Fabricación y caracterización de capas delgadas graduadas y multicapa de InxAl1-xN para su potencial uso en la generación de energía fotovoltaica.

dc.contributor.advisorMolcue Nieto, Luis Fernando
dc.contributor.advisorRestrepo Parra, Elisabeth
dc.contributor.authorCañón Bermúdez, Juan David
dc.date.accessioned2025-07-01T21:28:12Z
dc.date.available2025-07-01T21:28:12Z
dc.date.issued2025-06-29
dc.description.abstractLa tesis doctoral se centra en el estudio del semiconductor InAlN, un material versátil con aplicaciones en dispositivos optoelectrónicos como LEDs, láseres, celdas solares y transistores de alta movilidad de electrones. Se investigaron diversas metodologías para la síntesis y caracterización de capas de InAlN, destacando la técnica de co-sputtering DC a temperatura ambiente, que permite reducir costos de producción. Este enfoque innovador facilita la fabricación de dispositivos más asequibles y eficientes. Además, se analizaron las condiciones de depósito mediante sputtering monocátodo, observando cómo variables como el flujo de gases y la potencia aplicada afectan las propiedades estructurales y ópticas del material. Se propuso una metodología alternativa al método tradicional de Tauc para determinar las propiedades ópticas, proporcionando una caracterización más completa al considerar todas las transiciones electrónicas posibles. También se exploró la fabricación de estructuras graduadas (graduadas) y multicapas de InAlN, las cuales mostraron mejoras significativas en el coeficiente de absorción y control de defectos, optimizando así sus propiedades para aplicaciones tecnológicas avanzadas. Las estructuras multicapa, en particular, demostraron un potencial notable para mejorar la eficiencia en celdas solares debido a su capacidad para absorber una mayor cantidad de energía solar. En conclusión, la investigación realizada en esta tesis demuestra que mediante ajustes en los métodos de fabricación y caracterización es posible optimizar las propiedades del InAlN, abriendo nuevas oportunidades para el desarrollo de dispositivos optoelectrónicos más eficientes y económicos (Texto tomado de la fuente).spa
dc.description.abstractThe doctoral thesis focuses on the study of InAlN semiconductor, a versatile material with applications in optoelectronic devices such as LEDs, lasers, solar cells and high electron mobility transistors. Several methodologies for the synthesis and characterization of InAlN layers were investigated, highlighting the DC co-sputtering technique at room temperature, which allows reducing production costs. This innovative approach facilitates the fabrication of more affordable and efficient devices. In addition, the deposition conditions by single-cathode sputtering were analyzed, observing how variables such as gas flow and applied power affect the structural and optical properties of the material. An alternative methodology to the traditional Tauc method was proposed to determine the optical properties, providing a more complete characterization by considering all possible electronic transitions. The fabrication of graded and multilayer InAlN structures was also explored, which showed significant improvements in absorption coefficient and defect control, thus optimizing their properties for advanced technological applications. The multilayer structures demonstrated a remarkable potential to improve the efficiency in solar cells due to their ability to absorb a higher amount of solar energy. In conclusion, the research carried out in this thesis demonstrates that through adjustments in the fabrication and characterization methods it is possible to optimize the properties of InAlN, opening new opportunities for the development of more efficient and economical optoelectronic devices.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Ciencias Físicaspa
dc.description.methodsExperimentalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88264
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Doctorado en Ciencias - Físicaspa
dc.relation.referencesC. Mora et al., “Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions,” Dec. 01, 2018, Nature Publishing Group. doi: 10.1038/s41558-018-0315-6.spa
dc.relation.referencesL. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici, “Silicon solar cells: Toward the efficiency limits,” Jan. 01, 2019, Taylor and Francis Ltd. doi: 10.1080/23746149.2018.1548305.spa
dc.relation.referencesT. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” Jul. 2010. doi: 10.1038/asiamat.2010.82.spa
dc.relation.referencesH. Tsai et al., “High-efficiency two-dimensional ruddlesden-popper perovskite solar cells,” Nature, vol. 536, no. 7616, pp. 312–317, Jul. 2016, doi: 10.1038/nature18306.spa
dc.relation.referencesH. Chen et al., “Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells,” ACS Appl Mater Interfaces, vol. 12, no. 12, pp. 13941–13949, Mar. 2020, doi: 10.1021/acsami.9b23255.spa
dc.relation.referencesH. Chen et al., “Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells,” ACS Appl Mater Interfaces, vol. 12, no. 12, pp. 13941–13949, Mar. 2020, doi: 10.1021/acsami.9b23255.spa
dc.relation.referencesR. E. Jones et al., “High efficiency InAlN-based solar cells,” in Conference Record of the IEEE Photovoltaic Specialists Conference, 2008. doi: 10.1109/PVSC.2008.4922884.spa
dc.relation.referencesK. Kubota, Y. Kobayashi, K. Fujimoto, Y. Kobayashi, and K. Fujimoto, “Preparation and properties of III-V nitride thin films,” J Appl Phys, vol. 2984, 1989, doi: 10.1063/1.344181.spa
dc.relation.referencesT. S. Yeh, J. M. Wu, and W. H. Lan, “Electrical properties and optical bandgaps of AlInN films by reactive sputtering,” J Cryst Growth, vol. 310, no. 24, pp. 5308–5311, 2008, doi: 10.1016/j.jcrysgro.2008.09.166.spa
dc.relation.referencesQ. X. Ã. Guo, Y. Okazaki, Y. Kume, T. Tanaka, M. Nishio, and H. Ogawa, “Reactive sputter deposition of AlInN thin films,” J Cryst Growth, vol. 300, pp. 151–154, 2007, doi: 10.1016/j.jcrysgro.2006.11.007.spa
dc.relation.referencesN. Afzal, M. Devarajan, and K. Ibrahim, “Deposition and characterization of magnetron co-sputtered in AlN film at different Ar:N2 gas flow ratios,” Surface Review and Letters, vol. 24, no. 3, Apr. 2017, doi: 10.1142/S0218625X17500275.spa
dc.relation.referencesR. Mohamad, J. Chen, and P. Ruterana, “The effect of N-vacancy and In aggregation on the properties of InAlN,” Comput Mater Sci, vol. 172, Feb. 2020, doi: 10.1016/j.commatsci.2019.109384.spa
dc.relation.referencesW.-C. Chen et al., “ Effect of Growth Temperature on Structural Quality of InRich In x Al 1−x N Alloys on Si (111) Substrate by RF-MOMBE ,” ISRN Nanomater, vol. 2014, pp. 1–6, Feb. 2014, doi: 10.1155/2014/980206.spa
dc.relation.referencesM. Alves Machado Filho, C. L. Hsiao, R. B. dos Santos, L. Hultman, J. Birch, and G. K. Gueorguiev, “Self-Induced Core-Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations,” ACS Nanoscience Au, vol. 3, no. 1, pp. 84–93, Feb.2023, doi: 10.1021/acsnanoscienceau.2c00041.spa
dc.relation.referencesX. Wang et al., “Growth and characterization of InxAl1-xN films on silicon substrate by magnetron sputtering method,” Mater Res Express, pp. 1–11, 2018, doi: https://doi.org/10.1088/2053-1591/aaef0d.spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.proposalInAlN, Depósito por sputtering, Sputtering monocátodo, Sputtering bicátodo, Análisis óptico por derivadas de la absorbancia, Estructuras multicapa, Capas gradadas
dc.titleFabricación y caracterización de capas delgadas graduadas y multicapa de InxAl1-xN para su potencial uso en la generación de energía fotovoltaica.
dc.title.translatedFabrication and characterization of graded and multilayer InxAl1-xN thin films for their potential use in photovoltaic power generation.
dc.typeTrabajo de grado - Doctoradospa
dc.type.contentTextspa
dcterms.audience.professionaldevelopmentInvestigadoresspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
16077818.2025.pdf
Tamaño:
7.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: