referencesV. Leo. Elastic electron tunneling study of the metal-insulator transition in ttf-tcnq. Solid State Communications, 40(4):509–511, 1981.spa
dc.relation.referencesTianhe Li, Huaiming Guo, Shu Chen, and Shun-Qing Shen. Complete phase diagram and topological properties of interacting bosons in one-dimensional superlattices. Phys. Rev. B, 91:134101, Apr 2015.spa
dc.relation.referencesElliott H. Lieb. Two theorems on the hubbard model. Phys. Rev. Lett., 62:1201–1204, Mar 1989.spa
dc.relation.referencesL. D. Landau and E. M. Lifshitz. Chapter xvii - the theory of elastic collisions. In Course of Theoretical Physics Vol 3: Quantum Mechanics, pages 469 – 535. Pergamon Press, Oxford, 1959.spa
dc.relation.referencesHeng-Fu Lin, Hai-Di Liu, Hong-Shuai Tao, and Wu-Ming Liu. Phase tran- sitions of the ionic hubbard model on the honeycomb lattice. Scientific Reports, 5(1):9810, May 2015.spa
dc.relation.referencesElliott Lieb and Daniel Mattis. Theory of ferromagnetism and the ordering of electronic energy levels. Phys. Rev., 125:164–172, Jan 1962.spa
dc.relation.referencesA. I. Larkin and Y. N. Ovchinnikov. Nonuniform state of superconductors. Zh. Eksp. Teor. Fiz., 47:1136–1146, 1964.spa
dc.relation.referencesT. Loftus, C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin. Resonant control of elastic collisions in an optically trapped fermi gas of atoms. Phys. Rev. Lett., 88:173201, Apr 2002.spa
dc.relation.referencesElliott H. Lieb and F. Y. Wu. Absence of mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett., 20:1445–1448, Jun 1968.spa
dc.relation.referencesYe-Hua Liu and Lei Wang. Quantum monte carlo study of mass-imbalanced hubbard models. Phys. Rev. B, 92:235129, Dec 2015.spa
dc.relation.referencesJ. J. Mendoza-Arenas, R. Franco, and J. Silva-Valencia. Block entropy and quantum phase transition in the anisotropic kondo necklace model. Phys. Rev. A, 81:062310, Jun 2010.spa
dc.relation.referencesL. Mathey. Commensurate mixtures of ultracold atoms in one dimension. Phys. Rev. B, 75:144510, Apr 2007.spa
dc.relation.referencesA. Menth, E. Buehler, and T. H. Geballe. Magnetic and semiconducting properties of smb 6 . Phys. Rev. Lett., 22:295–297, Feb 1969.spa
dc.relation.referencesL S Murcia-Correa, R Franco, and J Silva-Valencia. Quantum phases of ab 2 fermionic chains. Journal of Physics: Conference Series, 687(1):012066, 2016.spa
dc.relation.referencesJ. D. Miller, R. A. Cline, and D. J. Heinzen. Far-off-resonance optical trapping of atoms. Phys. Rev. A, 47:R4567–R4570, Jun 1993.spa
dc.relation.referencesMichael Messer, Rémi Desbuquois, Thomas Uehlinger, Gregor Jotzu, Se- bastian Huber, Daniel Greif, and Tilman Esslinger. Exploring competing density order in the ionic hubbard model with ultracold fermions. Phys. Rev. Lett., 115:115303, Sep 2015.spa
dc.relation.referencesJ. W. Mintmire, B. I. Dunlap, and C. T. White. Are fullerene tubules metallic? Phys. Rev. Lett., 68:631–634, Feb 1992.spa
dc.relation.referencesS. Moukouri and E. Eidelstein. Universality class of the mott transition in two dimensions. Phys. Rev. B, 86:155112, Oct 2012.spa
dc.relation.referencesPrasanta K. Misra. Chapter 13 - magnetic ordering. In Prasanta K. Misra, editor, Physics of Condensed Matter, pages 409 – 449. Academic Press, Boston, 2012.spa
dc.relation.referencesGábor Zsolt Magda, Xiaozhan Jin, Imre Hagymási, Péter Vancsó, Zoltán Osváth, Péter Nemes-Incze, Chanyong Hwang, László P. Biró, and Levente Tapasztó. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature, 514(7524):608–611, Oct 2014.spa
dc.relation.referencesDavid Mele, Sarah Mehdhbi, Dalal Fadil, Wei Wei, Abdelkarim Ouerghi, Sylvie Lepilliet, Henri Happy, and Emiliano Pallecchi. Graphene fets based on high resolution nanoribbons for hf low power applications. Electronic Materials Letters, 14(2):133–138, Mar 2018.spa
dc.relation.referencesS. R. Manmana, V. Meden, R. M. Noack, and K. Schönhammer. Quantum critical behavior of the one-dimensional ionic hubbard model. Phys. Rev. B, 70:155115, Oct 2004.spa
dc.relation.referencesN F Mott. The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society. Section A, 62(7):416–422, jul 1949.spa
dc.relation.referencesN. F. Mott. On the transition to metallic conduction in semiconductors. Canadian Journal of Physics, 34(12A):1356–1368, 1956.spa
dc.relation.referencesN. F. Mott. The transition to the metallic state. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 6(62):287–309, 1961.spa
dc.relation.referencesN F Mott. Metal-insulator transitions. CRC Press, London, 1990.spa
dc.relation.referencesN F Mott and R Peierls. Discussion of the paper by de boer and verwey. Proceedings of the Physical Society, 49(4S):72–73, aug 1937.spa
dc.relation.referencesAlberto Medina-Rull, Francisco Pasadas, Enrique G. Marin, Alejandro Toral-Lopez, Juan Cuesta, Andres Godoy, David Jimélnez, and Fran- cisco G. Ruiz. A graphene field-effect transistor based analogue phase shifter for high-frequency applications. IEEE Access, 8:209055–209063, 2020.spa
dc.relation.referencesD. B. McWhan, J. P. Remeika, T. M. Rice, W. F. Brinkman, J. P. Maita, and A. Menth. Electronic specific heat of metallic ti-doped v 2 o 3 . Phys. Rev. Lett., 27:941–943, Oct 1971.spa
dc.relation.referencesShigeki Miyasaka, Hidenori Takagi, Yoshiaki Sekine, Hiroki Takahashi, Nobuo Mouri, and Robert J. Cava. Metal-insulator transition and itinerant antiferromagnetism in nis 2−x se x pyrite. Journal of the Physical Society of Japan, 69(10):3166–3169, 2000.spa
dc.relation.referencesR. S. Mulliken. Intermolecular charge-transfer forces. Rendiconti del Sem- inario Matematico e Fisico di Milano, 24(1):183–189, Dec 1954.spa
dc.relation.referencesK. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomi- cally thin carbon films. Science, 306(5696):666–669, 2004.spa
dc.relation.referencesNaoto Nagaosa and Jun ichi Takimoto. Theory of neutral-ionic transition in organic crystals. i. monte carlo simulation of modified hubbard model. Journal of the Physical Society of Japan, 55(8):2735–2744, 1986.spa
dc.relation.referencesP L Nordio, Z G Soos, and H M McConnell. Spin excitations in ionic molecular crystals. Annual Review of Physical Chemistry, 17(1):237–260, 1966.spa
dc.relation.referencesTakashi Nishikawa, Yukio Yasui, Yoshiaki Kobayashi, and Masatoshi Sato. Thermal properties of two dimensional mott system la 1.17−x sr x vs 3.17 . Jour- nal of the Physical Society of Japan, 65(8):2543–2547, 1996.spa
dc.relation.referencesD. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee. New magnetic phenomena in liquid He 3 below 3 mk. Phys. Rev. Lett., 29:920–923, Oct 1972.spa
dc.relation.referencesTobias J. Osborne and Michael A. Nielsen. Entanglement in a simple quan- tum phase transition. Phys. Rev. A, 66:032110, Sep 2002.spa
dc.relation.referencesG. Orso, L. P. Pitaevskii, and S. Stringari. Equilibrium and dynamics of a trapped superfluid fermi gas with unequal masses. Phys. Rev. A, 77:033611, Mar 2008.spa
dc.relation.referencesD. D. Osheroff, R. C. Richardson, and D. M. Lee. Evidence for a new phase of solid He 3 . Phys. Rev. Lett., 28:885–888, Apr 1972.spa
dc.relation.referencesN. Paris, K. Bouadim, F. Hebert, G. G. Batrouni, and R. T. Scalettar. Quantum monte carlo study of an interaction-driven band-insulator–to– metal transition. Phys. Rev. Lett., 98:046403, Jan 2007.spa
dc.relation.referencesD. C. Padilla-González, R. Franco, and J. Silva-Valencia. Mass imbalance in the ionic hubbard model: a drmg study, 2021.spa
dc.relation.referencesDiana Prychynenko and Sebastian D. Huber. Z2 slave-spin theory of a strongly correlated chern insulator. Physica B: Condensed Matter, 481:53 – 58, 2016.spa
dc.relation.referencesDiana Prychynenko and Sebastian D. Huber. Z2 slave-spin theory of a strongly correlated chern insulator. Physica B: Condensed Matter, 481:53 – 58, 2016.spa
dc.relation.referencesDavid Pines. A collective description of electron interactions: Iv. electron interaction in metals. Phys. Rev., 92:626–636, Nov 1953.spa
dc.relation.referencesFrancesco Parisen Toldin, Martin Hohenadler, Fakher F. Assaad, and Igor F. Herbut. Fermionic quantum criticality in honeycomb and π-flux hubbard models: Finite-size scaling of renormalization-group-invariant ob- servables from quantum monte carlo. Phys. Rev. B, 91:165108, Apr 2015.spa
dc.relation.referencesWang Qing-Bo, Xu Xiang-Fan, Tao Qian, Wang Hong-Tao, and Xu Zhu- An. Metal—insulator transition in ca-doped sr 14-x ca x cu 24 o 41 systems probed by thermopower measurements. Chinese Physics Letters, 25(5):1857–1860, may 2008.spa
dc.relation.referencesE. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59:2631–2634, Dec 1987.spa
dc.relation.referencesRinaldo Raccichini, Alberto Varzi, Stefano Passerini, and Bruno Scrosati. The role of graphene for electrochemical energy storage. Nature Materials, 14(3):271–279, Mar 2015.spa
dc.relation.referencesK. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout. Correlation energy of an electron gas at high density: Plasma oscillations. Phys. Rev., 108:507– 514, Nov 1957.spa
dc.relation.referencesMichael Sekania, Dionys Baeriswyl, Luka Jibuti, and George I. Japaridze. Mass-imbalanced ionic hubbard chain. Phys. Rev. B, 96:035116, Jul 2017.spa
dc.relation.referencesWhite S.R. Scalapino, D.J. Numerical results for the hubbard model: Impli- cations for the high tc pairing mechanism. Foundations of Physics., 31:27, Jan 2001.spa
dc.relation.referencesAndrii Sotnikov, Daniel Cocks, and Walter Hofstetter. Advantages of mass- imbalanced ultracold fermionic mixtures for approaching quantum mag- netism in optical lattices. Phys. Rev. Lett., 109:065301, Aug 2012.spa
dc.relation.referencesYoung-Woo Son, Marvin L. Cohen, and Steven G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett., 97:216803, Nov 2006.spa
dc.relation.referencesYoung-Woo Son, Marvin L. Cohen, and Steven G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett., 97:216803, Nov 2006.spa
dc.relation.referencesAhmad Shahbazy and Morad Ebrahimkhas. Quantum phase transitions in the two dimensional ionic-hubbard model. Chinese Journal of Physics, 58:273 – 279, 2019.spa
dc.relation.referencesAhmad Shahbazy and Morad Ebrahimkhas. Quantum phase transitions in the two dimensional ionic-hubbard model. Chinese Journal of Physics, 58:273–279, 2019.spa
dc.relation.referencesT. Senthil. Theory of a continuous mott transition in two dimensions. Phys. Rev. B, 78:045109, Jul 2008.spa
dc.relation.referencesZ G Soos. Theory of π-molecular charge-transfer crystals. Annual Review of Physical Chemistry, 25(1):121–153, 1974.spa
dc.relation.referencesC. G. Shull and J. Samuel Smart. Detection of antiferromagnetism by neutron diffraction. Phys. Rev., 76:1256–1257, Oct 1949.spa
dc.relation.referencesPaul J. Strebel and Zoltán G. Soos. Theory of charge transfer in aromatic donor-acceptor crystals. The Journal of Chemical Physics, 53(10):4077– 4090, 1970.spa
dc.relation.referencesW. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42:1698–1701, Jun 1979.spa
dc.relation.referencesF. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Hendl, F. Schreck, and R. Grimm. Collisional stability of 40 K immersed in a strongly interacting fermi gas of 6 Li. Phys. Rev. Lett., 103:223203, Nov 2009.spa
dc.relation.referencesJ. Silva-Valencia, R. Franco, and M.S. Figueira. The one-dimensional asym- metric hubbard model at partial band filling. Physica B: Condensed Matter, 398(2):427–429, 2007.spa
dc.relation.referencesE.M. Stoudenmire and Steven R. White. Studying two-dimensional sys- tems with the density matrix renormalization group. Annual Review of Condensed Matter Physics, 3(1):111–128, 2012.spa
dc.relation.referencesC G Shull, E O Wollan, and M C Marney. Neutron diffraction studies.spa
dc.relation.referencesM. E. Torio, A. A. Aligia, G. I. Japaridze, and B. Normand. Quantum phase diagram of the generalized ionic hubbard model for abn chains. Phys. Rev. B, 73:115109, Mar 2006.spa
dc.relation.referencesLevente Tapasztó, Gergely Dobrik, Philippe Lambin, and László P. Biró. Tailoring the atomic structure of graphene nanoribbons by scanning tun- nelling microscope lithography. Nature Nanotechnology, 3(7):397–401, Jul 2008.spa
dc.relation.referencesT. G. Tiecke, M. R. Goosen, A. Ludewig, S. D. Gensemer, S. Kraft, S. J. J. M. F. Kokkelmans, and J. T. M. Walraven. Broad feshbach resonance in the 6 Li− 40 K mixture. Phys. Rev. Lett., 104:053202, Feb 2010.spa
dc.relation.referencesLeticia Tarruell, Daniel Greif, Thomas Uehlinger, Gregor Jotzu, and Tilman Esslinger. Creating, moving and merging dirac points with a fermi gas in a tunable honeycomb lattice. Nature, 483(7389):302–305, Mar 2012.spa
dc.relation.referencesJ. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Nie- dermayer. Systematic study of insulator-metal transitions in perovskites rnio 3 (r=pr,nd,sm,eu) due to closing of charge-transfer gap. Phys. Rev. B, 45:8209–8212, Apr 1992.spa
dc.relation.referencesMasaki Tezuka and Masahito Ueda. Density-matrix renormalization group study of trapped imbalanced fermi condensates. Phys. Rev. Lett., 100:110403, Mar 2008.spa
dc.relation.referencesM. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann. Quantum degenerate two-species fermi-fermi mixture coexisting with a bose-einstein condensate. Phys. Rev. Lett., 100:010401, Jan 2008.spa
dc.relation.referencesJ. B. Torrance, J. E. Vazquez, J. J. Mayerle, and V. Y. Lee. Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett., 46:253–257, Jan 1981.spa
dc.relation.referencesG. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum critical phenomena. Phys. Rev. Lett., 90:227902, Jun 2003.spa
dc.relation.referencesSteven R. White and Ian Affleck. Dimerization and incommensurate spiral spin correlations in the zigzag spin chain: Analogies to the kondo lattice. Phys. Rev. B, 54:9862–9869, Oct 1996.spa
dc.relation.referencesH. Walther. Phase transitions of stored laser-cooled ions. volume 31 of Advances In Atomic, Molecular, and Optical Physics, pages 137–182. Aca- demic Press, 1993.spa
dc.relation.referencesSteven R. White and A. L. Chernyshev. Neél order in square and triangular lattice heisenberg models. Phys. Rev. Lett., 99:127004, Sep 2007.spa
dc.relation.referencesAlan Herries Wilson and Paul Adrien Maurice Dirac. The theory of electronic semi-conductors. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 133(822):458–491, 1931.spa
dc.relation.referencesSteven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863–2866, Nov 1992.spa
dc.relation.referencesSteven R. White. Spin gaps in a frustrated heisenberg model for cav 4 O 9 . Phys. Rev. Lett., 77:3633–3636, Oct 1996.spa
dc.relation.referencesTsutomu Watanabe and Sumio Ishihara. Band and mott insulators and superconductivity in honeycomb-lattice ionic-hubbard model. Journal of the Physical Society of Japan, 82(3):034704, 2013.spa
dc.relation.referencesVenema L. Rinzler A. et al. Wilder, J. Electronic structure of atomically resolved carbon nanotubes. Nature., 391:52–62, Jan 1992.spa
dc.relation.referencesPatrick Windpassinger and Klaus Sengstock. Engineering novel optical lat- tices. Reports on Progress in Physics, 76(8):086401, jul 2013.spa
dc.relation.referencesFengnian Xia, Han Wang, Di Xiao, Madan Dubey, and Ashwin Ramasub- ramaniam. Two-dimensional material nanophotonics. Nature Photonics, 8(12):899–907, Dec 2014.spa
dc.relation.referencesLi Yang, Cheol-Hwan Park, Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Quasiparticle energies and band gaps in graphene nanorib- bons. Phys. Rev. Lett., 99:186801, Nov 2007.spa
dc.relation.referencesPaolo Zanardi and Nikola Paunković. Ground state overlap and quantum phase transitions. Phys. Rev. E, 74:031123, Sep 2006.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalHoneycomb latticeeng
dc.subject.proposalIonic Hubbard modeleng
dc.subject.proposalDMRG algorithmeng
dc.subject.proposalPhase transitionseng
dc.subject.proposalRed tipo panalspa
dc.subject.proposalmodelo Iónico de Hubbardspa
dc.subject.proposalalgoritmo DMRGspa
dc.subject.proposalTransición de fasespa
dc.subject.unescoInformación y comunicaciónspa
dc.subject.unescoInformation and communicationeng
dc.subject.unescoModelo de simulaciónspa
dc.subject.unescoSimulation techniqueseng
dc.titleGround state of fermions in quasi-1D honeycomb optical latticeseng
dc.title.translatedEstado base de fermiones en redes ópticas cuasi-1D tipo panaleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032459405.2022.pdf
Tamaño:
7.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: