Algebro-geometric characterizations of commuting differential operators in semi-graded rings

dc.contributor.advisorReyes Villamil, Milton Armando
dc.contributor.authorNiño Torres, Diego Arturo
dc.date.accessioned2024-07-18T16:08:55Z
dc.date.available2024-07-18T16:08:55Z
dc.date.issued2023
dc.description.abstractIn this thesis, we study algebro-geometric characterizations of commuting differential operators in families of semi-graded rings. First, we present some ring-theoretical notions of semi-graded rings that are necessary throughout the thesis. We include a non-exhaustive list of noncommutative rings that are particular examples of these rings. Second, to motivate the study of commuting differential operators beloging to noncommutative algebras, and hence to develop a possible Burchnall-Chaundy (BC) theory for them, we review algebraic and matrix results appearing in the literature on the theory of these operators in some families of semi-graded rings. Third, we introduce the notion of pseudo-multidegree function as a generalization of pseudo-degree function, and hence we establish a criterion to determine whether the centralizer of an element has finite dimension over a noncommutative ring having PBW basis. In this way, we formulate a BC theorem for rings having pseudo-multidegree functions. We illustrate our results with families of algebras appearing in ring theory and noncommutative geometry. Fourth, we develop a first approach to the BC theory for quadratic algebras having PBW bases defined by Golovashkin and Maksimov. We prove combinatorial properties on products of elements in these algebras, and then consider the notions of Sylvester matrix and resultant for quadratic algebras with the purpose of exploring common right factors. Then, by using the concept of determinant polynomial, we formulate the version of BC theory for these algebras. We present illustrative examples of the assertions about these algebras. Finally, we establish some bridging ideas with the aim of extending results on centralizers for graded rings to the setting of semi-graded rings.eng
dc.description.abstractEn esta tesis, estudiamos caracterizaciones algebro-geométricas de operadores diferenciales conmutativos en familias de anillos semi-graduados. Primero, presentamos algunas nociones de la teoría de anillos de anillos semi-graduados que son necesarias a lo largo de la tesis. Incluimos una lista no exhaustiva de anillos no conmutativos que son ejemplos particulares de estos anillos. Segundo, para motivar el estudio de operadores diferenciales conmutativos pertenecientes a álgebras no conmutativas, y así desarrollar una posible teoría Burchnall-Chaundy (BC) para ellos, consideramos resultados algebraicos y matriciales presentes en la literatura sobre la teoría de estos operadores en algunas familias de anillos semi-graduados. Tercero, introducimos la noción de función pseudo-multigrado como una generalización de función pseudo-grado, y así establecemos un criterio para determinar si el centralizador de un elemento tiene dimensión finita sobre un anillo no conmutativo con base PBW. De esta manera, formulamos un teorema BC para anillos que tienen funciones pseudo-multigrado. Ilustramos nuestros resultados con familias de álgebras presentes en la teoría de anillos y la geometría no conmutativa. Cuarto, desarrollamos un primer acercamiento a la teoría BC para las álgebras cuadráticas con base PBW definidas por Golovashkin y Maksimov. Demostramos propiedades combinatoriales sobre productos de elementos en estas álgebras, y luego consideramos las nociones de matriz de Sylvester y resultante para álgebras cuadráticas con el fin de explorar factores comunes a derecha. Después, utilizando el concepto de determinante polinomial, formulamos la versión de la teoría BC para estas álgebras. Presentamos ejemplos ilustrativos de las afirmaciones sobre estas álgebras. Finalmente, formulamos algunas ideas con el propósito de extender resultados sobre centralizadores para anillos graduados al contexto de los anillos semi-graduados. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.format.extentvii, 120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86565
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesV. A. Artamonov. Derivations of Skew PBW-Extensions. Commun. Math. Stat., 3:449– 457, 2015.spa
dc.relation.referencesM. Artin and J. T. Stafford. Noncommutative graded domains with quadratic growth. Invent. Math., 122(1):231–276, 1995.spa
dc.relation.referencesV. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992.spa
dc.relation.referencesV. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023.spa
dc.relation.referencesJ. L. Burchnall and T. W. Chaundy. Commutative Ordinary Differential Operators. Proc. London Math. Soc., 2(21):420–440, 1923.spa
dc.relation.referencesJ. L. Burchnall and T. W. Chaundy. Commutative Ordinary Differential Operators. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 118:557–583, 1928.spa
dc.relation.referencesJ. P. Bell. Centralizers in domains of finite Gelfand-Kirillov dimension. Bull. London Math. Soc., 41(3):559–562, 2009.spa
dc.relation.referencesG. Carra’-Ferro. A resultant theory for systems of linear PDEs. In Proc. of Modern Group Analysis, volume 35, 1994.spa
dc.relation.referencesG. Carra’-Ferro. A resultant theory for the systems of two ordinary algebraic differential equations. Appl. Algebra Engrg. Comm. Comput, 8:539–560, 1997.spa
dc.relation.referencesR. C. Carlson and K. R. Goodearl. Commutants of Ordinary Differential Operators. J. Diff. Equat., 35:339–365, 1980.spa
dc.relation.referencesM. Chardin. Differential resultants and subresultants. In L. Budach, editor, Proceedings of Fundamentals of Computation Theory. FCT 1991., volume 529 of Lecture Notes in Computer Science 529, pages 180–189. Springer, Berlin, Heidelberg, 1991.spa
dc.relation.referencesD. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015.spa
dc.relation.referencesP. M. Cohn. Skew Fields, Theory of General Division Rings. Cambridge University Press, 1995.spa
dc.relation.referencesA. Chacón and A. Reyes. On the schematicness of some Ore polynomials of higher order generated by homogeneous quadratic relations. J. Algebra Appl., https://www. worldscientific.com/doi/abs/10.1142/S021949882550207X, 2024.spa
dc.relation.referencesM. de Jeu, C. Svensson, and S. Silvestrov. Algebraic curves for commuting elements in the q-deformed Heisenberg algebra. J. Algebra, 321(4):1239–1255, 2009.spa
dc.relation.referencesF. Dumas. Sous-corps de fractions rationnelles des corps gauches de séries de laurent. In Topics in Invariant Theory, volume 1478 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1991.spa
dc.relation.referencesA. Lj. Eri´c. The resultant of non-commutative polynomials. Matematiˇcki Vesnik, 60(1):3–8, 2008.spa
dc.relation.referencesJ. Gaddis. PBW Deformations of Artin-Schelter Regular Algebras and Their Homogenizations. PhD thesis, University of Wisconsin-Milwaukee, USA, 2013.spa
dc.relation.referencesK. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004.spa
dc.relation.referencesA. V. Golovashkin and V. M. Maksimov. Skew Ore polynomials of higher orders generated by homogeneous quadratic relations. Russian Math. Surveys, 53(2):384–386, 1998.spa
dc.relation.referencesA. V. Golovashkin and V. M. Maksimov. On algebras of skew polynomials generated by quadratic homogeneous relations. J. Math. Sci. (N.Y.), 129(2):3757–3771, 2005.spa
dc.relation.referencesR.C. Goodearl. Centralizers in differential, pseudodifferential, and fractional differential operator rings. Rocky Mountain J. Math., 13(4):573–618, 1983.spa
dc.relation.referencesT. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990.spa
dc.relation.referencesF. H. Jackson. On q-functions and a certain difference operator. Trans. Roy. Soc. Edin., 46:253–281, 1908.spa
dc.relation.referencesF. H. Jackson. A q-form of taylor’s theorem. Mess. Math., 38:62–64, 1909.spa
dc.relation.referencesF. H. Jackson. On q-definite integrals. Quart. J. Pure Appl. Math., 41:193–203, 1910.spa
dc.relation.referencesD. A. Jordan. Finite-dimensional simple modules over certain iterated skew polynomial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995.spa
dc.relation.referencesD. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001.spa
dc.relation.referencesI. M. Krichever and S. P. Novikov. Holomorphic bundles over algebraic curves, and non-linearequations. Uspekhi Mat. Nauk, 35(6):47–68, 1980.spa
dc.relation.referencesJ. Richter. Algebraic Properties of Ore Extensions and their Commutative Subrings. PhD thesis, Lund University, 2014.spa
dc.relation.referencesS. A. Amitsur. Commutative Linear Differential Operators. Pacific J.Math., 8(1):1–10, 1958.spa
dc.relation.referencesJ. Apel. Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung. PhD thesis, University of Leipzig, 1998.spa
dc.relation.referencesM. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., 23(05):2450089, 2024.spa
dc.relation.referencesJ. L. Burchnall and T. W. Chaundy. Commutative Ordinary Differential Operators. ii.—the identity pn Æ qm. Proc. R. Soc. Lond. A., 134:471–485, 1931.spa
dc.relation.referencesH. B. Benaoum. (q,h)-analogue of Newton’s binomial formula. J. Phys. A:Math. Gen., 32(10):2037–2040, 1999.spa
dc.relation.referencesG. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In S. Geun Hahn, H. Chul Myung, and E. Zelmanov, editors, Recent Progress in Algebra. An International Conference on Recent Progress in Algebra, August 11–15, KAIST, Taejon, South Korea, volume 224 of ContemporaryMathematics, pages 29–45. AmericanMathematical Society, Providence, Rhode Island, 1999.spa
dc.relation.referencesG. M. Bergman. Centralizers in free associative algebras. Trans. Amer. Math. Soc., 137:327–344, 1969.spa
dc.relation.referencesR. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992.spa
dc.relation.referencesA. Bell and K. Goodearl. Uniformrank over differential operator rings and Poincaré- Birkhoff-Witt extensions. Pacific J.Math., 131(1):13–37, 1988.spa
dc.relation.referencesK. Brown and K. R.Goodearl. Lectures on AlgebraicQuantumGroups. Birkäuser-Verlag, 2002.spa
dc.relation.referencesG. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998.spa
dc.relation.referencesJ. P. Bell and D. Rogalski. Z-Graded Simple Rings. Trans. Amer.Math. Soc., 368(6):4461– 4496, 2016.spa
dc.relation.referencesA. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin,Milwaukee, preprint, 1990.spa
dc.relation.referencesW. S. Brown and F. Traub. On the Euclid’s Algorithm and the Theory of Subresultants. J. ACM, 18:505–514, 1971.spa
dc.relation.referencesJ. P. Bell and J. J. Zhang. Zariski cancellation problem for noncommutative algebras. SelectaMath. (N.S.), 23(3):1709–1737, 2017.spa
dc.relation.referencesA. Cayley. On the Theory of Elimination. Cambridge and DublinMath. J., 3(1):116–120, 1848.spa
dc.relation.referencesA. Chacón. On the Noncommutative Geometry of Semi-graded Rings. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2022.spa
dc.relation.referencesP. M. Cohn. Quadratic extensions of skew fields. Proc. Lond. Math. Soc, 11(3):531–556, 1961.spa
dc.relation.referencesP.M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985.spa
dc.relation.referencesG. Collins. Subresultant and reduced polynomial remainder sequences. J. ACM, 16:708–712, 1967.spa
dc.relation.referencesS. C. Coutinho. A Primer of Algebraic D-modules. Cambridge University Press. London Mathematical Society, Student Texts 33, 1995.spa
dc.relation.referencesF. Calderón and A. Reyes. Some interactions between Hopf Galois extensions and noncommutative rings. Univ. Sci., 27(2):58–161, 2022.spa
dc.relation.referencesA. Chacón and A. Reyes. Noncommutative scheme theory and the Serre-Artin-Zhang- Verevkin theorem for semi-graded rings. [Submitted for publication].spa
dc.relation.referencesT. Cassidy and B. Shelton. Generalizing the notion of Koszul algebra. Math.Z., 260(1):93–14, 2008.spa
dc.relation.referencesT. Cassidy andM. Vancliff. Generalizations of graded Clifford algebras and of complete intersections. J. Lond.Math. Soc., 81(1):91–112, 2010.spa
dc.relation.referencesJ. Dixmier. Sur les algébres de Weyl. Bull. Soc.Math. France, 96:209–242, 1968.spa
dc.relation.referencesV. G. Drinfeld. Quantumgroups. J.Math. Sci., 41(2):898–915, 1988.spa
dc.relation.referencesH. Exton. q-Hypergeometric functions and applications. Ellis Horwood Limited Chichester, 1983spa
dc.relation.referencesW. Fajardo. Extended modules over skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2018.spa
dc.relation.referencesW. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Springer, Cham, 2020.spa
dc.relation.referencesH. Flanders. Commutative linear differential operators. Department ofMathematics, University of California, Berkeley, Technical Report No. 1, 1955.spa
dc.relation.referencesW. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A.Martsinkovsky, editor, Functor Categories, Model Theory, Algebraic Analysis and ConstructiveMethods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings inMathematics & Statistics, pages 45–116. Springer, Cham, 2024.spa
dc.relation.referencesJ. Gaddis. PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl., 15(04):1650064, 2016.spa
dc.relation.referencesJ. Gaddis. PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl., 15(04):1650064, 2016.spa
dc.relation.referencesC. Gallego. Matrix methods for projective modules over ¾-PBWextensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2015.spa
dc.relation.referencesI. M. Gelfand and A. A. Kirillov. On fields connected with the enveloping algebras of Lie algebras. Dokl. Akad. Nauk, 167(3):503–505, 1966.spa
dc.relation.referencesI. M. Gelfand and A. A. Kirillov. Sur les corps liés aux algèbres enveloppantes des algèbres de Lie. Publ.Math. IHES, 31:5–19, 1966.spa
dc.relation.referencesC. Gallego and O. Lezama. Gröbner Bases for Ideals of ¾-PBW Extensions. Comm. Algebra, 39(1):50–75, 2011.spa
dc.relation.referencesC. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW extensions. DissertationesMath, 521:1–50, 2017.spa
dc.relation.referencesO.W. Greenberg and A.M. L.Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965.spa
dc.relation.referencesH. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270–273, 1953.spa
dc.relation.referencesA. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995.spa
dc.relation.referencesM. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra, 28(1):75–97, 2020.spa
dc.relation.referencesO. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005.spa
dc.relation.referencesM. Havlíˇcek, A. U. Klimyk, and S. Pošta. Central elements of the algebrasU0(som) and U(isom). Czech. J. Phys., 50(1):79–84, 2000.spa
dc.relation.referencesS. Higuera and A. Reyes. A survey on the fusible property for skew PBW extensions. J. Algebr. Syst., 10(1):1–29, 2022.spa
dc.relation.referencesS. Higuera and A. Reyes. On weak annihilators and nilpotent associated primes of skew PBW extensions. Comm. Algebra, 51(11):4839–4861, 2023.spa
dc.relation.referencesL. Hellström and S. Silvestrov. Commuting Elements in q¡Deformed Heisenberg Algebras. World Scientific Publishing, Co., Inc. River Edge, NJ, 2000.spa
dc.relation.referencesL. Hellström and S. Silvestrov. Ergodipotentmaps and commutativity of elements in noncommutative rings and algebras with twisted intertwining. J. Algebra, 314(1):17– 41, 2007. IVspa
dc.relation.referencesA. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A., 34(29):5815– 5834, 2001.spa
dc.relation.referencesF. H. Jackson. A q-series corresponding to taylo’s series. Mess.Math., 39:26–28, 1909.spa
dc.relation.referencesF. H. Jackson. q-definite equations. American J.Math., 32:305–314, 1910.spa
dc.relation.referencesN. Jacobson. Structure of rings. Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Providence, RI, 1964.spa
dc.relation.referencesJ. C. Jantzen. Lectures on Quantum Groups. Amer.Math. Soc. Vol. 6, 1996.spa
dc.relation.referencesM. Jimbo. A q-Difference analogue ofU(g) and the Yang-Baxter Equation. Lett.Math. Phys., 10(1):63–69, 1985.spa
dc.relation.referencesA. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Liedeformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995.spa
dc.relation.referencesD. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000.spa
dc.relation.referencesJ. Jaramillo and A. Reyes. Symmetry and Reversibility Properties for Quantum Algebras and Skew Poincaré-Birkhoff-Witt Extensions. Ingeniería y Ciencia, 14(27):29–52, 2018.spa
dc.relation.referencesD. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb.Math. Soc., 39(3):461–472, 1996.spa
dc.relation.referencesH. P. Jakobsen and H. Zhang. The Center of the QuantizedMatrix Algebra. J. Algebra, 196(2):458–474, 1997.spa
dc.relation.referencesK. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Silvestrov and E. Paal and V. Abramov and A. Stolin (eds).Generalized Lie Theory inMathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009.spa
dc.relation.referencesG. R. Krause and T. H. Lenagan. Growth of Algebras and Gelfand-Kirillov Dimension. Revised Edition. Graduate Studies inMathematics 22. Amer.Math. Soc., Providence, RI, 2000.spa
dc.relation.referencesE. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer.Math. Soc., 127(11):3161–3167, 1999.spa
dc.relation.referencesI. M. Krichever. Algebraic curves and commuting matricial differential operators. Funct. Anal. Appl., 10(2):144–146, 1976.spa
dc.relation.referencesI.M. Krichever. Integration of nonlinear equations by methods of algebraic geometry. Funct. Anal. Appl., 11:12–26, 1977.spa
dc.relation.referencesI. M. Krichever. Methods of algebraic geometry in the theory of nonlinear equations. UspekhiMat. Nauk, 32(6):183–208, 1977.spa
dc.relation.referencesI.M. Krichever. Algebraic curves and non-linear difference equations. Comm.Moscow Math.Soc., 33:170–171, 1978.spa
dc.relation.referencesI.M. Krichever. Commutative rings of ordinary linear differential operators. Funktz. Anal. Priloz., 12(3):20–31, 1978.spa
dc.relation.referencesI. M. Krichever. Holomorphic fiberings and nonlinear equations. finite zone solutions of rank 2. SovietMath. Dokl., 20:650–654, 1979.spa
dc.relation.referencesK. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantumspin chains. J. Phys. A:Math. Gen., 30(9):3165–3173, 1997.spa
dc.relation.referencesR. S. Kulkarni. Irreducible Representations of Witten’s deformations of U(sl2). J. Algebra, 214(1):64–91, 1999.spa
dc.relation.referencesD. Larsson. Burchnal-Chaundy theory, Ore extensions and ¾-differential operators. J. Algebra Appl., 13(07):1450049, 2014.spa
dc.relation.referencesO. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015.spa
dc.relation.referencesL. Le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994.spa
dc.relation.referencesL. Le Bruyn. Central singularities of quantumspaces. J. Algebra, 177(1):142–153, 1995.spa
dc.relation.referencesV. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, University of Kaiserslautern, 2005, Kaiserslautern.spa
dc.relation.referencesO. Lezama. Computation of point modules of finitely semi-graded rings. Comm. Algebra, 48(2):866–878, 2020.spa
dc.relation.referencesO. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semigraded Rings. Commun.Math. Stat., 9:347—-378, 2021.spa
dc.relation.referencesO. Lezama and J. Gómez. Koszulity and PointModules of Finitely Semi-Graded Rings and Algebras. Symmetry, 11(7):1–22, 2019.spa
dc.relation.referencesZ. Li. A Subresultant Theory for Linear Differential, Linear Difference and Ore Polynomials, with Applications. PhD thesis, Johannes Kepler Universität Linz, 1996.spa
dc.relation.referencesZ. Li. A Subresultant Theory for Ore Polynomials with Applications. In V.Weispfenning and B. Trager, editors, Proceedings of the 1998 International Symposiumon Symbolic and Algebraic Computation, ISSAC’ 98, pages 132–139, New York, NY, USA, 1998. Association for ComputingMachinery.spa
dc.relation.referencesO. Lezama and E. Latorre. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput., 27(4):361–389, 2017.spa
dc.relation.referencesR. Loos. Generalized Polynomial Remainder Sequence. In B. Buchberger, G. Collins, and R. Loos, editors, Computer Algebra, Symbolic and Algebraic Computation, Springer-Verlag,Wien-New York, pages 115–137. Springer, 1982.spa
dc.relation.referencesM. Lothaire. Algebraic Combinatorics onWords. First edition. Encyclopedia ofMathematics and Its Applications. 2002.spa
dc.relation.referencesO. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014.spa
dc.relation.referencesM. Louzari and A. Reyes. Generalized RigidModules and Their Polynomial Extensions. In M. Siles Molina, L. El Kaoutit, M. Louzari, L. Ben Yakoub, and M. Benslimane, editors, Associative and Non-Associative Algebras and Applications. MAMAA 2018, volume 311 of Springer Proceedings inMathematics Statistics, pages 147–158. Springer, Cham, 2020.spa
dc.relation.referencesM. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. ColombianaMat., 54(1):39–63, 2020.spa
dc.relation.referencesD. Larsson and S. Silvestrov. Burchnall-Chaundy Theory for q-Difference Operators and q-Deformed Heisenberg Algebras. J. NonlinearMath. Phys., 10(2):95–106, 2003.spa
dc.relation.referencesO. Lezama and H. Venegas. Center of skew PBW extensions. Internat. J. Algebra Comput., 30(08):1625–1650, 2020.spa
dc.relation.referencesO. Lezama and H. Venegas. The center of the total ring of fractions. SerdicaMath. J., 46(2):109–120, 2020.spa
dc.relation.referencesO. Lezama and H. Venegas. Gelfand-Kirillov dimension for rings. São Paulo J.Math. Sci., 14(1):207–222, 2020.spa
dc.relation.referencesV.M.Maksimov. A generalization of the ring of Ore skew polynomials. RussianMath. Surveys, 55(4):817–818, 2000.spa
dc.relation.referencesV. M. Maksimov. Canonical forms of skew polynomial rings. J. Math. Sci. (N.Y.), 126(2):1064–1076, 2005.spa
dc.relation.referencesB. Mishra. Algorithmic Algebra. Monographs in Computer Science, Springer New York, 1993.spa
dc.relation.referencesL.Makar-Limanov. Centralizers in the quantumplane algebra. In Joseph Bernstein, Vladimir Hinich, and Alexei Melnikov, editors, Studies in Lie Theory, volume 243. Birkhäuser Boston, 2006.spa
dc.relation.referencesL.Makar-Limanov and E. Previato. Centralizers of differential operators of rank h. J. Geom. Phys., 188:104812, 2023.spa
dc.relation.referencesJ.McConnell and J. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies inMathematics. AmericanMathematical Society, Second edition, 2001.spa
dc.relation.referencesA. Y.Morozov and S. R. Shakirov. New and old results in resultant theory. Sov. Phys. Usp., 163(2):587–617, 2010.spa
dc.relation.referencesM. Mulase. Algebraic Theory of the KP Equations. Perspectives in Mathematical Physics, 3:151–217, 1994.spa
dc.relation.referencesD. Mumford. An algebro-geometric construction of commuting operators of solutions to the Toda lattice equation, Korteweg deVries equation and related non-linear equations. Proc. Int. Symp. Algebraic Geometric, 346:115–153, 1977.spa
dc.relation.referencesS.McCallum and F.Winkler. Differential Resultants. In ITMWeb Conf. International Conference onMathematics (ICM 2018), volume 40–61 of Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics, 2018.spa
dc.relation.referencesA. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Bol.Mat., 24(2):131–148, 2017.spa
dc.relation.referencesA. Niño and A. Reyes. Some remarks about minimal prime ideals of skew Poincaré- Birkhoff-Witt extensions. Algebra DiscreteMath., 30(2):207–229, 2020.spa
dc.relation.referencesA. Niño,M. C. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 48(12):5038–5055, 2020.spa
dc.relation.referencesE. Noether andW. Schmeidler. Moduln in nichtkommutativen bereichen, insbesondere aus differential - und differenzenausdrücken. Math. Z., 8:1–35, 1920.spa
dc.relation.referencesC. N˘ast˘asescu and F. van Oystaeyen. Graded Ring Theory. North Holland. Amsterdam, 1982.spa
dc.relation.referencesO. Ore. Linear Equations inNon-commutative Fields. Ann. ofMath. (2), 32(3):463–477, 1931.spa
dc.relation.referencesO. Ore. Theory of non-commutative polynomials. Ann. ofMath. (2), 34(3):480–508, 1933.spa
dc.relation.referencesV. L. Ostrovskii and Yu. S. Samoilenko. Representation of ¤-algebras with two generators and polynomial relations. Journal ofMathematical Sciences, 59(5):1107–1113, 1989.spa
dc.relation.referencesC. Phan. The Yoneda Algebra of a Graded Ore Extension. Comm. Algebra, 40(3):834– 844, 2012.spa
dc.relation.referencesE. Previato. Seventy years of spectral curves: 1923-1993. In Integrable Systems and Quantum Groups, Lecture Notes inMathematics Vol, 1620, pages 419–481. Springer, Berlin, 1996.spa
dc.relation.referencesE. Previato. Burchnall-Chaundy bundles. In P. Newstead, editor, Algebraic Geometry, volume 200 of Lecture Notes in Pure and Appl. Math. EUROPROJ, Catania, 1993 / Barcelona, 1994, pages 377–383.Marcel Dekker, New York, 1998.spa
dc.relation.referencesE. Previato, L. Sonia, and M. A. Zurro. Burchnall-Chaundy polynomials for matrix ODOs and Picard-Vessiot Theory. Phys. D: Nonlinear Phenom., 453:133811, 2023.spa
dc.relation.referencesP. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002.spa
dc.relation.referencesE. Previato and G. Wilson. Differential operators and rank 2 bundles over elliptic curves. Compos.Math., 1(81):107–119, 1992.spa
dc.relation.referencesI. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University ofWisconsin -Milwaukee, 1996.spa
dc.relation.referencesI. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999.spa
dc.relation.referencesA. Reyes. Gelfand-Kirillov Dimension of Skew PBW Extensions. Rev. Colombiana Mat., 47(1):95–111, 2013.spa
dc.relation.referencesA. Reyes. Ring andModule Theoretic Properties of Skew PBWExtensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2013.spa
dc.relation.referencesA. Reyes. Jacobson’s conjecture and skew PBWextensions. Rev. Integr. Temas Mat., 32(2):139–152, 2014.spa
dc.relation.referencesA. Reyes. Armendariz modules over skew PBWextensions. Comm. Algebra, 47(3):1248– 1270, 2019.spa
dc.relation.referencesJ. Richter. Burchnall-Chaundy Theory for Ore Extensions. Makhlouf, A. et.al. (eds. ) Algebra, Geometry andMathematical Physics, AGMP, 85:61–70, 2014.spa
dc.relation.referencesJ. Richter. Centralizers and Pseudo-Degree Functions. In S. Silvestrov andM. Ranci´c, editors, Engineering Mathematics II, volume 179 of Springer Proceedings in Mathematics and Statistics, pages 65–73. Springer, 2016.spa
dc.relation.referencesA. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Math. Appl. (Soviet Ser.), 330 Kluwer Academic Publishers, 1995.spa
dc.relation.referencesH. Rosengreen. A non-commutative binomial formula. J. Geom. Phys, 32(4):349–363, 2000.spa
dc.relation.referencesA. Reyes and C. Rodríguez. TheMcCoy Condition on Skew Poincaré-Birkhoff-Witt Extensions. Commun.Math. Stat., 9(1):1–21, 2021.spa
dc.relation.referencesJ. Richter and S. Silvestrov. On Algebraic Curves for Commuting Elements in q- Heisenberg Algebras. J. Gen. Lie Theory Appl., 3(4):321–328, 2009.spa
dc.relation.referencesS. Rueda and J. R. Sendra. Linear complete differential resultants and the implicitization of linear DPPEs. J. Symbolic Comput., 45(3):324–341, 2010.spa
dc.relation.referencesJ. Richter and S. Silvestrov. Burchnall-Chaundy Annihilating Polynomials for Commuting Elements in Ore Extension Rings. In V. Abramov, editor, Journal of Physics: Conference Series 2010, volume 346 of Algebra, Geometry, andMathematical Physics, pages 17–41. IOP Publishing, Bristol, 2012.spa
dc.relation.referencesJ. Richter and S. Silvestrov. Centralizers in Ore Extensions of Polynomial Rings. International Electronic Journal of Algebra, 15(1):196–207, 2014.spa
dc.relation.referencesA. Reyes and H. Suárez. A note on zip and reversible skew PBW extensions. Bol.Mat., 23(1):71–79, 2016.spa
dc.relation.referencesA. Reyes and H. Suárez. Some Remarks About the Cyclic Homology of Skew PBW extensions. Ciencia en Desarrollo, 7(2):99–107, 2016.spa
dc.relation.referencesA. Reyes and H. Suárez. Bases for Quantum Algebras and Skew Poincaré-Birkhoff- Witt-Extensions. Momento, 54(1):54–75, 2017.spa
dc.relation.referencesA. Reyes and H. Suárez. Enveloping algebra and skew Calabi-Yau Algebras over skew Poincaré-Birkhoff-Witt extensions. Far East J.Math. Sci., 102(2):373–397, 2017.spa
dc.relation.referencesA. Reyes and H. Suárez. Burchnall-Chaundy theory for skew Poincaré-Birkhoff-Witt extensions. Far East J.Math. Sci., 106(1):237–252, 2018.spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr. Algebra Geom., 60(2):197–216, 2019.spa
dc.relation.referencesA. Reyes andH. Suárez. Skew Poincaré-Birkhoff-Witt extensions overweak compatible rings. J. Algebra Appl., 19(12):2050225(1)–2050225(21), 2020.spa
dc.relation.referencesA. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(3):529– 559, 2022.spa
dc.relation.referencesR. Resco, L.W. Small, and A.Wadsworth. Tensor Products of Division Rings and Finite Generation of Subfields. Proc. Amer.Math. Soc., 77(1):7–10, 1979.spa
dc.relation.referencesH. Suárez, F. Anaya, and A. Reyes. Propiedad  en extensiones PBW torcidas graduadas. Ciencia en Desarrollo, 12(1):33–41, 2021.spa
dc.relation.referencesI. Schur. Über vertauschbare lineare Differentialausdrücke. BerlinMath. Gesellschaft, Sitzungsbericht 3, 3(8):2–8, 1904.spa
dc.relation.referencesH. Suárez, D. Cáceres, and A. Reyes. Some special types of determinants in graded skew PBW extensions. Rev. Integr. TemasMat., 391(1):91–107, 2021.spa
dc.relation.referencesH. Suárez, A. Chacón, and A. Reyes. On NI and NJ skew PBW extensions. Comm. Algebra, 50(8):3261–3275, 2022.spa
dc.relation.referencesY. Sharifi. Centralizers in Associative Algebras. PhD thesis, Simon Fraser University, 2013.spa
dc.relation.referencesH. Suárez, O. Lezama, and A. Reyes. Some relations between N-Koszul, Artin-Schelter regular and Calabi-Yau algebras with skew PBW extensions. Ciencia en Desarrollo, 6(2):205–213, 2015.spa
dc.relation.referencesH. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. ColombianaMat., 51(2):221–238, 2017.spa
dc.relation.referencesT. H.M. Smits. Skew polynomial rings. Indag.Math. (N.S.), 30:209–224, 1968.spa
dc.relation.referencesS. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991.spa
dc.relation.referencesH. Suárez and A. Reyes. A generalized Koszul property for skew PBW extensions. Far East J.Math. Sci., 101(2):301–320, 2017.spa
dc.relation.referencesH. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J.Math. (Springer)., 12(1):247–263, 2023.spa
dc.relation.referencesS. Silvestrov, C. Svensson, and M. de Jeu. Algebraic Dependence of Commuting Elements in Algebras. In Sergei Silvestrov, Eva Paal, Viktor Abramov, and Alexander Stolin, editors, Generalized Lie Theory inMathematics, Physics and Beyond. Springer, Berlin, Heidelberg, 2009, pp. 265–280.spa
dc.relation.referencesH. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569– 4580, 2017.spa
dc.relation.referencesH. Suárez. N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2017.spa
dc.relation.referencesJ. P. Tignol. Value Functions on Simple Algebras, and Associated Graded Rings. Springer Monographs inMathematics. Springer, Cham, 2015.spa
dc.relation.referencesA. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In S. Silvestrov, A.Malyarenko, and M. Ranˇci´c, editors, Algebraic Structures and Applications. SPAS 2017, volume 317 of Springer Proc.Math. Stat., pages 469–490. Springer, Cham, 2020.spa
dc.relation.referencesR. Twarok. Representations for Selected Types of Diffusion Systems. In: E. Kapuscik and A. Horzela (eds). Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland,World Scientific Publishing Co. Pte. Ltd., pp. 615–620, 2002.spa
dc.relation.referencesV. A. Ufnarovskii. Combinatorial and asymptotic methods in algebra. Algebra – 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl.Mat. Fund. Napr, 57:5–177, 1990.spa
dc.relation.referencesH. Venegas. Zariski cancellation problem for skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2020.spa
dc.relation.referencesA.P. Veselov. Hamiltonian formalism for the Novikov-Krichever equations for the commutativity of two operators. Funct. Anal. Appl., 13(1):1–6, 1979.spa
dc.relation.referencesA. P. Veselov. Integrable maps. RussianMath. Surveys, 46(5):1–51, 1991.spa
dc.relation.referencesN. Ja. Vilenkin and A. U. Klimyk. Representation of Lie Groups and Special Functions. Kluwer Academic Publishers, 1995.spa
dc.relation.referencesP. vanMoerbeke and D.Mumford. The spectrumof difference operators and algebraic curves. ActaMath., 143:93–154, 1979.spa
dc.relation.referencesG.Wilson. Commuting flows and conservation lows for Lax equations. Math. Proc. Camb. Phil. Soc., 86:131–143, 1979.spa
dc.relation.referencesG.Wilson. Hamiltonian and algebro-geometric integrals of stationary equations of KdV type. Math. Proc. Camb. Phil. Soc., 87:295–305, 1980.spa
dc.relation.referencesE. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990.spa
dc.relation.referencesE.Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm.Math. Phys., 137(1):29–66, 1991.spa
dc.relation.referencesS. L.Woronowicz. Twisted SU(2)-Group. An Example of a Non-commutative Differential Calculus. Publ. Res. Inst.Math. Sci., 23:117–181, 1987.spa
dc.relation.referencesH. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN. Publ. RIMS Kyoto Univ., 25(3):503–520, 1989.spa
dc.relation.referencesG. Yunus, Z. Gao, and A. Obul. Gröbner-Shirshov Basis of Quantum Groups. Algebra Colloq., 22(3):495–516, 2015.spa
dc.relation.referencesA. Zaks. Dedekind subrings of [x1,x2, . . . ,xn] are rings of polynomials. Israel J.Math., 9:285–289, 1971.spa
dc.relation.referencesA. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991.spa
dc.relation.referencesZ. Y. Zhang, C. M. Yuan, and X. S. Gao. Matrix Formulae of Differential Resultant for First Order Generic Ordinary Differential Polynomials. In R. Feng, Ws. Lee, and Y. Sato, editors, 9th Asian Symposium (ASCM2009), Fukuoka, December 2009, 10th Asian Symposium (ASCM2012), Beijing, October 2012, Contributed Papers and Invited Talks, ComputerMathematics, pages 479–503. Springer Berlin, Heidelberg, 2014.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.lembOperadores diferenciales
dc.subject.lembDifferential operators
dc.subject.lembAnillos (Álgebra)
dc.subject.lembRings (Algebra)
dc.subject.proposalSemi-graded ringeng
dc.subject.proposalQuantum algebraeng
dc.subject.proposalOre extensioneng
dc.subject.proposalPBW basiseng
dc.subject.proposalValuationeng
dc.subject.proposalSylvester matrixeng
dc.subject.proposalResultanteng
dc.subject.proposalDeterminant polynomialeng
dc.subject.proposalCentralizereng
dc.subject.proposalGelfand-Kirillov dimensioneng
dc.subject.proposalAnillo semi-graduadospa
dc.subject.proposalÁlgebra cuánticaspa
dc.subject.proposalExtensión de Orespa
dc.subject.proposalBase PBWspa
dc.subject.proposalValuaciónspa
dc.subject.proposalMatriz de Sylvesterspa
dc.subject.proposalResultantespa
dc.subject.proposalPolinomio determinantespa
dc.subject.proposalCentralizadorspa
dc.subject.proposalDimensión de Gelfand-Kirillovspa
dc.subject.wikidataTeoría de anillos
dc.subject.wikidataRing theory
dc.subject.wikidataMatriz de Sylveste
dc.titleAlgebro-geometric characterizations of commuting differential operators in semi-graded ringseng
dc.title.translatedCaracterizaciones algebro-geométricas de operadores diferenciales conmutativos en anillos semi-graduadosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016069203.2024.pdf
Tamaño:
1.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: