Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos

dc.contributor.advisorRodríguez Baracaldo, Rodolfospa
dc.contributor.advisorNarváez Tovar, Carlos Albertospa
dc.contributor.authorCuervo Basurto, Anyersonspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.corporatenameDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.contributor.researchgroupInnovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM)spa
dc.date.accessioned2020-07-29T02:47:38Zspa
dc.date.available2020-07-29T02:47:38Zspa
dc.date.issued2020-06-16spa
dc.description.abstractThis work encompasses a DP600 steel mechanical behavior characterization by using micro indentation test simulations. To simulate the microindentation was used methodologies to generate bidimensional and tridimensional artificial representative volume elements (RVE) based on material's statistical data. There were selected micromechanical models to predict its phases' behavior. The experimental data to validate the behavior was found on literature then it was introduced on nano indentation and micro indentation simulations. Nano indentations were used to validate the individual phases' mechanical behavior later Micro indentations were made to study the effect of second phase particles immersed in the volume. The distribution of second phase particles shows an effect over the mechanical behavior on the simulation explaining the curves differences.spa
dc.description.abstractEl presente estudio comprende la simulación por elementos finitos del comportamiento micromecánico de un acero de fase dual DP600 utilizando la técnica de ensayos de microindentación. Para tal fin, fueron usadas metodologías para generar elementos de volumen representativo (RVE) artificiales, bidimensionales y tridimensionales basados en su representación estadística, y seleccionados modelos teóricos micromecánicos que permitan predecir el comportamiento de las fases que lo conforman. Los parámetros el acero DP fueron obtenidos de la revisión de literatura, estos fueron ubicados dentro de los modelos e implementados en las simulaciones de nanoindentación, para validar el comportamiento de cada fase, y microindentación, con el fin de estudiar el efecto de las partículas de segunda fase. Se encontró que el efecto de las partículas de segunda fase sobre la respuesta global depende de la distancia de separación de estas partículas, explicando las diferencias en las curvas de respuesta.spa
dc.description.additionalMagíster en Medio Ambiente y Desarrollo . Línea de Investigación: Estudios Ambientales Agrarios .spa
dc.description.degreelevelMaestríaspa
dc.format.extent128spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationA. Cuervo Basurto, Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos, Bogotá: Universidad Nacional de Colombia, 2020.spa
dc.identifier.citationCuervo Basurto, A. (2020). Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos. Bogotá, Colombia: Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77866
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesH. S. Valberg, Applied Metal Forming: Including FEM Analysis. Applied Metal For- ming: Including FEM Analysis, Cambridge University Press, 2010.spa
dc.relation.referencesN. Fonstein, “Advanced High Strength Sheet Steels,” in Adv. High Strength Sheet Steels (R. Rana and S. B. B. T. A. S. Singh, eds.), Woodhead Publishing, 2015.spa
dc.relation.referencesC. C. Tasan, J. P. Hoefnagels, L. C. Louws, and M. G. Geers, “Experimental-numerical analysis of the indentation-based damage characterization methodology,” Appl. Mech. Mater., vol. 13-14, pp. 151–160, 2008.spa
dc.relation.referencesR. Peierls, “The size of a dislocation,” Proc. Phys. Soc., vol. 52, pp. 34–37, jan 1940.spa
dc.relation.referencesR. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proc. Phys. Soc. Sect. A, vol. 65, pp. 349–354, may 1952.spa
dc.relation.referencesR. Hill and J. Rice, “Constitutive analysis of elastic-plastic crystals at arbitrary strain,” J. Mech. Phys. Solids, vol. 20, pp. 401–413, dec 1972.spa
dc.relation.referencesA. Arsenlis and D. M. Parks, “Modeling the evolution of crystallographic dislocation density in crystal plasticity,” J. Mech. Phys. Solids, vol. 50, no. 9, pp. 1979–2009, 2002.spa
dc.relation.referencesK. Yoshida, R. Brenner, B. Bacroix, and S. Bouvier, “Micromechanical modeling of the work-hardening behavior of single- and dual-phase steels under two-stage loading paths,” Mater. Sci. Eng. A, vol. 528, no. 3, pp. 1037–1046, 2011.spa
dc.relation.referencesC. N. N’Guyen, F. Barbe, N. Osipov, G. Cailletaud, B. Marini, and C. Petry, “Micro- mechanical local approach to brittle failure in bainite high resolution polycrystals: A short presentation,” Comput. Mater. Sci., vol. 64, pp. 62–65, 2012.spa
dc.relation.referencesF. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl, and D. Raabe, “DA- MASK: The dusseldorf advanced material simulation kit for studying crystal plasticity using an fe based or a spectral numerical solver,” Procedia IUTAM, vol. 3, pp. 3–10, 2012.spa
dc.relation.referencesC. A. Sweeney, P. E. McHugh, J. P. McGarry, and S. B. Leen, “Micromechanical methodology for fatigue in cardiovascular stents,” Int. J. Fatigue, vol. 44, pp. 202–216, 2012.spa
dc.relation.referencesA. Tahimi, F. Barbe, L. Taleb, R. Quey, and A. Guillet, “Evaluation of microstructure- based transformation plasticity models from experiments on 100C6 steel,” Comput. Mater. Sci., vol. 52, no. 1, pp. 55–60, 2012.spa
dc.relation.referencesW. Woo, V. T. Em, E. Y. Kim, S. H. Han, Y. S. Han, and S. H. Choi, “Stress- strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories,” Acta Mater., vol. 60, no. 20, pp. 6972–6981, 2012.spa
dc.relation.referencesD. F. Li, C. M. Davies, S. Y. Zhang, C. Dickinson, and N. P. O’Dowd, “The effect of prior deformation on subsequent microplasticity and damage evolution in an austenitic stainless steel at elevated temperature,” Acta Mater., vol. 61, no. 10, pp. 3575–3584, 2013.spa
dc.relation.referencesP. Chen, H. Ghassemi-Armaki, S. Kumar, A. Bower, S. Bhat, and S. Sadagopan, “Microscale-calibrated modeling of the deformation response of dual-phase steels,” Acta Mater., vol. 65, pp. 133–149, 2014.spa
dc.relation.referencesE. B. Marin, “On the formulation of a crystal plasticity model.,” pp. 1–62, 2006.spa
dc.relation.referencesF. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe, “Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications,” Acta Mater., vol. 58, no. 4, pp. 1152–1211, 2010.spa
dc.relation.referencesF. Roters, P. Eisenlohr, T. R. Bieler, and D. Raabe, Crystal Plasticity Finite Element Methods: in Materials Science and Engineering. Wiley, 2011.spa
dc.relation.referencesM. Knezevic, B. Drach, M. Ardeljan, and I. J. Beyerlein, “Three dimensional pre- dictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models,” Comput. Methods Appl. Mech. Eng., vol. 277, pp. 239–259, 2014.spa
dc.relation.referencesC. Pu and Y. Gao, “Crystal Plasticity Analysis of Stress Partitioning Mechanisms and Their Microstructural Dependence in Advanced Steels,” J. Appl. Mech., vol. 82, no. 3, p. 031003, 2015.spa
dc.relation.referencesJ. K. Mackenzie, “The elastic constants of a material containing spherical coated ho- les,” Proc. Phys. Soc, vol. 63, pp. 223–246, 1950.spa
dc.relation.referencesR. Hill, “Continuum micro-mechanics of elastoplastic polycrystals,” J. Mech. Phys. Solids, vol. 13, no. 2, pp. 89–101, 1965.spa
dc.relation.referencesA. Paquin, S. Berbenni, V. Favier, X. Lemoine, and M. Berveiller, “Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels,” Int. J. Plast., vol. 17, no. 9, pp. 1267–1302, 2001.spa
dc.relation.referencesS. Berbenni, V. Favier, X. Lemoine, and M. Berveiller, “Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels having different microstructu- res,” Mater. Sci. Eng. A, vol. 372, no. 1-2, pp. 128–136, 2004.spa
dc.relation.referencesN. Jia, R. Lin Peng, Y. D. Wang, S. Johansson, and P. K. Liaw, “Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling,” Acta Mater., vol. 56, no. 4, pp. 782–793, 2008.spa
dc.relation.referencesN. Jia, Z. H. Cong, X. Sun, S. Cheng, Z. H. Nie, Y. Ren, P. K. Liaw, and Y. D. Wang, “An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels,” Acta Mater., vol. 57, no. 13, pp. 3965–3977, 2009.spa
dc.relation.referencesD. Barbier, V. Favier, and B. Bolle, “Modeling the deformation textures and micros- tructural evolutions of a Fe-Mn-C TWIP steel during tensile and shear testing,” Mater. Sci. Eng. A, vol. 540, pp. 212–225, 2012.spa
dc.relation.referencesA. Molinari, G. R. Canova, and S. Ahzi, “A self consistent approach of the large deformation polycrystal viscoplasticity,” Acta Metall., vol. 35, no. 12, pp. 2983–2994, 1987.spa
dc.relation.referencesR. A. Lebensohn and C. N. Tom´e, “A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys,” Acta Metall. Mater., vol. 41, no. 9, pp. 2611–2624, 1993.spa
dc.relation.referencesA. A. Saleh, C. Haase, E. V. Pereloma, D. A. Molodov, and A. A. Gazder, “On the evolution and modelling of brass-type texture in cold-rolled twinning-induced plasticity steel,” Acta Mater., vol. 70, pp. 259–271, 2014.spa
dc.relation.referencesC. D. Schwindt, M. A. Bertinetti, L. Iurman, C. A. Rossit, and J. W. Signorelli, “Numerical study of the effect of martensite plasticity on the forming limits of a dual- phase steel sheet,” Int. J. Mater. Form., vol. 9, no. 4, pp. 499–517, 2016.spa
dc.relation.referencesD. H. Kim, S. J. Kim, S. H. Kim, A. D. Rollett, K. H. Oh, and H. N. Han, “Microtex- ture development during equibiaxial tensile deformation in monolithic and dual phase steels,” Acta Mater., vol. 59, no. 14, pp. 5462–5471, 2011.spa
dc.relation.referencesJ. W. Hutchinson, “Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 348, no. 1652, pp. 101–127, 1976.spa
dc.relation.referencesA. L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media,” J. Eng. Mater. Technol., vol. 99, no. 1, p. 2, 1977.spa
dc.relation.referencesD. Peirce, R. J. Asaro, and A. Needleman, “an Analysis of Nonuniform and Localized Deformation,” Acta Metall., vol. 30, pp. 1087–1119, 1982.spa
dc.relation.referencesM. Mear and J. Hutchinson, “Influence of yield surface curvature on flow localization in dilatant plasticity,” Mech. Mater., vol. 4, pp. 395–407, dec 1985.spa
dc.relation.referencesF. M. Al-Abbasi and J. A. Nemes, “Predicting the ductile failure of DP-steels using micromechanical modeling of cells,” Int. J. Damage Mech., vol. 17, no. 5, pp. 447–472, 2008.spa
dc.relation.referencesV. Uthaisangsuk, U. Prahl, and W. Bleck, “Micromechanical modelling of damage behaviour of multiphase steels,” Comput. Mater. Sci., vol. 43, no. 1, pp. 27–35, 2008.spa
dc.relation.referencesV. Uthaisangsuk, U. Prahl, and W. Bleck, “Characterisation of formability behaviour of multiphase steels by micromechanical modelling,” Int. J. Fract., vol. 157, pp. 55–69, may 2009.spa
dc.relation.referencesS. K. Paul, “Micromechanics based modeling of Dual Phase steels: Prediction of duc- tility and failure modes,” Comput. Mater. Sci., vol. 56, pp. 34–42, 2012.spa
dc.relation.referencesM. Nygards and P. Gudmundson, “Three-dimensional periodic Voronoi grain mo- dels and micromechanical FE-simulations of a two-phase steel,” Comput. Mater. Sci., vol. 24, no. 4, pp. 513–519, 2002.spa
dc.relation.referencesF. M. Al-Abbasi and J. A. Nemes, “Micromechanical modeling of dual phase steels,” Int. J. Mech. Sci., vol. 45, no. 9, pp. 1449–1465, 2003.spa
dc.relation.referencesS. R. Bordet, B. Tanguy, J. Besson, S. Bugat, D. Moinereau, and A. Pineau, “Clea- vage fracture of RPV steel following warm pre-stressing: Micromechanical analysis and interpretation through a new model,” Fatigue Fract. Eng. Mater. Struct., vol. 29, no. 9-10, pp. 799–816, 2006.spa
dc.relation.referencesJ. H. Kim, M. G. Lee, D. Kim, D. K. Matlock, and R. H. Wagoner, “Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique,” Mater. Sci. Eng. A, vol. 527, no. 27-28, pp. 7353– 7363, 2010.spa
dc.relation.referencesS. K. Paul, “Real microstructure based micromechanical model to simulate microstruc- tural level deformation behavior and failure initiation in DP 590 steel,” Mater. Des., vol. 44, pp. 397–406, 2013.spa
dc.relation.referencesA. Ramazani, A. Schwedt, A. Aretz, U. Prahl, and W. Bleck, “Characterization and modelling of failure initiation in DP steel,” Comput. Mater. Sci., vol. 75, pp. 35–44, 2013.spa
dc.relation.referencesV. Uthaisangsuk, U. Prahl, and W. Bleck, “Modelling of damage and failure in mul- tiphase high strength DP and TRIP steels,” Eng. Fract. Mech., vol. 78, pp. 469–486, feb 2011.spa
dc.relation.referencesS. K. Paul and A. Kumar, “Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels,” Comput. Mater. Sci., vol. 63, pp. 66–74, 2012.spa
dc.relation.referencesS. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, and S. Schmauder, “Microstructure Modelling of Dual-Phase Steel Using SEM Micrographs and Voronoi Polycrystal Models,” Metallogr. Microstruct. Anal., vol. 2, no. 3, pp. 156– 169, 2013.spa
dc.relation.referencesX. Hu, P. Van Houtte, M. Liebeherr, A. Walentek, M. Seefeldt, and H. Vandekinderen, “Modeling work hardening of pearlitic steels by phenomenological and Taylor-type micromechanical models,” Acta Mater., vol. 54, no. 4, pp. 1029–1040, 2006.spa
dc.relation.referencesB. Petit, N. Gey, M. Cherkaoui, B. Bolle, and M. Humbert, “Deformation behavior and microstructure/texture evolution of an annealed 304 AISI stainless steel sheet. Experimental and micromechanical modeling,” Int. J. Plast., vol. 23, no. 2, pp. 323– 341, 2007.spa
dc.relation.referencesS. Shi and J. Liang, “Thermal Decomposition Behavior of Silica-Phenolic Composi- te Exposed to One-Sided Radiant Heating,” Polym. Polym. Compos., vol. 16, no. 2, pp. 101–113, 2008.spa
dc.relation.referencesR. Kiran and K. Khandelwal, “A micromechanical model for ductile fracture prediction in ASTM A992 steels,” Eng. Fract. Mech., vol. 102, pp. 101–117, 2013.spa
dc.relation.referencesF. Dunne and N. Petrinic, Introduction to Computational Plasticity. OUP Oxford, 2005.spa
dc.relation.referencesM. Achouri, G. Germain, P. Dal Santo, and D. Saidane, “Numerical integration of an advanced Gurson model for shear loading: Application to the blanking process,” Comput. Mater. Sci., vol. 72, no. Ea 1427, pp. 62–67, 2013.spa
dc.relation.referencesS. Hao, W. K. Liu, B. Moran, F. Vernerey, and G. B. Olson, “Multi-scale constitutive model and computational framework for the design of ultra-high strength, high tough- ness steels,” Comput. Methods Appl. Mech. Eng., vol. 193, no. 17-20, pp. 1865–1908, 2004.spa
dc.relation.referencesK. Pongmorakot, S. Nambu, and T. Koseki, “Numerical analysis of effects of compres- sive strain on the evolution of interfacial strength of steel/nickel solid-state bonding,” Mater. Trans., vol. 59, no. 4, pp. 568–574, 2018.spa
dc.relation.referencesE. N. Hahn and M. A. Meyers, “Grain-size dependent mechanical behavior of nanocrys- talline metals,” Mater. Sci. Eng. A, vol. 646, pp. 101–134, 2015.spa
dc.relation.referencesS. Altintas, K. Hanson, and J. W. Morris, “Computer Simulation of Plastic Deforma- tion Through Planar Glide in an Idealized Crystal,” J. Eng. Mater. Technol., vol. 98, no. 1, p. 86, 1974.spa
dc.relation.referencesP. Seeleuthner, J. Bai, D. Baptiste, and D. Francois, “Micromechanical modeling of damage initiation in glass/epoxy laminates,” Trans. Eng. Sci., vol. 6, 1994.spa
dc.relation.referencesL. Delannay, I. Doghri, and O. Pierard, “Prediction of tension-compression cycles in multiphase steel using a modified incremental mean-field model,” Int. J. Solids Struct., vol. 44, no. 22-23, pp. 7291–7306, 2007.spa
dc.relation.referencesB. G. Schaffer and D. F. Adams, “NONLINEAR VISCOELASTIC- BEHAVIOR of a COMPOSITE MATERIAL USING a FINITE ELEMENT MICROMECHANICAL ANALYSIS,” tech. rep., University of Wyoming, 1980.spa
dc.relation.referencesJ. S. Poulsen and E. Byskov, “Micromechanical modelling of inclined localized kink band in clear wood,” Trans. Eng. Sci., vol. 13, pp. 435–442\r963, 1996.spa
dc.relation.referencesM. Nygards and P. Gudmundson, “Micromechanical modeling of ferritic/pearlitic steels,” Mater. Sci. Eng. A, vol. 325, pp. 435–443, feb 2002.spa
dc.relation.referencesJ. Bouquerel, K. Verbeken, and B. C. De Cooman, “Microstructure-based model for the static mechanical behaviour of multiphase steels,” Acta Mater., vol. 54, no. 6, pp. 1443–1456, 2006.spa
dc.relation.referencesF. M. Al-Abbasi and J. A. Nemes, “Characterizing DP-steels using micromechanical modeling of cells,” Comput. Mater. Sci., vol. 39, no. 2, pp. 402–415, 2007.spa
dc.relation.referencesK. S. Choi, W. N. Liu, X. Sun, and M. A. Khaleel, “Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual-Phase Steels,” Metall. Mater. Trans. A, vol. 40, pp. 796–809, apr 2009.spa
dc.relation.referencesN. Esmaeili, J. L. Alves, and C. Teodosiu, “Simulation of Vickers Micro- Indentation Tests on Dual- Phase Steel utilizing VCAD-based Software,” in Proc. VCAD Symp., no. January 2015, pp. 66–68, 2009.spa
dc.relation.referencesC. Thomser, V. Uthaisangsuk, and W. Bleck, “Influence of martensite distribution on the mechanical properties of dual phase steels: experiments and simulation,” Steel Res., vol. 80, no. 8, pp. 582–587, 2009.spa
dc.relation.referencesJ. H. Kim, M. G. Lee, and R. H. Wagoner, “A boundary smoothing algorithm for image-based modeling and its application to micromechanical analysis of multi-phase materials,” Comput. Mater. Sci., vol. 47, no. 3, pp. 785–795, 2010.spa
dc.relation.referencesJ. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcag- notto, “Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels,” Acta Mater., vol. 59, no. 11, pp. 4387–4394, 2011.spa
dc.relation.referencesJ. R. Cho, Y. J. Kang, K. Y. Jeong, Y. J. Noh, and O. K. Lim, “Homogenization and thermoelastic analysis of heterogenous materials with regular and random microstruc- tures,” Compos. Part B Eng., vol. 43, no. 5, pp. 2313–2323, 2012.spa
dc.relation.referencesA. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, “Modelling the effect of micros- tructural banding on the flow curve behaviour of dual-phase (DP) steels,” Comput. Mater. Sci., vol. 52, no. 1, pp. 46–54, 2012.spa
dc.relation.referencesA. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, “Transformation-induced, geo- metrically necessary, dislocation-based flow curve modeling of dual-phase steels: Effect of grain size,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 43, no. 10, pp. 3850–3869, 2012.spa
dc.relation.referencesS. Sodjit and V. Uthaisangsuk, “Microstructure based prediction of strain hardening behavior of dual phase steels,” Mater. Des., vol. 41, pp. 370–379, 2012.spa
dc.relation.referencesN. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. M¨unstermann, A. Hartmaier, and W. Bleck, “A micromechanical damage simulation of dual phase steels using XFEM,” Comput. Mater. Sci., vol. 54, no. 1, pp. 271–279, 2012.spa
dc.relation.referencesO. West, J. Lian, S. M¨unstermann, and W. Bleck, “Numerical Determination of the Damage Parameters of a Dual-phase Sheet Steel,” ISIJ Int., vol. 52, no. 4, pp. 743–752, 2012.spa
dc.relation.referencesS. K. Paul, “Effect of material inhomogeneity on the cyclic plastic deformation beha- vior at the microstructural level: Micromechanics-based modeling of dual-phase steel,” Model. Simul. Mater. Sci. Eng., vol. 21, no. 5, 2013.spa
dc.relation.referencesA. Ramazani, P. T. Pinard, S. Richter, A. Schwedt, and U. Prahl, “Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel,” Comput. Mater. Sci., vol. 80, pp. 134–141, 2013.spa
dc.relation.referencesA. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, and W. Bleck, “Quantification of the effect of transformation-induced geometrically necessary dis- locations on the flow-curve modelling of dual-phase steels,” Int. J. Plast., vol. 43, pp. 128–152, 2013.spa
dc.relation.referencesA. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, “Correlation bet- ween 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach,” Mater. Sci. Eng. A, vol. 560, pp. 129–139, 2013.spa
dc.relation.referencesA. ASGARI, B. F. ROLFE, and P. D. HODGSON, “MICROSTRUCTURE MODE- LING AND PREDICTION OF THE MECHANICAL PROPERTIES OF ADVAN- CED HIGH STRENGTH STEELS,” Int. J. Comput. Methods, vol. 11, p. 1344009, nov 2014.spa
dc.relation.referencesE. Fereiduni and S. S. Ghasemi Banadkouki, “Reliability/unreliability of mixture rule in a low alloy ferrite-martensite dual phase steel,” J. Alloys Compd., vol. 577, pp. 351– 359, 2013.spa
dc.relation.referencesK. S. Choi, W. N. Liu, X. Sun, M. A. Khaleel, Y. Ren, and Y. D. Wang, “Advanced micromechanical model for transformation-induced plasticity steels with application of In-Situ high-energy x-ray diffraction method,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 39, no. 13, pp. 3089–3096, 2008.spa
dc.relation.referencesC. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Pe- ranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Gui- ded Design,” Annu. Rev. Mater. Res., vol. 45, no. 1, pp. 391–431, 2015.spa
dc.relation.referencesG. Moeini, A. Ramazani, S. Myslicki, V. Sundararaghavan, and C. K¨onke, “Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation,” Metals (Basel)., vol. 7, no. 7, p. 265, 2017.spa
dc.relation.referencesA. P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, “The influence of microstructure and composition on the plastic behaviour of dual-phase steels,” Acta Mater., vol. 73, pp. 298–311, 2014.spa
dc.relation.referencesQ. Lai, O. Bouaziz, M. Goun´e, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Br´echet, and T. Pardoen, “Damage and fracture of dual-phase steels: Influence of martensite volume fraction,” Mater. Sci. Eng. A, vol. 646, pp. 322–331, 2015.spa
dc.relation.referencesQ. Lai, L. Brassart, O. Bouaziz, M. Goun´e, M. Verdier, G. Parry, A. Perlade, Y. Br´echet, and T. Pardoen, “Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling,” Int. J. Plast., vol. 80, pp. 187–203, 2016.spa
dc.relation.referencesJ. Zhou, A. M. Gokhale, A. Gurumurthy, and S. P. Bhat, “Realistic microstructu- ral RVE-based simulations of stress-strain behavior of a dual-phase steel having high martensite volume fraction,” Mater. Sci. Eng. A, vol. 630, pp. 107–115, 2015.spa
dc.relation.referencesY. Li, X. Pan, G. Wu, and G. Wang, “Shape-instability life scatter prediction of 40Cr steel: Damage-coupled crystal plastic probabilistic finite element method,” Int. J. Plast., vol. 79, pp. 1–18, 2016.spa
dc.relation.referencesM. Liu, C. Lu, K. A. Tieu, C. T. Peng, and C. Kong, “A combined experimental- numerical approach for determining mechanical properties of aluminum subjects to nanoindentation,” Sci. Rep., vol. 5, no. January, pp. 1–16, 2015.spa
dc.relation.referencesG. Sun, F. Xu, G. Li, X. Huang, and Q. Li, “Determination of mechanical properties of the weld line by combining micro-indentation with inverse modeling,” Comput. Mater. Sci., vol. 85, pp. 347–362, 2014.spa
dc.relation.referencesK. Bandyopadhyay, S. K. Panda, P. Saha, V. H. Baltazar-Hernandez, and Y. N. Zhou, “Microstructures and failure analyses of DP980 laser welded blanks in formability context,” Mater. Sci. Eng. A, vol. 652, pp. 250–263, 2016.spa
dc.relation.referencesR. KUZIAK, R. KAWALLA, and S. WAENGLER, “Advanced high strength steels for automotive industry,” Rev. Metal., vol. 48, no. 2, pp. 118–131, 2008.spa
dc.relation.referencesN. Fonstein, “Dual-phase steels,” in Automot. Steels Des. Metall. Process. Appl. (R. Rana and S. B. B. T. A. S. Singh, eds.), ch. Dual-phase, pp. 169–216, Woodhead Publishing, 2017.spa
dc.relation.referencesA. Kumar, S. B. Singh, and K. K. Ray, “Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels,” Mater. Sci. Eng. A, vol. 474, no. 1-2, pp. 270–282, 2008.spa
dc.relation.referencesS. Sun and M. Pugh, “Properties of thermomechanically processed dual-phased steels containing fibrous martensite,” Mater. Sci. Eng. A, vol. 335, no. 1-2, pp. 298–308, 2002.spa
dc.relation.referencesJ. L. Dossett and H. E. Boyer, Practical heat treating. Asm International, 2006.spa
dc.relation.referencesC. A. N. Lanzillotto and F. B. Pickering, “Structure–property relationships in dual- phase steels,” Met. Sci., vol. 16, pp. 371–382, aug 1982.spa
dc.relation.referencesT. L. Anderson and T. L. Anderson, Fracture Mechanics: Fundamentals and Applica- tions, Third Edition. CRC Press, 2005.spa
dc.relation.referencesM. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, “Deformation and fracture me- chanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging,” Acta Mater., vol. 59, no. 2, pp. 658–670, 2011.spa
dc.relation.referencesB. Anbarlooie, H. Hosseini-Toudeshky, and J. Kadkhodapour, “High cycle fatigue mi- cromechanical behavior of dual phase steel: Damage initiation, propagation and final failure,” Mech. Mater., vol. 106, pp. 8–19, 2017.spa
dc.relation.referencesD. W. Beardsmore, M. A. Wilkes, and A. Shterenlikht, “An Implementation of the Gurson-Tvergaard-Needleman Plasticity Model for ABAQUS Standard Using a Trust Region Method,” in Vol. 6 Mater. Fabr., vol. 2006, pp. 615–623, ASME, 2006.spa
dc.relation.referencesN. Bonora, A. Ruggiero, L. Esposito, and D. Gentile, “CDM modeling of ductile failure in ferritic steels: Assessment of the geometry transferability of model parameters,” Int. J. Plast., vol. 22, no. 11, pp. 2015–2047, 2006.spa
dc.relation.referencesJ. N. Reddy, An Introduction to Continuum Mechanics. Cambridge University Press, 2007.spa
dc.relation.referencesG. T. Mase, R. E. Smelser, and G. E. Mase, Continuum Mechanics for Engineers. Computational Mechanics and Applied Analysis, CRC Press, 2009.spa
dc.relation.referencesA. J. M. Spencer, Continuum Mechanics. Dover Books on Physics, Dover Publications, 2012.spa
dc.relation.referencesO. Gonzalez and A. M. Stuart, A First Course in Continuum Mechanics. A First Course in Continuum Mechanics, Cambridge University Press, 2008.spa
dc.relation.referencesA. F. Bower, Applied Mechanics of Solids. CRC Press, 2009.spa
dc.relation.referencesO. C. Zienkiewicz, R. L. Taylor, R. L. Taylor, and R. L. Taylor, The Finite Element Method: The basis. Fluid Dynamics, Butterworth-Heinemann, 2000.spa
dc.relation.referencesM. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials. Cambridge Uni- versity Press, 2008.spa
dc.relation.referencesASTM International, “ASTM E3-11 Standard guide for preparation of metallographic specimens,” 2011.spa
dc.relation.referencesC. Zhang, B. Gong, C. Deng, and D. Wang, “Computational prediction of mechanical properties of a C-Mn weld metal based on the microstructures and micromechanical properties,” Mater. Sci. Eng. A, vol. 685, no. November 2016, pp. 310–316, 2017.spa
dc.relation.referencesA. Ramazani, Z. Ebrahimi, and U. Prahl, “Study the effect of martensite banding on the failure initiation in dual-phase steel,” Comput. Mater. Sci., vol. 87, pp. 241–247, 2014.spa
dc.relation.referencesC. D. Schwindt, M. Stout, L. Iurman, and J. W. Signorelli, “Forming Limit Curve Determination of a DP-780 Steel Sheet,” Procedia Mater. Sci., vol. 8, pp. 978–985, 2015.spa
dc.relation.referencesA. International, “ASTM E112-13 Standard Test Methods for Determining Average Grain Size,” 2013.spa
dc.relation.referencesThe GIMP Team, “GNU Image Manipulation Program 2.8.10,” 2018.spa
dc.relation.referencesC. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods, vol. 9, no. 7, p. 671, 2012.spa
dc.relation.referencesMinitab, “Distribución de Weibull en el análisis de fiabilidad,” 2017.spa
dc.relation.referencesC. Rycroft, “Voro++: A three-dimensional Voronoi cell library in C++,” tech. rep., 2009.spa
dc.relation.referencesR. Quey, “Neper: software package for polycrystal generation and meshing,” 2016.spa
dc.relation.referencesM. A. Groeber and M. A. Jackson, “DREAM. 3D: a digital representation environment for the analysis of microstructure in 3D,” Integr. Mater. Manuf. Innov., vol. 3, no. 1, p. 5, 2014.spa
dc.relation.referencesM. Delincé, P. J. Jacques, and T. Pardoen, “Separation of size-dependent strengthe- ning contributions in fine-grained Dual Phase steels by nanoindentation,” Acta Mater., vol. 54, no. 12, pp. 3395–3404, 2006.spa
dc.relation.referencesM. Liu, C. Lu, K. Tieu, and H. Yu, “Numerical comparison between Berkovich and conical nano-indentations: Mechanical behaviour and micro-texture evolution,” Mater. Sci. Eng. A, vol. 619, pp. 57–65, 2014.spa
dc.relation.referencesH. Toda, A. Takijiri, M. Azuma, S. Yabu, K. Hayashi, D. Seo, M. Kobayashi, K. Hi- rayama, A. Takeuchi, and K. Uesugi, “Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography,” Acta Mater., vol. 126, pp. 401–412, 2017.spa
dc.relation.referencesV. Tvergaard, “On localization in ductile materials containing spherical voids,” Int. J. Fract., vol. 18, no. 4, pp. 237–252, 1982.spa
dc.relation.referencesA. Needleman and V. Tvergaard, “An analysis of ductile rupture modes at a crack tip,” J. Mech. Phys. Solids, vol. 35, pp. 151–183, jan 1987.spa
dc.relation.referencesN. Aravas, “On the numerical integration of a class of pressure-dependent plasticity models,” Int. J. Numer. Methods Eng., vol. 24, pp. 1395–1416, jul 1987.spa
dc.relation.referencesT. Sirinakorn, S. Wongwises, and V. Uthaisangsuk, “A study of local deformation and damage of dual phase steel,” Mater. Des., vol. 64, pp. 729–742, dec 2014.spa
dc.relation.referencesK. Isik, G. Gerstein, T. Clausmeyer, F. N¨urnberger, A. E. Tekkaya, and H. J. Maier, “Evaluation of Void Nucleation and Development during Plastic Deformation of Dual- Phase Steel DP600,” Steel Res. Int., vol. 87, no. 12, pp. 1583–1591, 2016.spa
dc.relation.referencesM. Djouabi, A. Ati, and P. Y. Manach, “Identification strategy influence of elastoplas- tic behavior law parameters on Gurson–Tvergaard–Needleman damage parameters: Application to DP980 steel,” Int. J. Damage Mech., vol. 28, no. 3, pp. 427–454, 2019.spa
dc.relation.referencesR.-M. Rodriguez and I. Gutiérrez, “Unified Formulation to Predict the Tensile Curves of Steels with Different Microstructures,” Mater. Sci. Forum, vol. 426-432, pp. 4525– 4530, aug 2003.spa
dc.relation.referencesA. Ramazani, M. Abbasi, S. Kazemiabnavi, S. Schmauder, R. Larson, and U. Prahl, “Development and application of a microstructure-based approach to characterize and model failure initiation in DP steels using XFEM,” Mater. Sci. Eng. A, vol. 660, pp. 181–194, 2016.spa
dc.relation.referencesX. Wei, S. A. Asgari, J. T. Wang, B. F. Rolfe, H. C. Zhu, and P. D. Hodgson, “Micro- mechanical modelling of bending under tension forming behaviour of dual phase steel 600,” Comput. Mater. Sci., vol. 108, no. PA, pp. 72–79, 2015.spa
dc.relation.referencesY. Hou, S. Cai, T. Sapanathan, A. Dumon, and M. Rachik, “Micromechanical modeling of the effect of phase distribution topology on the plastic behavior of dual-phase steels,” Comput. Mater. Sci., vol. 158, no. November 2018, pp. 243–254, 2019.spa
dc.relation.referencesS. Huang, C. F. He, and Y. X. Zhao, “Microstructure-Based RVE Approach for Stretch- Bending of Dual-Phase Steels,” J. Mater. Eng. Perform., vol. 25, no. 3, pp. 966–976, 2016.spa
dc.relation.referencesF. Rieger and T. B¨ohlke, “Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel,” Arch. Appl. Mech., vol. 85, no. 9-10, pp. 1439–1458, 2015.spa
dc.relation.referencesJ. Krier, J. Breuils, L. Jacomine, and H. Pelletier, “Introduction of the real tip defect of Berkovich indenter to reproduce with FEM nanoindentation test at shallow penetration depth,” J. Mater. Res., vol. 27, no. 1, pp. 28–38, 2012.spa
dc.relation.referencesC. Guo, L. Hao, Y. Kang, S. Li, and Y. An, “Method of obtaining the constitutive relation in DP steel based on nanoindentation and finite element modeling,” Mater. Res. Express, vol. 6, p. 096585, jul 2019.spa
dc.relation.referencesZ. Chen, X. Wang, A. Atkinson, and N. Brandon, “Spherical indentation of porous ceramics: Elasticity and hardness,” J. Eur. Ceram. Soc., vol. 36, no. 6, pp. 1435–1445, 2016.spa
dc.relation.referencesY. Li, R. Song, L. Jiang, and Z. Zhao, “Deformation response of 1200 MPa gra- de martensite-ferrite dual-phase steel under high strain rates,” Mater. Sci. Eng. A, vol. 750, pp. 40–44, mar 2019.spa
dc.relation.referencesR. B. Gou, W. J. Dan, W. G. Zhang, and M. Yu, “Research on flow behaviors of the constituent grains in ferrite-martensite dual phase steels based on nanoindentation measurements,” Mater. Res. Express, vol. 4, no. 7, 2017.spa
dc.relation.referencesY. L. Song, L. Hua, and F. Z. Meng, “Inhomogeneous constructive modelling of laser welded bead based on nanoindentation test,” Ironmak. Steelmak., vol. 39, pp. 95–103, feb 2012.spa
dc.relation.referencesM. Nasser, A. Chamekh, G. Guillemot, M. Nasri, and A. Iost, “Modélisation du com- portement élastoplastique d ’ un revêtement Fe-Zn par nanoindentation : Approche inverse basée sur les plans d ’ expériences et les algorithmes génétiques multiobjectifs Résumé,” Test, pp. 1–6, 2011.spa
dc.relation.referencesZ. Yuan, F. Li, P. Zhang, B. Chen, and F. Xue, “Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments,” Chinese J. Aeronaut., vol. 27, no. 2, pp. 397–406, 2014.spa
dc.relation.referencesI. Barényi and J. Majererík, “QUASI-STATIC NANOINDENTATION STUDY OF PHERITE-MARTENSITE DUAL PHASE STEEL,” vol. 12, no. 2, pp. 1–5, 2018.spa
dc.relation.referencesK. K. Tseng and L. Wang, “Modeling and simulation of mechanical properties of nano- particle filled materials,” J. Nanoparticle Res., vol. 6, no. 5, pp. 489–494, 2004.spa
dc.relation.referencesA. Karimzadeh, S. S. R. Koloor, M. R. Ayatollahi, A. R. Bushroa, and M. Y. Yahya, “Assessment of Nano-Indentation Method in Mechanical Characterization of Heteroge- neous Nanocomposite Materials Using Experimental and Computational Approaches,” Sci. Rep., vol. 9, no. 1, pp. 1–14, 2019.spa
dc.relation.referencesY. Q. Peng, L. X. Cai, D. Yao, H. Chen, and G. Z. Han, “A Novel Method to Predict the Mechanical Properties of DP600,” Key Eng. Mater., vol. 795, pp. 22–28, mar 2019.spa
dc.relation.referencesM. K. Apalak, R. Ekici, M. Yildirim, and F. Nair, “Effects of random particle disper- sion and particle volume fraction on the indentation behavior of sic particle-reinforced metal-matrix composites,” J. Compos. Mater., vol. 43, no. 26, pp. 3191–3210, 2009.spa
dc.relation.referencesY. Chen, C. Zhang, and C. Var´e, “An extended GTN model for indentation-induced damage,” Comput. Mater. Sci., vol. 128, pp. 229–235, 2017.spa
dc.relation.referencesY. L. Shen and Y. L. Guo, “Indentation modelling of heterogeneous materials,” Model. Simul. Mater. Sci. Eng., vol. 9, no. 5, pp. 391–398, 2001.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposaldual Phaseeng
dc.subject.proposalmicroindentaciónspa
dc.subject.proposalnanoindentaciónspa
dc.subject.proposalDP steeleng
dc.subject.proposalsimulationeng
dc.subject.proposalcomputacionalspa
dc.subject.proposalFEMspa
dc.subject.proposalGTNspa
dc.titleSimulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitosspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024537277.2020.pdf
Tamaño:
13.19 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: