Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas

dc.contributor.advisorMera Banguero, Carlos Andres
dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.advisorOrduz Peralta, Sergio
dc.contributor.authorOrrego Pérez, Andrés
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001737101spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=K6Tz_4QAAAAJ&hl=esspa
dc.contributor.orcid0000-0002-5143-0276spa
dc.contributor.researchgroupBiología Funcionalspa
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificialspa
dc.date.accessioned2023-05-19T19:12:22Z
dc.date.available2023-05-19T19:12:22Z
dc.date.issued2023
dc.descriptionIlustracionesspa
dc.description.abstractLa resistencia a los antibióticos se ha convertido en uno de los mayores problemas de salud a nivel mundial en los últimos años, provocando afectaciones directas contra la salud y la economía. Un tipo especial de proteínas cortas, denominadas péptidos antimicrobianos, está tomando gran relevancia en la investigación para combatir esta problemática, principalmente por sus bondades antibióticas. Existen diferentes métodos para la búsqueda de nuevos péptidos antimicrobianos, entre ellos está el uso de técnicas de aprendizaje automático que permiten reducir los costos y el tiempo de búsqueda, comparadas con las técnicas tradicionales de bioprospección. En esa línea, en este trabajo se propone un método para la generación de secuencias sintéticas de péptidos antimicrobianos con funcionalidades específicas utilizando una red neuronal con una arquitectura GAN condicional y celdas recurrentes. Este método es evaluado a partir de una estrategia de validación propuesta que se enfoca en medir la calidad y diversidad de las secuencias sintéticas generadas. Los modelos obtenidos fueron comparados con algunas referencias del estado del arte y los resultados mostraron que las secuencias generadas por los modelos propuestos tienen alto potencial antimicrobiano, son diversas, estructuralmente distintas a las secuencias de entrenamiento, pero similares a nivel de su composición de aminoácidos. Adicionalmente, los modelos propuestos pueden generar, a petición del usuario, secuencias con las siguientes funcionalidades específicas: antimicrobiano, antibacteriano, anti gramnegativo, anti grampositivo, antifúngico, antiviral, y anticáncer. (Tomado de la fuente)spa
dc.description.abstractAntibiotic resistance has become one of the biggest health problems worldwide in recent years, causing direct effects on health and the economy. A particular type of short protein, called antimicrobial peptides, is gaining great relevance in research to combat this problem, mainly due to its antibiotic benefits. There are different methods for searching for new antimicrobial peptide sequences, including machine learning techniques that reduce costs and search time compared to traditional bioprospecting techniques. In that line, this work proposes a method for generating synthetic sequences of antimicrobial peptides with specific functionalities using a neural network with a conditional GAN architecture and recurrent cells. This method is evaluated based on a proposed validation strategy that measures the quality and diversity of the generated synthetic sequences. The obtained models were compared with some state-of-the-art references. The results showed that the sequences generated by the proposed models have high antimicrobial potential and are diverse, structurally different from the training sequences, but similar at their amino acid composition level. Additionally, the proposed models can generate, at the user's request, sequences with the following specific functionalities: antimicrobial, antibacterial, anti-gram-negative, anti-gram-positive, antifungal, antiviral, and anticancer.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.researchareaInteligencia Artificialspa
dc.format.extent65 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83835
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesDR. Daza, “Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria,” Inf ormaciónTerapeutica del Sistema Nacional de Salud, vol. 22, no. 3, 1998.spa
dc.relation.referencesF. Del Castillo Martin, “Neumococo resistente a la penicilina. Un grave problema de salud publica,” Anales Espanoles de Pediatria, vol. 45, no. 3. 1996.spa
dc.relation.referencesWorld Health Organization, “Resistencia a los antimicrobianos,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance (accessed Dec. 20, 2021).spa
dc.relation.referencesJ. Oromí Durich, “Resistencia bacteriana a los antibióticos. Medicina Integral,” Medicina Integral, vol. 36, no. 10, 2000.spa
dc.relation.referencesInteragency Coordination Group on Antimicrobial Resistance, “No podemos esperar: asegurar el futuro contra las infecciones farmacorresistentes,” 2019.spa
dc.relation.referencesWorld Health Organization, “2019 Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.,” 2019.spa
dc.relation.referencesJ. O’Neill, “Antimicrobial Resistance : Tackling a crisis for the health and wealth of nations, Review on Antimicrobial Resistance, Chaired by Jim O’Neill, December 2014,” Review on Antimicrobial Resistance, no. December, 2016.spa
dc.relation.referencesWHO, “Proyecto de plan de acción mundial sobre la resistencia a los antimicrobianos. Informe de la Secretaría.,” Resistencia a los antimicrobianos, 2015.spa
dc.relation.referencesA. K. Marr, W. J. Gooderham, and R. E. Hancock, “Antibacterial peptides for therapeutic use: obstacles and realistic outlook,” Current Opinion in Pharmacology, vol. 6, no. 5. 2006. doi: 10.1016/j.coph.2006.04.006.spa
dc.relation.referencesC. D. Fjell, J. A. Hiss, R. E. W. Hancock, and G. Schneider, “Designing antimicrobial peptides: Form follows function,” Nature Reviews Drug Discovery, vol. 11, no. 1. 2012. doi: 10.1038/nrd3591.spa
dc.relation.referencesA. Talevi and L. E. Bruno-Blanch, “Screening virtual: Una herramienta eficaz para el desarrollo de nuevos fármacos en Latinoamérica,” Latin American Journal of Pharmacy, vol. 28, no. 1. 2009.spa
dc.relation.referencesJ. Yan et al., “Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning,” Mol Ther Nucleic Acids, vol. 20, 2020, doi: 10.1016/j.omtn.2020.05.006.spa
dc.relation.referencesD. Veltri, U. Kamath, and A. Shehu, “Deep learning improves antimicrobial peptide recognition,” Bioinformatics, vol. 34, no. 16, 2018, doi: 10.1093/bioinformatics/bty179.spa
dc.relation.referencesM. Kozić et al., “Predicting the Minimal Inhibitory Concentration for Antimicrobial Peptides with Rana-Box Domain,” J Chem Inf Model, vol. 55, no. 10, 2015, doi: 10.1021/acs.jcim.5b00161.spa
dc.relation.referencesE. G. Sevillano, “¿Cuánto cuesta fabricar un medicamento?,” EL PAÍS, 2015.spa
dc.relation.referencesA. Orrego Pérez, J. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Sistema de Inteligencia Artificial para la Predicción o Generación Automática de péptidos Bioactivos,” Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesA. Orrego Pérez, C. A. Mera Banguero, S. Orduz Peralta, and J. W. Branch Bedoya, “Red Generativa Antagónica para la Generación de Péptidos Antimicrobianos Sintéticos,” 2021.spa
dc.relation.referencesA. T. Müller, J. A. Hiss, and G. Schneider, “Recurrent Neural Network Model for Constructive Peptide Design,” J Chem Inf Model, vol. 58, no. 2, pp. 472–479, 2018, doi: 10.1021/acs.jcim.7b00414.spa
dc.relation.referencesJ. R. Mxkee. Trudy Mckee, Bioquimica (las bases moleculares de la vida), vol. 53, no. 9. 2013.spa
dc.relation.referencesP. Gutiérrez and S. Orduz, “PÉPTIDOS ANTIMICROBIANOS: ESTRUCTURA, FUNCIÓN Y APLICACIONES,” Actual Biol, vol. 25, no. 78, 2003.spa
dc.relation.referencesA. A. Bahar and D. Ren, “Antimicrobial Peptides,” Pharmaceuticals , vol. 6, no. 12. 2013. doi: 10.3390/ph6121543.spa
dc.relation.referencesI. J. Goodfellow et al., “Generative Adversarial Networks,” Jun. 2014, Accessed: Dec. 14, 2021. [Online]. Available: https://arxiv.org/abs/1406.2661spa
dc.relation.referencesT. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Generative Adversarial Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 43, no. 12, pp. 4217–4228, 2021, doi: 10.1109/TPAMI.2020.2970919.spa
dc.relation.referencesC. Donahue, J. McAuley, and M. Puckette, “Adversarial Audio Synthesis,” Feb. 2018.spa
dc.relation.referencesA. Clark, J. Donahue, and K. Simonyan, “Adversarial Video Generation on Complex Datasets,” Jul. 2019.spa
dc.relation.referencesP. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks,” Nov. 2016.spa
dc.relation.referencesZ. Xu, M. Wilber, C. Fang, A. Hertzmann, and H. Jin, “Learning from Multi-domain Artistic Images for Arbitrary Style Transfer,” May 2018.spa
dc.relation.referencesH. Zhang et al., “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks,” Dec. 2016.spa
dc.relation.referencesI. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Networks,” Dec. 2016.spa
dc.relation.referencesM. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial networks,” in 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017.spa
dc.relation.referencesM. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” Jan. 2017.spa
dc.relation.referencesL. Metz, J. Sohl-Dickstein, B. Poole, and D. Pfau, “Unrolled generative adversarial networks,” in 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017.spa
dc.relation.referencesK. Roth, A. Lucchi, S. Nowozin, and T. Hofmann, “Stabilizing training of generative adversarial networks through regularization,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-Decem, pp. 2019–2029.spa
dc.relation.referencesT. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved Techniques for Training GANs,” Jun. 2016.spa
dc.relation.referencesM. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” Nov. 2014, Accessed: Dec. 16, 2021. [Online]. Available: https://arxiv.org/abs/1411.1784spa
dc.relation.referencesY. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the Latent Space of GANs for Semantic Face Editing,” Jul. 2019.spa
dc.relation.referencesJ. Langr and V. Bok, GANs in action, vol. 53, no. 9. 2019.spa
dc.relation.referencesS. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural Comput, vol. 9, pp. 1735–1780, Dec. 1997, doi: 10.1162/neco.1997.9.8.1735.spa
dc.relation.referencesF. Chollet, Deep Learning with Python, 1st ed. USA: Manning Publications Co., 2017.spa
dc.relation.referencesAurélien Géron, Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems. 2019.spa
dc.relation.referencesK. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” in EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 2014. doi: 10.3115/v1/d14-1179.spa
dc.relation.referencesM. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, 1997, doi: 10.1109/78.650093.spa
dc.relation.referencesF. Grisoni, C. S. Neuhaus, G. Gabernet, A. T. Müller, J. A. Hiss, and G. Schneider, “Designing Anticancer Peptides by Constructive Machine Learning,” ChemMedChem, vol. 13, no. 13, pp. 1300–1302, 2018, doi: 10.1002/cmdc.201800204.spa
dc.relation.referencesRenaud Samuel and Mansbach Rachael, “Latent Spaces for Antimicrobial Peptide Design,” ChemRxiv, Sep. 2022.spa
dc.relation.referencesC. Wang, S. Garlick, and M. Zloh, “Deep learning for novel antimicrobial peptide design,” Biomolecules, vol. 11, no. 3, pp. 1–17, 2021, doi: 10.3390/biom11030471.spa
dc.relation.referencesP. Das et al., “Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations,” Nat Biomed Eng, vol. 5, no. 6, 2021, doi: 10.1038/s41551-021-00689-x.spa
dc.relation.referencesA. Rossetto and W. Zhou, “GANDALF: Peptide Generation for Drug Design using Sequential and Structural Generative Adversarial Networks,” in Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2020, 2020. doi: 10.1145/3388440.3412487.spa
dc.relation.referencesP. Das et al., “PepCVAE: Semi-Supervised Targeted Design of Antimicrobial Peptide Sequences,” Oct. 2018, Accessed: Dec. 14, 2021. [Online]. Available: https://arxiv.org/abs/1810.07743spa
dc.relation.referencesK. Hasegawa, Y. Moriwaki, T. Terada, C. Wei, and K. Shimizu, “Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides,” J Bioinform Comput Biol, vol. 20, no. 6, 2022, doi: 10.1142/S0219720022500263.spa
dc.relation.referencesS. N. Dean, J. A. E. Alvarez, D. Zabetakis, S. A. Walper, and A. P. Malanoski, “PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction,” Front Microbiol, vol. 12, 2021, doi: 10.3389/fmicb.2021.725727.spa
dc.relation.referencesA. Vélez, C. Mera, S. Orduz, and J. W. Branch, “Synthetic antimicrobial peptides generation using recurrent neural networks | Generación de péptidos antimicrobianos mediante redes neuronales recurrentes,” DYNA (Colombia), vol. 88, no. 216, pp. 210–219, 2021, doi: 10.15446/dyna.v88n221.88799.spa
dc.relation.referencesC. M. van Oort, J. B. Ferrell, J. M. Remington, S. Wshah, and J. Li, “AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides,” J Chem Inf Model, vol. 61, no. 5, pp. 2198–2207, 2021, doi: 10.1021/acs.jcim.0c01441.spa
dc.relation.referencesJ. B. Ferrell et al., “A Generative Approach Toward Precision Antimicrobial Peptide Design,” bioRxiv, p. 2020.10.02.324087, Jan. 2020, doi: 10.1101/2020.10.02.324087.spa
dc.relation.referencesP. Szymczak et al., “HydrAMP: a deep generative model for antimicrobial peptide discovery,” bioRxiv, p. 2022.01.27.478054, Jan. 2022, doi: 10.1101/2022.01.27.478054.spa
dc.relation.referencesA. Capecchi, X. Cai, H. Personne, T. Köhler, C. van Delden, and J. L. Reymond, “Machine learning designs non-hemolytic antimicrobial peptides,” Chem Sci, vol. 12, no. 26, 2021, doi: 10.1039/d1sc01713f.spa
dc.relation.referencesD. Nagarajan et al., “Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria,” J. Biol. Chem., vol. 293, p. 3492, 2018.spa
dc.relation.referencesM. Ghorbani, S. Prasad, B. R. Brooks, and J. B. Klauda, “Deep attention based variational autoencoder for antimicrobial peptide discovery,” bioRxiv, p. 2022.07.08.499340, Jan. 2022, doi: 10.1101/2022.07.08.499340.spa
dc.relation.referencesM. Pirtskhalava et al., “DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics,” Nucleic Acids Res, vol. 49, no. D1, 2021, doi: 10.1093/nar/gkaa991.spa
dc.relation.referencesA. Bateman, “UniProt: A worldwide hub of protein knowledge,” Nucleic Acids Res, vol. 47, no. D1, 2019, doi: 10.1093/nar/gky1049.spa
dc.relation.referencesH. T. Lee, C. C. Lee, J. R. Yang, J. Z. C. Lai, K. Y. Chang, and O. Ray, “A large-scale structural classification of Antimicrobial peptides,” BioMed Research International, vol. 2015. 2015. doi: 10.1155/2015/475062.spa
dc.relation.referencesG. Wang, X. Li, and Z. Wang, “APD3: The antimicrobial peptide database as a tool for research and education,” Nucleic Acids Res, vol. 44, no. D1, 2016, doi: 10.1093/nar/gkv1278.spa
dc.relation.referencesX. Zhao, H. Wu, H. Lu, G. Li, and Q. Huang, “LAMP: A Database Linking Antimicrobial Peptides,” PLoS One, vol. 8, no. 6, 2013, doi: 10.1371/journal.pone.0066557.spa
dc.relation.referencesS. N. Dean and S. A. Walper, “Variational autoencoder for generation of antimicrobial peptides,” ACS Omega, vol. 5, no. 33, pp. 20746–20754, 2020, doi: 10.1021/acsomega.0c00442.spa
dc.relation.referencesF. Chollet and others, “Keras.” 2015.spa
dc.relation.referencesA. Paszke et al., “Automatic differentiation in PyTorch,” 2017.spa
dc.relation.referencesMartín~Abadi et al., “ TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.” 2015. [Online]. Available: https://www.tensorflow.org/spa
dc.relation.referencesR. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-like Environment for Machine Learning,” in BigLearn, NIPS Workshop, 2011.spa
dc.relation.referencesS. Chen and H. U. Kim, “Designing Novel Functional Peptides by Manipulating a Temperature in the Softmax Function Coupled with Variational Autoencoder,” in Proceedings -2019 IEEE International Conference on Big Data, Big Data 2019, 2019. doi: 10.1109/BigData47090.2019.9006253.spa
dc.relation.referencesA. Tucs, D. P. Tran, A. Yumoto, Y. Ito, T. Uzawa, and K. Tsuda, “Generating ampicillin-level antimicrobial peptides with activity-aware generative adversarial networks,” ACS Omega, vol. 5, no. 36, pp. 22847–22851, 2020, doi: 10.1021/acsomega.0c02088.spa
dc.relation.referencesT.-T. Lin et al., “Discovering Novel Antimicrobial Peptides in Generative Adversarial Network,” bioRxiv, 2021.spa
dc.relation.referencesA. Orrego Pérez et al., “PepMultiTools,” 2019. https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/herramientas/pepmultitools.htmlspa
dc.relation.referencesC. M. Van Oort, J. B. Ferrell, J. M. Remington, S. Wshah, and J. Li, “AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides,” J Chem Inf Model, vol. 61, no. 5, pp. 2198–2207, 2021, doi: 10.1021/acs.jcim.0c01441.spa
dc.relation.referencesA. Gupta and J. Zou, “Feedback GAN for DNA optimizes protein functions,” Nat Mach Intell, vol. 1, no. 2, pp. 105–111, 2019, doi: 10.1038/s42256-019-0017-4.spa
dc.relation.referencesA. Tucs, D. P. Tran, A. Yumoto, Y. Ito, T. Uzawa, and K. Tsuda, “Generating ampicillin-level antimicrobial peptides with activity-aware generative adversarial networks,” ACS Omega, vol. 5, no. 36, pp. 22847–22851, 2020, doi: 10.1021/acsomega.0c02088.spa
dc.relation.referencesM. Lu and T. Gibson, “Development of Predictive Tools for Anti-Cancer Peptide Candidates using Generative Machine Learning Models,” The Journal of Young Investigators, May 2021.spa
dc.relation.referencesD. Wang, Z. Wen, L. Li, and H. Zhou, “Generating Antimicrobial Peptides from Latent Secondary Structure Space.” 2022. [Online]. Available: https://openreview.net/forum?id=ajOSNLwqssuspa
dc.relation.referencesJ. Mao et al., “Application of a deep generative model produces novel and diverse functional peptides against microbial resistance,” Comput Struct Biotechnol J, vol. 21, pp. 463–471, 2023, doi: https://doi.org/10.1016/j.csbj.2022.12.029.spa
dc.relation.referencesJ. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Sistema de inteligencia artificial para la predicción y generación automática de péptidos bioactivos”.spa
dc.relation.referencesJ. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Prototipo de una Máquina de Inteligencia Artificial para la Predicción de la Actividad Antimicrobiana a Partir del Análisis de Proteomas,” 2020.spa
dc.relation.referencesE. Asgari and M. R. K. Mofrad, “ProtVec: A Continuous Distributed Representation of Biological Sequences,” Mar. 2015, doi: 10.1371/journal.pone.0141287.spa
dc.relation.referencesP. J. A. Cock et al., “Biopython: Freely available Python tools for computational molecular biology and bioinformatics,” Bioinformatics, vol. 25, no. 11, 2009, doi: 10.1093/bioinformatics/btp163.spa
dc.relation.referencesD. S. Cao, Y. Z. Liang, J. Yan, G. S. Tan, Q. S. Xu, and S. Liu, “PyDPI: Freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies,” J Chem Inf Model, vol. 53, no. 11, 2013, doi: 10.1021/ci400127q.spa
dc.relation.referencesA. T. Müller, G. Gabernet, J. A. Hiss, and G. Schneider, “modlAMP: Python for antimicrobial peptides,” Bioinformatics, vol. 33, no. 17, 2017, doi: 10.1093/bioinformatics/btx285.spa
dc.relation.referencesS. Ramírez Montaño, “FastAPI,” 2023.spa
dc.relation.referencesJ. Amat Rodrigo, “Comparación de distribuciones con python: test Kolmogorov–Smirnov.” https://www.cienciadedatos.net/documentos/pystats08-comparacion-distribuciones-test-kolmogorov-smirnov-python.html (accessed May 24, 2022).spa
dc.relation.referencesM. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a two time-scale update rule converge to a local Nash equilibrium,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-December.spa
dc.relation.referencesD. C. Dowson and B. v. Landau, “The Fréchet distance between multivariate normal distributions,” J Multivar Anal, vol. 12, no. 3, 1982, doi: 10.1016/0047-259X(82)90077-X.spa
dc.relation.referencesF. H. Waghu, R. S. Barai, P. Gurung, and S. Idicula-Thomas, “CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides,” Nucleic Acids Res, vol. 44, no. D1, pp. D1094–D1097, 2016, doi: 10.1093/nar/gkv1051.spa
dc.relation.referencesC. R. Chung, T. R. Kuo, L. C. Wu, T. Y. Lee, and J. T. Horng, “Characterization and identification of antimicrobial peptides with different functional activities,” Brief Bioinform, vol. 21, no. 3, 2020, doi: 10.1093/bib/bbz043.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcRedes neuronales
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembPéptidos
dc.subject.proposalGANeng
dc.subject.proposalAntimicrobial peptideseng
dc.subject.proposalDeep learningeng
dc.subject.proposalSequence generationeng
dc.subject.proposalGANspa
dc.subject.proposalPéptidos antimicrobianosspa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalGeneración de secuenciasspa
dc.titleModelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicasspa
dc.title.translatedDeep Learning Model for automatic generation of synthetic antimicrobials peptides with specific functionalitieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Modelo de Aprendizaje Profundo para la Generación Automática de Péptidos Antimicrobianos Sintéticos con Funcionalidades Específicas.pdf
Tamaño:
1.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en Ingeniería - Análitica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: