Fermionic sector in a non-universal U(1)X extension to the MSSM

dc.contributor.advisorMartínez Martínez, Roberto Enriquespa
dc.contributor.authorAlvarado Galeano, Juan Sebastiánspa
dc.contributor.researchgroupGrupo de Física Teórica de Altas Energíasspa
dc.date.accessioned2021-01-25T14:13:09Zspa
dc.date.available2021-01-25T14:13:09Zspa
dc.date.issued2020-07-13spa
dc.description.abstractEn el siguiente trabajo, se realiza la construcción general de la teoría supersimétrica dándose por conocidos los fundamentos en teoría de grupos en relación a grupo de Poincaré y por lo tanto se inicia desde las propiedades más generales de los espinores. Se desarrolla la teoría a partir de su formalismo de álgebras graduadas, construyéndose el grupo de Super-Poincaré y a partir del manejo de variables de Grassmann se construye la teoría supersimétrica desde el formalismo de Supercampos y generándose los Lagrangianos escalares, vectoriales (abelianos y no abelianos) y mixtos más generales permitidos por la condición de renormalizabilidad. Finalmente los desarrollos de esta teoría se implementan en el modelo estándar, donde se encuentran todas las matrices de masa en relación a las Super-partículas, los escalares y fermiones del modelo estándar. Adicionalmente, se construye un modelo supersimétrico al incluir una simetría U(1)X adicional al MSSM de modo que sea libre de anomalías quirales e incluyendo las tres familias de fermiones y algunos fermiones exóticos. A partir de la asignación de cargas X se construye el superpotencial más general permitido por el criterio de renormalización, se construye el potencial escalar asociado y se obtienen las condiciones que permiten recrear la masa del bosón de Higgs observado, el cual en este escenario puede explicar de forma natural la masa de 125GeV . Finalmente, se obtienen expresiones analíticas para la masa de los fermiones y en particular se calcula la masa de los más ligeros (e, u, d y s) a nivel de un loop teniendo en cuenta las contribuciones debido a partículas y sus respectivos supercompañeros.spa
dc.description.abstractIn the following work, it is realized the general construction of the supersymmetric theory where the fundamentals in group theory is considered as known in relation to Poincaré group. Thus it begins from the most general properties of spinors. The theory is developed from its graded algebras formalism constructing then the super-Poincar´e group, and with the use of Grassmann variables the supersymmetric theory is built from the superfield formalism generating then the most general scalar, vectorial (abelian and non abelian) and mixed Lagrangians allowed by the renormalization condition. Finally the developments of this theory are applied to the standard model, where it has been found all the mass matrices related with superparticles, scalars and standard model fermions. Additionally, it is build a supersymemtric model by including an additional U(1)X symmetry to the MSSM in such a way that it is chiral anomaly free and including all three fermions families and some exotic fermions. From the X charge assignation the most general renormalizable superpotential is written, the associated scalar potential is consequently obtained and the condition for reproducing the SM Higgs boson , which can explain naturally ira 125GeV mass. Finally, analytic expression for scalars and fermions are given where all 1-loop contributions due to particles and superparticles are considered for the lightests fermions masses (e, u, d y s).spa
dc.description.additionalLínea de Investigación: física de partículas.spa
dc.description.degreelevelMaestríaspa
dc.format.extent101spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationAlvarado, J. (2020). Fermionic sector in a non-universal U(1)X extension to the MSSM [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78895
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relationAlvarado, J. S., Diaz, C. E., & Martinez, R. (2019). Nonuniversal U (1) X extension to the MSSM with three families. Physical Review D, 100(5), 055037.spa
dc.relationAlvarado, J. S., & Martinez, R. (2020). PMNS matrix in a non-universal $ U (1) _ {X} $ extension to the MSSM with one massless neutrino. arXiv preprint arXiv:2007.14519.spa
dc.relationAlvarado, J. S., Bulla, M. A., Martinez, D. G., & Martinez, R. (2020). Explaining muon $ g-2$ anomaly in a non-universal $ U (1) _ {X} $ extended SUSY theory. arXiv preprint arXiv:2010.02373.spa
dc.relation.referenceshttp://francis.naukas.com/2015/03/15/supersimetria-y-anomalias-\ experimentales-en-el-lhc/.spa
dc.relation.referenceshttps://globalfit.astroparticles.es/2018/07/03/neutrino-mass-ordering/.spa
dc.relation.referencesGeorges Aad, Tatevik Abajyan, B Abbott, J Abdallah, S Abdel Khalek, Ahmed Ali Abdelalim, O Abdinov, R Aben, B Abi, M Abolins, et al. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012.spa
dc.relation.referencesAdam Alloul, Neil D Christensen, C´eline Degrande, Claude Duhr, and Benjamin Fuks. Feynrules 2.0—a complete toolbox for tree-level phenomenology. Computer Physics Communications, 185(8):2250–2300, 2014.spa
dc.relation.referencesJS Alvarado, Carlos E Diaz, and R Martinez. Nonuniversal u (1) x extension to the mssm with three families. Physical Review D, 100(5):055037, 2019.spa
dc.relation.referencesJohn N Bahcall and HA Bethe. Solution of the solar-neutrino problem. Physical Review Letters, 65(18):2233, 1990.spa
dc.relation.referencesRiccardo Barbieri, Sergio Ferrara, Kellogg S Stelle, and Dimitri V Nanopoulos. Supergravity, r invariance and spontaneous supersymmetry breaking. Phys. Lett. B,113(CERN-TH-3243):219–222, 1982.spa
dc.relation.referencesGideon Bella, Erez Etzion, Noam Hod, Yaron Oz, Yiftah Silver, and Mark Sutton. A search for heavy kaluza-klein electroweak gauge bosons at the lhc. Journal of High Energy Physics, 2010(9):25, 2010.spa
dc.relation.referencesReinhold A Bertlmann. Anomalies in quantum field theory, volume 91. Oxford University Press, 2000.spa
dc.relation.referencesMatteo Bertolini. Lectures on supersymmetry.spa
dc.relation.referencesVA Beylin, VI Kuksa, RS Pasechnik, and GM Vereshkov. Diagonalization of the neutralino mass matrix and boson–neutralino interaction. The European Physical Journal C, 56(3):395–405, 2008.spa
dc.relation.referencesAdel Bilal. Lectures on anomalies. arXiv preprint arXiv:0802.0634, 2008. BIBLIOGRAPHY 89spa
dc.relation.referencesMary L Boas and Philip Peters. Mathematical methods in the physical sciences. American Journal of Physics, 52:572–573, 1984.spa
dc.relation.referencesJohn Browne. Grassmann algebra. Mebourne, Australia: Quantica Publishing, 2009.spa
dc.relation.referencesLuis G Cabral-Rosetti and Miguel A Sanchis-Lozano. Appell functions and the scalar one-loop three-point integrals in feynman diagrams. In Journal of Physics: Conference Series, volume 37, page 82. IOP Publishing, 2006.spa
dc.relation.referencesMoshe Carmeli and Shimon Malin. Theory of spinors: An introduction. World Scientific Publishing Company, 2000.spa
dc.relation.referencesLing-Lie Chau. Flavor mixing in weak interactions, volume 20. Springer Science & Business Media, 2012.spa
dc.relation.referencesDzh Chkareuli et al. Gell-mann-nishijima formula for elementary fermions. In Multiple generation processes at high energies. USSR: Metsniereba., 1979.spa
dc.relation.referencesSY Choi and Howard E Haber. The mathematics of fermion mass diagonalization.spa
dc.relation.referencesL Corwin, Yuval Neeman, and S Sternberg. Graded lie algebras in mathematics and physics (bose-fermi symmetry). Reviews of Modern Physics, 47(3):573, 1975.spa
dc.relation.referencesCsaba Csaki. The minimal supersymmetric standard model. Modern Physics Letters A, 11(08):599–613, 1996.spa
dc.relation.referencesA Dedes, M Paraskevas, J Rosiek, K Suxho, and K Tamvakis. Mass insertions vs. mass eigenstates calculations in flavour physics. Journal of High Energy Physics, 2015(6):151, 2015.spa
dc.relation.referencesAlex G Dias, CA de S Pires, PS Rodrigues da Silva, and Adriano Sampieri. Simple realization of the inverse seesaw mechanism. Physical Review D, 86(3):035007, 2012.spa
dc.relation.referencesJohn Earman and Doreen Fraser. Haag’s theorem and its implications for the foundations of quantum field theory. Erkenntnis, 64(3):305, 2006.spa
dc.relation.referencesIvan Esteban, MC Gonzalez-Garcia, Alvaro Hernandez-Cabezudo, Michele Maltoni, and Thomas Schwetzd. Nufit 4.1: Three-neutrino fit based on data available in july 2019.spa
dc.relation.referencesAlon E Faraggi and Marco Guzzi. Extra z’s and w’s in heterotic-string derived models. The European Physical Journal C, 75(11):537, 2015.spa
dc.relation.referencesJonathan L Feng, Konstantin T Matchev, and Frank Wilczek. Neutralino dark matter in focus point supersymmetry. Physics Letters B, 482(4):388–399, 2000. 90 BIBLIOGRAPHYspa
dc.relation.referencesHarald Fritzsch. Weak-interaction mixing in the six-quark theory. Phys. lett. B, 73(CERN-TH-2433):317–322, 1977.spa
dc.relation.referencesMasataka Fukugita, Morimitsu Tanimoto, and Tsutomu Yanagida. Phenomenological lepton mass matrix. Progress of Theoretical Physics, 89(1):263–267, 1993.spa
dc.relation.referencesClaudio Giganti, St´ephane Lavignac, and Marco Zito. Neutrino oscillations: the rise of the pmns paradigm. Progress in Particle and Nuclear Physics, 98:1–54, 2018.spa
dc.relation.referencesL Girardello and Marcus T Grisaru. Soft breaking of supersymmetry. Nuclear Physics B, 194(1):65–76, 1982.spa
dc.relation.referencesCarlo Giunti and Chung W Kim. Fundamentals of neutrino physics and astrophysics. Oxford university press, 2007.spa
dc.relation.referencesSheldon L Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579–588, 1961.spa
dc.relation.referencesH Goldstein. Classical mechanics. Pearson Education India., 2011.spa
dc.relation.referencesGerald S Guralnik, TWB Kibble, and CR Hagen. Broken symmetries and the goldstone theorem. Adv. Part. Phys., 2(PRINT-68-492):567–708, 1967.spa
dc.relation.referencesArmin Wiedemann Harald J. W. Muller-Kirsten. Introduction to supersymmetry. World Scientific Lecture Notes in Physics, 80, 2010.spa
dc.relation.referencesStephen F King. Neutrino mass models. Reports on Progress in Physics, 67(2):107, 2003.spa
dc.relation.referencesJin-Yan Liu, Yong Tang, and Yue-Liang Wu. Searching for a z’ gauge boson in an anomaly-free u(1)’ gauge family model. Journal of Physics G: Nuclear and Particle Physics, 39(5):055003, 2012.spa
dc.relation.referencesErnest Ma, Subir Sarkar, and Utpal Sarkar. Scale of su(2)r symmetry breaking and leptogenesis. Physics Letters B, 458(1):73–78, 1999.spa
dc.relation.referencesKleber Daum Machado. Teoria do electromagnetismo, 2006.spa
dc.relation.referencesM. Maggiore. A modern introduction to quantum field theory. Oxford University Press, 12:13–41, 2005.spa
dc.relation.referencesLuciano Maiani. The gim mechanism: origin, predictions and recent uses. arXiv preprint arXiv:1303.6154, 2013.spa
dc.relation.referencesJeffrey E Mandula. Coleman-mandula theorem. Scholarpedia, 10(2):7476, 2015. BIBLIOGRAPHY 91.spa
dc.relation.referencesSF Mantilla, R Martinez, and F Ochoa. Neutrino and cp-even higgs boson masses in a nonuniversal u(1) extension. Physical Review D, 95(9):095037, 2017.spa
dc.relation.referencesS. Martin. A supersymmetry primer, 2016.spa
dc.relation.referencesAlexander Merle and Werner Rodejohann. Elements of the neutrino mass matrix: allowed ranges and implications of texture zeros. Physical Review D, 73(7):073012, 2006.spa
dc.relation.referencesA Mondragon and E Rodriguez-Jauregui. Breaking of the flavor permutational symmetry: Mass textures and the ckm matrix. Physical Review D, 59(9):093009, 1999.spa
dc.relation.referencesStefan Neumark. Solution of cubic and quartic equations. Elsevier, 2014.spa
dc.relation.referencesMurat Ozer. Gim mechanism and its consequences in the su (3) l × u (1) x models of electroweak interactions. Physical Review D, 54(7):4561, 1996.spa
dc.relation.referencesMichael Peskin. An introduction to quantum field theory. CRC press, 2018.spa
dc.relation.referencesStefano Profumo and Farinaldo S Queiroz. Constraining the z’ mass in 331 models using direct dark matter detection. The European Physical Journal C, 74(7):2960, 2014.spa
dc.relation.referencesWies law Pusz. Irreducible unitary representations of quantum lorentz group. Communications in mathematical physics, 152(3):591–626, 1993.spa
dc.relation.referencesP. Ramond. Field theory, a modern primer. Front. Phys., 74, 1981.spa
dc.relation.referencesM Roth and Ansgar Denner. High-energy approximation of one-loop feynman integrals. Nuclear Physics B, 479(1-2):495–514, 1996.spa
dc.relation.referencesProf. Dr. Ivo Sachs. Tv: Advanced quantum mechanics - material.spa
dc.relation.referencesA Salam. Elementary particle theory, ed. by n. Svartholm, Stockholm, 367, 1968.spa
dc.relation.referencesConrad Sanderson. Armadillo: An open source c++ linear algebra library for fast prototyping and computationally intensive experiments. Nicta, 2010.spa
dc.relation.referencesUtpal Sarkar and Rathin Adhikari. Baryogenesis through r-parity violation. Physical Review D, 55(6):3836, 1997.spa
dc.relation.referencesA Semenov. Lanhep—a package for automatic generation of feynman rules from the lagrangian. Computer physics communications, 115(2-3):124–139, 1998.spa
dc.relation.referencesLeonid Serkin. Top quarks and exotics at atlas and cms. arXiv preprint arXiv:1901.01765, 2019.spa
dc.relation.referencesPrem P Srivastava. Supersymmetry, superfields and supergravity: an introduction. United States: Adam Hilger Ltd., 1986. 92 BIBLIOGRAPHYspa
dc.relation.referencesGerard t Hooft and M Veltman. Scalar one-loop integrals. Nuclear Physics B, 153:365–401, 1979.spa
dc.relation.referencesMasaharu Tanabashi, K Hagiwara, K Hikasa, K Nakamura, Y Sumino, F Takahashi, J Tanaka, K Agashe, G Aielli, C Amsler, et al. Review of particle physics. Physical Review D, 98(3):030001, 2018.spa
dc.relation.referencesSteven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967.spa
dc.relation.referencesJulius Wess and Jonathan Bagger. Supersymmetry and supergravity. Princeton university press, 1992.spa
dc.relation.referencesZhi-zhong Xing and Ye-Ling Zhou. A generic diagonalization of the 3× 3 neutrino mass matrix and its implications on the µ–τ flavor symmetry and maximal cp violation. Physics Letters B, 693(5):584–590, 2010.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalSupersymmetryeng
dc.subject.proposalSupercamposspa
dc.subject.proposalSuperfieldseng
dc.subject.proposalBoson de Higgsspa
dc.subject.proposalMatriz CKMspa
dc.subject.proposalSparticles masseseng
dc.subject.proposalHiggs bosoneng
dc.subject.proposalMatriz PMNSspa
dc.subject.proposalCKM matrixeng
dc.subject.proposalSupersimetríaspa
dc.subject.proposalModelo estándarspa
dc.subject.proposalPMNS matrixeng
dc.subject.proposalMasas de neutrinosspa
dc.subject.proposalStandard modeleng
dc.subject.proposalGraded algebraseng
dc.subject.proposalMasas de partículasspa
dc.subject.proposalNeutrino masseseng
dc.subject.proposalÁlgebras graduadasspa
dc.titleFermionic sector in a non-universal U(1)X extension to the MSSMspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
M_Sc__Thesis.pdf
Tamaño:
1.58 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: