Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass

dc.contributor.advisorPaucar Álvarez, Carlos Guillermo
dc.contributor.advisorGarcía García, Claudia Patricia
dc.contributor.authorNevado Velásquez, Paula Andrea
dc.contributor.googlescholarPaula Andrea Nevado Velasquezspa
dc.contributor.orcidNevado Velásquez, Paula Andrea [0009-0009-2211-589X]spa
dc.contributor.researchgroupMateriales Cerámicos y Vítreosspa
dc.date.accessioned2024-02-28T21:30:39Z
dc.date.available2024-02-28T21:30:39Z
dc.date.issued2022-08
dc.description.abstractAvocado ripening and many of its quality parameters are influenced by ethylene production and pathologies such as anthracnose, whose management represents a challenge for the industry since they affect the commercialization of this fruit. An alternative to control ethylene production is the use of nanoparticles with photocatalytic behavior that inhibit ethylene production through reactions. Thus, in this work, TiO2 particles doped with different concentrations of Ag were synthesized by the self-combustion technique in solution. The obtained particles were subjected to their respective morphological characterization using techniques such as XRD and SEM. Agglomerates of TiO2 particles were obtained in anatase phase, with 0.75%, 1.5% and 3.5% mol Ag of approximately 109.5 nm and in mixed anatase-ruthyl phase with 0% and 4.5% mol Ag with average sizes of 184.03 and 205.06 nm. The presence of Ag was confirmed by EDS, and through FTIR assays the bonds associated with the obtained material were identified (O-H and Ag interactions, Ti-O vibrations, O-H narrowing). The particle size distribution analysis and BET analysis, allow concluding that as the average agglomerate size decreases, there is an increase in the surface area, which is an important element for the photocatalytic activity. It was found that TiO2 particles with 0.75% mol Ag were the ones that presented the best response and therefore, they were taken as a reference to perform ethylene removal tests, antifungal activity and simulated transport tests. The presence of TiO2 particles doped with Ag enabled ethylene removal, antifungal activity and a delay in the ripening process of Hass avocado when in contact with the material.eng
dc.description.abstractLa maduración del aguacate y muchos de sus parámetros de calidad son influenciados por la producción de etileno y patologías como la antracnosis, cuyo manejo representa un reto para la industria ya que afectan la calidad del fruto y con ello su comercialización. Una alternativa en el control de la producción de etileno es el uso de nanopartículas con comportamiento fotocatalítico que mediante reacciones inhiban la producción del gas. Es así como en este trabajo se sintetizaron partículas de TiO2 dopado con diferentes concentraciones de Ag por la técnica de autocombustión en solución. Las partículas obtenidas se caracterizaron morfológicamente utilizando técnicas como DRX y SEM. Se obtuvieron aglomerados de partículas de TiO2 en fase anatasa , con 0,75%, 1,5% y 3,5% mol Ag de aproximadamente 109,5 nm y en fase mixta de anatasa-rutilo con 0% y 4,5% mol Ag con tamaños promedios de 184,03 y 205,06 nm. La presencia de Ag se confirmó mediante EDS, y a través de ensayos de FTIR se identificaron los enlaces asociados al material obtenido (interacciones O-H y Ag, vibraciones Ti-O, estrechamiento O-H). Los análisis de distribución de tamaño de partícula y análisis BET, permiten concluir que a medida que el tamaño promedio de aglomerado disminuye, hay un aumento en el área de superficie, lo cual constituye un elemento importante para la actividad fotocatalítica. Se encontró que las partículas de TiO2 con 0,75% mol Ag fueron las que mejor respuesta presentaron y por lo tanto, se tomaron como referencia para realizar pruebas de remoción de etileno, actividad antifúngica y pruebas de transporte simulado. La presencia de partículas de TiO2 dopadas con Ag posibilitaron la remoción de etileno, presentan actividad antifúngica y un retraso en el proceso de maduración del aguacate Hass al tener contacto con el material. (Tomado de la fuente)spa
dc.description.curricularareaCiencias Naturales.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extent130 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85740
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesRivera, S. A.; Ferreyra, R.; Robledo, P.; Selles, G.; Arpaia, M. L.; Saavedra, J.; Defilippi, B. G. Identification of Preharvest Factors Determining Postharvest Ripening Behaviors in ‘Hass’ Avocado under Long Term Storage. Sci. Hortic. (Amsterdam). 2017, 216, 29–37. https://doi.org/10.1016/j.scienta.2016.12.024.spa
dc.relation.referencesBill, M.; Sivakumar, D.; Thompson, A. K.; Korsten, L. Avocado Fruit Quality Management during the Postharvest Supply Chain. Food Rev. Int. 2014, 30 (3), 169–202. https://doi.org/10.1080/87559129.2014.907304.spa
dc.relation.referencesHershkovitz, V.; Friedman, H.; Goldschmidt, E. E.; Feygenberg, O.; Pesis, E. Induction of Ethylene in Avocado Fruit in Response to Chilling Stress on Tree. J. Plant Physiol. 2009, 166 (17), 1855–1862. https://doi.org/10.1016/j.jplph.2009.05.012.spa
dc.relation.referencesArpaia, M. L.; Collin, S.; Sievert, J.; Obenland, D. ‘Hass’ Avocado Quality as Influenced by Temperature and Ethylene Prior to and during Final Ripening. Postharvest Biol. Technol. 2018, 140 (February), 76–84. https://doi.org/10.1016/j.postharvbio.2018.02.015.spa
dc.relation.referencesGiovannoni, J. Molecular Biology of Fruit and Maturation and Ripening. Anu. Rev. Plant Physiol. Plant Mol. Biol 2001, 52, 725–749.spa
dc.relation.referencesGwanpua, S. G.; Qian, Z.; East, A. R. Modelling Ethylene Regulated Changes in ‘Hass’ Avocado Quality. Postharvest Biol. Technol. 2018, 136 (October 2017), 12–22. https://doi.org/10.1016/j.postharvbio.2017.10.002.spa
dc.relation.referencesPesis, E.; Ackerman, M.; Ben-Arie, R.; Feygenberg, O.; Feng, X.; Apelbaum, A.; Goren, R.; Prusky, D. Ethylene Involvement in Chilling Injury Symptoms of Avocado during Cold Storage. Postharvest Biol. Technol. 2002, 24 (2), 171–181. https://doi.org/10.1016/S0925-5214(01)00134-X.spa
dc.relation.referencesSanders, G. M.; Korsten, L. Comparison of Cross Inoculation Potential of South African Avocado and Mango Isolates of Colletotrichum Gloeosporioides. Microbiol. Res. 2003, 158 (2), 143–150. https://doi.org/10.1078/0944-5013-00186.spa
dc.relation.referencesBosse, R. J.; Bower, J. P.; Bertling, I. Systemic Resistance Inducers Applied Preharvest for Colletotrichum Gloeosporioides Control in Avocados. Acta Hortic. 2013, 1007, 153–160. https://doi.org/10.17660/ActaHortic.2013.1007.14.spa
dc.relation.referencesSchaller, G. E.; Binder, B. M. Inhibitors of Ethylene Biosynthesis and Signaling. Methods Mol. Biol. 2017, 1573, 87–99. https://doi.org/10.1007/978-1-4939-6854-1.spa
dc.relation.referencesOchoa-Ascencio, S.; Hertog, M. L. A. T. M.; Nicolaï, B. M. Modelling the Transient Effect of 1-MCP on “Hass” Avocado Softening: A Mexican Comparative Study. Postharvest Biol. Technol. 2009, 51 (1), 62–72. https://doi.org/10.1016/j.postharvbio.2008.06.002.spa
dc.relation.referencesWoolf, A. B.; Requejo-Tapia, C.; Cox, K. A.; Jackman, R. C.; Gunson, A.; Arpaia, M. L.; White, A. 1-MCP Reduces Physiological Storage Disorders of “Hass” Avocados. Postharvest Biol. Technol. 2005, 35 (1), 43–60. https://doi.org/10.1016/j.postharvbio.2004.07.009spa
dc.relation.referencesMeyer, M. D.; Terry, L. A. Fatty Acid and Sugar Composition of Avocado, Cv. Hass, in Response to Treatment with an Ethylene Scavenger or 1-Methylcyclopropene to Extend Storage Life. Food Chem. 2010, 121 (4), 1203–1210. https://doi.org/10.1016/j.foodchem.2010.02.005.spa
dc.relation.referencesShimshoni, J. A.; Bommuraj, V.; Chen, Y.; Sperling, R.; Barel, S.; Feygenberg, O.; Maurer, D.; Alkan, N. Postharvest Fungicide for Avocado Fruits: Antifungal Efficacy and Peel to Pulp Distribution Kinetics. Foods 2020, 9 (2), 1–12. https://doi.org/10.3390/foods9020124.spa
dc.relation.referencesChi, H.; Song, S.; Luo, M.; Zhang, C.; Li, W.; Li, L.; Qin, Y. Effect of PLA Nanocomposite Films Containing Bergamot Essential Oil, TiO 2 Nanoparticles, and Ag Nanoparticles on Shelf Life of Mangoes. Sci. Hortic. (Amsterdam). 2019, 249 (November 2018), 192–198. https://doi.org/10.1016/j.scienta.2019.01.059.spa
dc.relation.referencesWang, L.; Shao, S.; Madebo, M. P.; Hou, Y.; Zheng, Y.; Jin, P. Effect of Nano-SiO2 Packing on Postharvest Quality and Antioxidant Capacity of Loquat Fruit under Ambient Temperature Storage. Food Chem. 2020, 315 (November 2019), 126295. https://doi.org/10.1016/j.foodchem.2020.126295.spa
dc.relation.referencesLi, J.; Sun, Q.; Sun, Y.; Chen, B.; Wu, X.; Le, T. Improvement of Banana Postharvest Quality Using a Novel Soybean Protein Isolate/Cinnamaldehyde/Zinc Oxide Bionanocomposite Coating Strategy. Sci. Hortic. (Amsterdam). 2019, 258 (July), 108786. https://doi.org/10.1016/j.scienta.2019.108786spa
dc.relation.referencesDíaz, J.; Ardila, C.; Guerra, M. Estudio de Caso Sobre La Admisibilidad Del Aguacate Hass Colombiano En El Mercado Estadounidense : Oportunidades En El Este de Asia Case Study on the Eligibility of Colombian Hass Avocado in The. Rev. Mundo Asia Pacífico 2019, 8 (14), 5–27. https://doi.org/10.17230/map.v8.i14.01.spa
dc.relation.referencesGil, J. G.; Franco, G.; Henao-Rojas, J. Review of Concept of Quality in Hass Avocado and Pre-Harvest and Harvest Factors That Determine It under Tropical Conditions; 2020. https://doi.org/10.17584/rcch.2019v13i3.10503.spa
dc.relation.referencesAstudillo-Ordóñez, C. E.; Rodríguez, P. Physicochemical Parameters of Avocado Persea Americana Mill. Cv. Hass (Lauraceae) Grown in Antioquia (Colombia) for Export. Corpoica Cienc. y Tecnol. Agropecu. 2018, 19 (2), 393–402. https://doi.org/10.21930/rcta.vol19_num2_art:694.spa
dc.relation.referencesAnaldex, 2017. Los Retos Del Aguacate Hass Colombiano En Los Mercados Internacionales. In Presented at the Seminario Internacional de Aguacate Hass, - Armenia - Quindío-Colombia; 2017; pp 1–29.spa
dc.relation.referencesMeindrawan, B.; Suyatma, N. E.; Wardana, A. A.; Pamela, V. Y. Nanocomposite Coating Based on Carrageenan and ZnO Nanoparticles to Maintain the Storage Quality of Mango. Food Packag. Shelf Life 2018, 18 (October), 140–146. https://doi.org/10.1016/j.fpsl.2018.10.006.spa
dc.relation.referencesHe, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal Activity of Zinc Oxide Nanoparticles against Botrytis Cinerea and Penicillium Expansum. Microbiol. Res. 2011, 166 (3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003.spa
dc.relation.referencesHu, Q.; Fang, Y.; Yang, Y.; Ma, N.; Zhao, L. Effect of Nanocomposite-Based Packaging on Postharvest Quality of Ethylene-Treated Kiwifruit (Actinidia Deliciosa) during Cold Storage. Food Res. Int. 2011, 44 (6), 1589–1596. https://doi.org/10.1016/j.foodres.2011.04.018.spa
dc.relation.referencesAlghuthaymi, M.; Abd-Elsalam, K. A.; Paraliker, P.; Rai, M. Chapter 13 - Mono and Hybrid Nanomaterials: Novel Strategies to Manage Postharvest Diseases. In Micro and Nano Technologies; Abd-Elsalam, K. A. B. T.-M. H. N. for S. A.-F. and E., Ed.; Elsevier, 2020; pp 287–317. https://doi.org/https://doi.org/10.1016/B978-0-12-821354-4.00013-3.spa
dc.relation.referencesSmith, W. Fundamentos De La Ciencia e Ingeneria De Materiales, Tercera.; Fernandez Madrid, C., Ed.; McGRAW-HILL INTERAMERICANA DE ESPAÑA S.A.U: España, 2014.spa
dc.relation.referencesCandal, R. J.; Bilmes, S. A. Semiconductores Con Actividad Fotocatalítica. In Eliminación de Contaminantes por Fotocatálisis Heterogénea; Blesa, M. A., Ed.; CYTED, 2004; pp 79–101.spa
dc.relation.referencesAmeta, R.; Solanki, M. S.; Benjamin, S.; Ameta, S. C. Photocatalysis; 2018. https://doi.org/10.1016/B978-0-12-810499-6.00006-1.spa
dc.relation.referencesKim, S.; Lee, M.; Hong, C.; Yoon, Y.; An, H.; Lee, D.; Jeong, W.; Yoo, D.; Kang, Y.; Youn, Y.; Han, S. A Band-Gap Database for Semiconducting Inorganic Materials Calculated with Hybrid Functional. Sci. Data 2020, 7 (1), 1–6. https://doi.org/10.1038/s41597-020-00723-8.spa
dc.relation.referencesKhan, S. U. M.; Kainthla, R. C.; Bockris, J. O. M. The Redox Potential and the Fermi Level in Solution. J. Phys. Chem. 1987, 91 (23), 5974–5977. https://doi.org/10.1021/j100307a032.spa
dc.relation.referencesReiss, H. The Fermi Level and the Redox Potential. J. Phys. Chem. 1985, 89 (18), 3783–3791. https://doi.org/10.1021/j100264a005.spa
dc.relation.referencesGupta, S. M.; Tripathi, M. A Review of TiO2 Nanoparticles. Chinese Sci. Bull. 2011, 56 (16), 1639–1657. https://doi.org/10.1007/s11434-011-4476-1.spa
dc.relation.referencesCardenas, Carolina; Tobon, Jorge; Garcia, C. Photocatalytic Properties Evaluation of Portland White Cement Added. Rev. Lat. Met. Mat. 2012, 33 (2), 316–322.spa
dc.relation.referencesSimonsen, M. E. Heterogeneous Photocatalysis. Chem. Adv. Environ. Purif. Process. Water Fundam. Appl. 2014, 135–170. https://doi.org/10.1016/B978-0-444-53178-0.00004-3.spa
dc.relation.referencesNixon, J. F. Topics in Current Chemistry; Bignozzi, C. A., Ed.; 1982; Vol. 234. https://doi.org/10.1016/s0022-328x(00)85867-2.spa
dc.relation.referencesGuo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31 (50), 1–26. https://doi.org/10.1002/adma.201901997.spa
dc.relation.referencesDe Lasa, H.; Serrano, B.; Salaices, M. Photocatalytic Reaction Engineering; 2005. https://doi.org/10.1007/0-387-27591-6.spa
dc.relation.referencesLiang, A. H.; Jia, Z.; Zhang, H.; Wang, X.; Wang, J. Photocatalysis Oxidation Activity Regulation of Ag / TiO 2 Composites Evaluated by the Selective Oxidation of Rhodamine B. Appl. Surf. Sci. 2017. https://doi.org/10.1016/j.apsusc.2017.05.211.spa
dc.relation.referencesUllah, H.; Viglašová, E.; Galamboš, M. Visible Light-Driven Photocatalytic Rhodamine B Degradation Using CdS Nanorods. Processes 2021, 9 (2), 1–11. https://doi.org/10.3390/pr9020263.spa
dc.relation.referencesLopera, A. A; Velasquez, A. M; Chavarriaga, E. A ; Ocampo, S; Zaghete, M. A; Graminha, M. A; Garcia, C. P. Synthesis by Combustion in Solution of Zn2TiO4 + Ag for Photocatalytic and Photodynamic Applications in the Visible Synthesis by Combustion in Solution of Zn2TiO4 + Ag for Photocatalytic and Photodynamic Applications in the Visible. J. Phys. Conf. Ser. 2017, 935 (012013). https://doi.org/doi :10.1088/1742-6596/935/1/012013.spa
dc.relation.referencesSamoylov, A. M.; Popov, V. N. Titanium Dioxide (Tio₂) and Its Applications; Matthew Dean, 2021. https://doi.org/10.1016/b978-0-12-819960-2.00024-9.spa
dc.relation.referencesNavrotsky, A.; Jamieson, J. C.; Kleppa, O. J. Enthalpy of Transformation of a High-Pressure Polymorph of Titanium Dioxide to the Rutile Modification. Science (80-. ). 1967, 158 (3799), 388–389. https://doi.org/10.1126/science.158.3799.388.spa
dc.relation.referencesScarpelli, F.; Mastropietro, T. F.; Poerio, T.; Godbert, N. Mesoporous TiO2 Thin Films: State of the Art. Titan. Dioxide - Mater. a Sustain. Environ. 2018, No. June 2018. https://doi.org/10.5772/intechopen.74244.spa
dc.relation.referencesMoreno, B.; Carballo, M.; Jurado, J. R.; Chinarro, E. Una Revisión Del Uso Del TiO2 En Terapias e Ingeniería Tisular. Bol. la Soc. Esp. Ceram. y Vidr. 2009, 48 (6), 321–328.spa
dc.relation.referencesStucchi, M.; Bianchi, C. L.; Pirola, C.; Vitali, S.; Cerrato, G.; Morandi, S.; Argirusis, C.; Sourkouni, G.; Sakkas, P. M.; Capucci, V. Surface Decoration of Commercial Micro-Sized TiO2 by Means of High Energy Ultrasound: A Way to Enhance Its Photocatalytic Activity under Visible Light. Appl. Catal. B Environ. 2014, 178, 124–132. https://doi.org/10.1016/j.apcatb.2014.10.004.spa
dc.relation.referencesHanaor, D. A. H.; Sorrell, C. C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46 (4), 855–874. https://doi.org/10.1007/s10853-010-5113-0.spa
dc.relation.referencesGallagher, R. P.; Lee, T. K. Adverse Effects of Ultraviolet Radiation: A Brief Review. Prog. Biophys. Mol. Biol. 2006, 92 (1), 119–131. https://doi.org/10.1016/j.pbiomolbio.2006.02.011.spa
dc.relation.referencesLopera Sepúlveda, A. A. Diseño de Un Dispositivo Médico Que Sirva Como Terapia Alternativa Para El Tratamiento de La Leishmaniasis Cutánea Diseño de Un Dispositivo Médico Que Sirva Como Terapia Alternativa Para El Tratamiento de La Leishmaniasis Cutánea, Universidad Nacional de Colombia., 2017.spa
dc.relation.referencesWang, J.; Li, C.; Luan, X.; Li, J.; Wang, B.; Zhang, L.; Xu, R.; Zhang, X. Investigation on Solar Photocatalytic Activity of TiO2 Loaded Composite: TiO2/Skeleton, TiO2/Dens and TiO2/HAP. J. Mol. Catal. A Chem. 2010, 320 (1–2), 62–67. https://doi.org/10.1016/j.molcata.2010.01.004.spa
dc.relation.referencesWei, P.; Liu, J.; Li, Z. Effect of Pt Loading and Calcination Temperature on the Photocatalytic Hydrogen Production Activity of TiO2 Microspheres. Ceram. Int. 2013, 39 (5), 5387–5391. https://doi.org/10.1016/j.ceramint.2012.12.045.spa
dc.relation.referencesZaleska, A. Doped-TiO₂ : A Review. Recent Patents Eng. 2008, 2, 157-164 2008, 2 (3), 157–164. https://doi.org/doi:10.2174/187221208786306289.spa
dc.relation.referencesMalekshahi Byranvand, M.; Nemati Kharat, A.; Fatholahi, L.; Malekshahi Beiranvand, Z. A Review on Synthesis of Nano-TiO2 via Different Methods. J. Nanostructures 2013, 3 (1), 1–9. https://doi.org/10.7508/jns.2013.01.001.spa
dc.relation.referencesMahshid, S.; Askari, M.; Sasani Ghamsari, M.; Afshar, N.; Lahuti, S. Mixed-Phase TiO2 Nanoparticles Preparation Using Sol-Gel Method. Journal of Alloys and Compounds. 2009, pp 586–589. https://doi.org/10.1016/j.jallcom.2008.11.094.spa
dc.relation.referencesArami, Hamed; Mazloumi, Mahyar; Khalifehzadeh, Razieh; Sadrnezhaad, S. . Sonochemical Preparation of TiO2 Nanoparticles. Mater. Lett. 2007, 61 (23–24), 4559–4561. https://doi.org/doi.org/10.1016/j.matlet.2007.02.051.spa
dc.relation.referencesEndrödi, B.; Kecsenovity, E.; Rajeshwar, K.; Janáky, C. One-Step Electrodeposition of Nanocrystalline TiO2 Films with Enhanced Photoelectrochemical Performance and Charge Storage. ACS Appl. Energy Mater. 2018, 1 (2), 851–858. https://doi.org/10.1021/acsaem.7b00289.spa
dc.relation.referencesChigane, M.; Shinagawa, T.; Tani, J. ichi. Preparation of Titanium Dioxide Thin Films by Indirect-Electrodeposition. Thin Solid Films. 2017, pp 203–207. https://doi.org/10.1016/j.tsf.2017.03.031.spa
dc.relation.referencesNovitskaya, E.; Kelly, J. P.; Bhaduri, S.; Graeve, O. A. A Review of Solution Combustion Synthesis: An Analysis of Parameters Controlling Powder Characteristics. Int. Mater. Rev. 2021, 66 (3), 188–214. https://doi.org/10.1080/09506608.2020.1765603.spa
dc.relation.referencesDeganello, F.; Tyagi, A. K. Solution Combustion Synthesis, Energy and Environment: Best Parameters for Better Materials. Prog. Cryst. Growth Charact. Mater. 2018, 64 (2), 23–61. https://doi.org/10.1016/j.pcrysgrow.2018.03.001.spa
dc.relation.referencesAlves, Annelise Kopp; Bergmann, Carlos P.; Berutti, F. A. Synthesis and Characterization of Nanostructured Materials; Springer, 2009. https://doi.org/10.1007/978-3-642-41275-2.spa
dc.relation.referencesMa, X.; Xue, L.; Li, X.; Yang, M.; Yan, Y. Controlling the Crystalline Phase of TiO2 Powders Obtained by the Solution Combustion Method and Their Photocatalysis Activity. Ceram. Int. 2015, 41 (9), 11927–11935. https://doi.org/10.1016/j.ceramint.2015.05.161.spa
dc.relation.referencesMartínez-González, M. E.; Balois Morales, R.; Alia-Tejacal, I.; Cortes-Cruz, M. A.; Palomino-Hermosillo, Y. A.; López-Gúzman, G. G. Postcosecha de Frutos: Maduración y Cambios Bioquímicos. Rev. Mex. Ciencias Agrícolas 2017, No. 19, 4075–4087. https://doi.org/10.29312/remexca.v0i19.674.spa
dc.relation.referencesOsorio, S.; Scossa, F.; Fernie, A. R. Molecular Regulation of Fruit Ripening. Front. Plant Sci. 2013, 4 (JUN), 1–8. https://doi.org/10.3389/fpls.2013.00198.spa
dc.relation.referencesINTAGRI. Frutos Climatéricos y No Climatéricos. Postcosecha y Comer. 2017, No. Figura 1, 4.spa
dc.relation.referencesEquipo Editorial INTAGRI SC. Papel Del Etileno En La Maduración de Frutos | Intagri S.C. Ser. Poscosecha y Comer. 2001, 16 (Artículos Técnicos de INTAGRI), 4p.spa
dc.relation.referencesBapat, V. A.; Trivedi, P. K.; Ghosh, A.; Sane, V. A.; Ganapathi, T. R.; Nath, P. Ripening of Fleshy Fruit: Molecular Insight and the Role of Ethylene. Biotechnol. Adv. 2010, 28 (1), 94–107. https://doi.org/10.1016/j.biotechadv.2009.10.002.spa
dc.relation.referencesSadeghi, K.; Lee, Y.; Seo, J. Ethylene Scavenging Systems in Packaging of Fresh Produce: A Review. Food Rev. Int. 2021, 37 (2), 155–176. https://doi.org/10.1080/87559129.2019.1695836.spa
dc.relation.referencesBalaguera-López, H. E.; Salamanca-Gutiérrez, F. A.; García, J. C.; Herrera-Árevalo, A. Etileno y Retardantes de La Maduración En La Poscosecha de Productos Agrícolas. Una Revisión. Rev. Colomb. Ciencias Hortícolas 2015, 8 (2), 302. https://doi.org/10.17584/rcch.2014v8i2.3222.spa
dc.relation.referencesWeber, A. Aplicação de Produtos Da Fermentação e Ultrabaixo Oxigênio Para a Conservação de Maçãs ‘Royal Gala,’ Universidade Federal de Santa Maria, 2010.spa
dc.relation.referencesGavin, C.; Barzallo, D.; Vera, H.; Lazo, R. Revisión Bibliográfica: Etileno En Poscosecha, Tecnologías Para Su Manejo y Control. Ecuadorian Sci. J. 2021, 5 (4), 163–178. https://doi.org/10.46480/esj.5.4.179.spa
dc.relation.referencesVogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J. Isolation and Characterization of Arabidopsis Mutants Defective in the Induction of Ethylene Biosynthesis by Cytokinin. Genetics 1998, 149 (1), 417–427. https://doi.org/10.1093/genetics/149.1.417.spa
dc.relation.referencesRamírez-Gil, J. G.; Henao-Rojas, J. C.; Morales-Osorio, J. G. Postharvest Diseases and Disorders in Avocado Cv. Hass and Their Relationship to Preharvest Management Practices. Heliyon 2021, 7 (1), e05905. https://doi.org/10.1016/j.heliyon.2021.e05905.spa
dc.relation.referencesGrisales Vásquez, Nancy Yohana; Rodríguez Fonseca, P. E. ;; Correa Londoño, Guillermo Antonio; Tamayo Molano, P. J. Inventario de Los Principales Fitopatógenos de Poscosecha y Defectos de Calidad de Los Frutos de Aguacate (Persea Americana Mill Cv. Hass). AGROSAVIA, Corporación colombiana de investigación agropecuaria. 2019, p 24.spa
dc.relation.referencesGonzalez, J. A. H.; Baños, S. B.; Garcia, S. S.; Gutierrez Martinez, P. Situación Actual Del Manejo Poscosecha y de Enfermedades Fungosas Del Aguacate ‘Hass’ Para Exportación En Michoacán. Rev. Mex. Ciencias Agrícolas 2020, 11 (7), 1647–1660. https://doi.org/10.29312/remexca.v11i7.2402.spa
dc.relation.referencesDuvenhage, J. A. The Influence of Wet Picking on Post Harvest Diseases and Disorders of Avocado Fruit. South African Avocado Grow. Assoc. 1993, 16, 77–79.spa
dc.relation.referencesRodríguez-López, É. S.; Cárdenas-Soriano, E.; Hernández-Delgado, S.; Gutiérrez-Diez, A.; Mayek-Pérez, N. Análisis de La Infección de Colletotrichum Gloeosporioides (Penz.) Penz. & Sacc. de Frutos de Aguacatero. Rev. Bras. Frutic. 2013, 35 (3), 898–905. https://doi.org/10.1590/S0100-29452013000300029.spa
dc.relation.referencesBrezmes Llecha, J. Diseño de Una Nariz Electrónica Para La Determinación No Destructiva Del Grado de La Maduración de La Fruta, Universitat Politécnica de Catalunya, 2001.spa
dc.relation.referencesSivalingam, G.; Nagaveni, K.; Hegde, M. S.; Madras, G. Photocatalytic Degradation of Various Dyes by Combustion Synthesized Nano Anatase TiO2. Appl. Catal. B Environ. 2003, 45 (1), 23–38. https://doi.org/10.1016/S0926-3373(03)00124-3.spa
dc.relation.referencesSivalingam, G.; Priya, M. H.; Madras, G. Kinetics of the Photodegradation of Substituted Phenols by Solution Combustion Synthesized TiO2. Appl. Catal. B Environ. 2004, 51 (1), 67–76. https://doi.org/10.1016/j.apcatb.2004.02.006.spa
dc.relation.referencesAarthi, T.; Madras, G. Photocatalytic Degradation of Rhodamine Dyes with Nano-TiO2. Ind. Eng. Chem. Res. 2007, 46 (1), 7–14. https://doi.org/10.1021/ie060948n.spa
dc.relation.referencesCHENG, Y.; SUN, H.; JIN, W.; XU, N. Effect of Preparation Conditions on Visible Photocatalytic Activity of Titania Synthesized by Solution Combustion Method* * Supported by the Key Laboratory of Material-Oriented Chemical Engineering of Jiangsu Province and Ministry of Education. Chinese J. Chem. Eng. 2007, 15 (2), 178–183. https://doi.org/10.1016/S1004-9541(07)60055-X.spa
dc.relation.referencesJongprateep, O.; Puranasamriddhi, R.; Palomas, J. Nanoparticulate Titanium Dioxide Synthesized by Sol-Gel and Solution Combustion Techniques. Ceram. Int. 2015, 41 (S1), S169–S173. https://doi.org/10.1016/j.ceramint.2015.03.193.spa
dc.relation.referencesChallagulla, S.; Nagarjuna, R.; Ganesan, R.; Roy, S. TiO2 Synthesized by Various Routes and Its Role on Environmental Remediation and Alternate Energy Production. Nano-Structures and Nano-Objects. 2017, pp 147–156. https://doi.org/10.1016/j.nanoso.2017.10.002.spa
dc.relation.referencesChung, S. L.; Wang, C. M. Solution Combustion Synthesis of TiO 2 and Its Use for Fabrication of Photoelectrode for Dye-Sensitized Solar Cell. J. Mater. Sci. Technol. 2012, 28 (8), 713–722. https://doi.org/10.1016/S1005-0302(12)60120-0.spa
dc.relation.referencesChallagulla, S.; Roy, S. The Role of Fuel to Oxidizer Ratio in Solution Combustion Synthesis of TiO2and Its Influence on Photocatalysis. J. Mater. Res. 2017, 32 (14), 2764–2772. https://doi.org/10.1557/jmr.2017.244.spa
dc.relation.referencesNassar, M. Y.; Ali, E. I.; Zakaria, E. S. Tunable Auto-Combustion Preparation of TiO2 Nanostructures as Efficient Adsorbents for the Removal of an Anionic Textile Dye. RSC Adv. 2017, 7 (13), 8034–8050. https://doi.org/10.1039/c6ra27924d.spa
dc.relation.referencesLi, G.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A. Synthesizing Mixed-Phase TiO2 Nanocomposites Using a Hydrothermal Method for Photo-Oxidation and Photoreduction Applications. J. Catal. 2008, 253 (1), 105–110. https://doi.org/10.1016/j.jcat.2007.10.014.spa
dc.relation.referencesJho, J. H.; Kim, D. H.; Kim, S. J.; Lee, K. S. Synthesis and Photocatalytic Property of a Mixture of Anatase and Rutile TiO2 Doped with Fe by Mechanical Alloying Process. J. Alloys Compd. 2008, 459 (1–2), 386–389. https://doi.org/10.1016/j.jallcom.2007.04.285.spa
dc.relation.referencesHe, J.; Du, Y. en; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24 (16), 1–14. https://doi.org/10.3390/molecules24162996.spa
dc.relation.referencesHoffmann, T. G.; Ronzoni, A. F.; da Silva, D. L.; Bertoli, S. L.; de Souza, C. K. Impact of Household Refrigeration Parameters on Postharvest Quality of Fresh Food Produce. J. Food Eng. 2021, 306 (November 2020). https://doi.org/10.1016/j.jfoodeng.2021.110641.spa
dc.relation.referencesGarcía, J. C.; Balaguera-López, H.; Aníbal, & H. Conservación Del Fruto de Banano Bocadillo ( Musa AA Simmonds ) Con La Aplicación de Permanganato de Potasio Conservation of Baby Banana ( Musa AA Simmonds ) Fruits with the Application of Potassium Permanganate ( KMnO 4 ). 2012, 6 (2), 161–171.spa
dc.relation.referencesFonseca, J. de M.; Alves, M. J. dos S.; Soares, L. S.; Moreira, R. de F. P. M.; Valencia, G. A.; Monteiro, A. R. A Review on TiO2-Based Photocatalytic Systems Applied in Fruit Postharvest: Set-Ups and Perspectives. Food Res. Int. 2021, 144 (April). https://doi.org/10.1016/j.foodres.2021.110378.spa
dc.relation.referencesPark, D. R.; Ahn, B. J.; Park, H. S.; Yamashita, H.; Anpo, M. Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered TiO2 Photocatalysts: Effect of the Presence of O2 and H2O and the Addition of Pt. Korean J. Chem. Eng. 2001, 18 (6), 930–934. https://doi.org/10.1007/BF02705621.spa
dc.relation.referencesYamazaki, S.; Tanaka, S.; Tsukamoto, H. Kinetic Studies of Oxidation of Ethylene over a TiO2 Photocatalyst. J. Photochem. Photobiol. A Chem. 1999, 121 (1), 55–61. https://doi.org/10.1016/S1010-6030(98)00448-1.spa
dc.relation.referencesHauchecorne, B.; Tytgat, T.; Verbruggen, S. W.; Hauchecorne, D.; Terrens, D.; Smits, M.; Vinken, K.; Lenaerts, S. Photocatalytic Degradation of Ethylene: An FTIR in Situ Study under Atmospheric Conditions. Appl. Catal. B Environ. 2011, 105 (1–2), 111–116. https://doi.org/10.1016/j.apcatb.2011.03.041.spa
dc.relation.referencesLin, Y. T.; Weng, C. H.; Chen, F. Y. Key Operating Parameters Affecting Photocatalytic Activity of Visible-Light-Induced C-Doped TiO2 Catalyst for Ethylene Oxidation. Chem. Eng. J. 2014, 248, 175–183. https://doi.org/10.1016/j.cej.2014.02.085.spa
dc.relation.referencesLin, Y. T.; Weng, C. H.; Hsu, H. J.; Huang, J. W.; Srivastav, A. L.; Shiesh, C. C. Effect of Oxygen, Moisture, and Temperature on the Photo Oxidation of Ethylene on N-Doped TiO2 Catalyst. Sep. Purif. Technol. 2014, 134, 117–125. https://doi.org/10.1016/j.seppur.2014.07.039.spa
dc.relation.referencesPathak, N.; Caleb, O. J.; Geyer, M.; Herppich, W. B.; Rauh, C.; Mahajan, P. V. Photocatalytic and Photochemical Oxidation of Ethylene: Potential for Storage of Fresh Produce—a Review. Food Bioprocess Technol. 2017, 10 (6), 982–1001. https://doi.org/10.1007/s11947-017-1889-0.spa
dc.relation.referencesChavadej, S.; Saktrakool, K.; Rangsunvigit, P.; Lobban, L. L.; Sreethawong, T. Oxidation of Ethylene by a Multistage Corona Discharge System in the Absence and Presence of Pt/TiO2. Chem. Eng. J. 2007, 132 (1–3), 345–353. https://doi.org/10.1016/j.cej.2007.01.030.spa
dc.relation.referencesChang, K. L.; Sekiguchi, K.; Wang, Q.; Zhao, F. Removal of Ethylene and Secondary Organic Aerosols Using UV-C254 + 185 Nm with TiO2 Catalyst. Aerosol Air Qual. Res. 2013, 13 (2), 618–626. https://doi.org/10.4209/aaqr.2012.07.0195.spa
dc.relation.referencesRodríguez-González, V.; Terashima, C.; Fujishima, A. Applications of Photocatalytic Titanium Dioxide-Based Nanomaterials in Sustainable Agriculture. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 49–67. https://doi.org/10.1016/j.jphotochemrev.2019.06.001.spa
dc.relation.referencesYadav, H. M.; Kim, J. S.; Pawar, S. H. Developments in Photocatalytic Antibacterial Activity of Nano TiO2: A Review. Korean J. Chem. Eng. 2016, 33 (7), 1989–1998. https://doi.org/10.1007/s11814-016-0118-2.spa
dc.relation.referencesRegmi, C.; Joshi, B.; Ray, S. K.; Gyawali, G.; Pandey, R. P. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater. Front. Chem. 2018, 6 (February), 1–6. https://doi.org/10.3389/fchem.2018.00033.spa
dc.relation.referencesJang, H. D.; Kim, S. K.; Kim, S. J. Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Properties. J. Nanoparticle Res. 2001, 3 (2–3), 141–147. https://doi.org/10.1023/A:1017948330363.spa
dc.relation.referencesAlmquist, C. B.; Biswas, P. Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity. J. Catal. 2002, 212 (2), 145–156. https://doi.org/10.1006/jcat.2002.3783.spa
dc.relation.referencesKočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 Particle Size on the Photocatalytic Reduction of CO2. Appl. Catal. B Environ. 2009, 89 (3–4), 494–502. https://doi.org/10.1016/j.apcatb.2009.01.010.spa
dc.relation.referencesHussain, M.; Bensaid, S.; Geobaldo, F.; Saracco, G.; Russo, N. Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO 2 Nanoparticles. Ind. Eng. Chem. Res. 2011, 50 (IMCCRE 2010), 2536–2543.spa
dc.relation.referencesde Chiara, M. L. V.; Pal, S.; Licciulli, A.; Amodio, M. L.; Colelli, G. Photocatalytic Degradation of Ethylene on Mesoporous TiO2/SiO2 Nanocomposites: Effects on the Ripening of Mature Green Tomatoes. Biosyst. Eng. 2015, 132, 61–70. https://doi.org/10.1016/j.biosystemseng.2015.02.008.spa
dc.relation.referencesPathak, N.; Caleb, O. J.; Rauh, C.; Mahajan, P. V. Efficacy of Photocatalysis and Photolysis Systems for the Removal of Ethylene under Different Storage Conditions. Postharvest Biol. Technol. 2019, 147 (September 2018), 68–77. https://doi.org/10.1016/j.postharvbio.2018.09.006.spa
dc.relation.referencesLourenço, R. E. R. S.; Linhares, A. A. N.; de Oliveira, A. V.; da Silva, M. G.; de Oliveira, J. G.; Canela, M. C. Photodegradation of Ethylene by Use of TiO2 Sol-Gel on Polypropylene and on Glass for Application in the Postharvest of Papaya Fruit. Environ. Sci. Pollut. Res. 2017, 24 (7), 6047–6054. https://doi.org/10.1007/s11356-016-8197-5.spa
dc.relation.referencesHur, J. S.; Oh, S. O.; Lim, K. M.; Jung, J. S.; Kim, J. W.; Koh, Y. J. Novel Effects of TiO2 Photocatalytic Ozonation on Control of Postharvest Fungal Spoilage of Kiwifruit. Postharvest Biol. Technol. 2005, 35 (1), 109–113. https://doi.org/10.1016/j.postharvbio.2004.03.013.spa
dc.relation.referencesShahbaz, H. M.; Kim, S.; Kim, J. U.; Park, D.; Lee, M.; Lee, D. U.; Park, J. Inactivation of Salmonella Typhimurium in Fresh Cherry Tomatoes Using Combined Treatment of UV–TiO2 Photocatalysis and High Hydrostatic Pressure. Food Sci. Biotechnol. 2018, 27 (5), 1531–1539. https://doi.org/10.1007/s10068-018-0368-3.spa
dc.relation.referencesLopera Sepúlveda, A. A.; Arenas Velásquez, A. M.; Patiño Linares, I. A.; de Almeida, L.; Fontana, C. R.; Garcia, C.; Silva Graminha, M. A. Efficacy of Photodynamic Therapy Using TiO2 Nanoparticles Doped with Zn and Hypericin in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania Amazonensis. Photodiagnosis Photodyn. Ther. 2020, 30 (January), 101676. https://doi.org/10.1016/j.pdpdt.2020.101676.spa
dc.relation.referencesPark, B. G. Photocatalytic Activity of Tio2-Doped Fe, Ag, and Ni with n under Visible Light Irradiation. Gels 2022, 8 (1). https://doi.org/10.3390/gels8010014.spa
dc.relation.referencesJongprateep, O.; Meesombad, K.; Techapiesancharoenkij, R.; Surawathanawises, K. Chemical Composition, Microstructure, Bandgap Energy and Electrocatalytic Activities of TiO2 and Ag-Doped TiO2 Powder Synthesized by Solution Combustion Technique. Ceram. Int. 2018, 44 (August), S228–S232. https://doi.org/10.1016/j.ceramint.2018.08.108.spa
dc.relation.referencesLi, Y.; Ma, M.; Chen, W.; Li, L.; Zen, M. Preparation of Ag-Doped TiO2 Nanoparticles by a Miniemulsion Method and Their Photoactivity in Visible Light Illuminations. Mater. Chem. Phys. 2011, 129 (1–2), 501–505. https://doi.org/10.1016/j.matchemphys.2011.04.055.spa
dc.relation.referencesMiao, Y.; Xu, X.; Liu, K.; Wang, N. Preparation of Novel Cu/TiO2 Mischcrystal Composites and Antibacterial Activities for Escherichia Coli under Visible Light. Ceram. Int. 2017, 43 (13), 9658–9663. https://doi.org/10.1016/j.ceramint.2017.04.137.spa
dc.relation.referencesLopera, A. A.; Chavarriaga, E. A.; Estupiñan, H. A.; Valencia, I. C.; Paucar, C.; Garcia, C. P. Synthesis and Spectroscopic Characterization of Nanoparticles of TiO2 Doped with Pt Produced via the Self-Combustion Route. J. Phys. D. Appl. Phys. 2016, 49 (20). https://doi.org/10.1088/0022-3727/49/20/205501.spa
dc.relation.referencesPatil, K C; Hedge, M S; Rattan, Tanu; Aruna, S. T. Chemistry Of Nanocrystalline Oxide Materials. 2008. https://doi.org/10.1142/9789812793157.spa
dc.relation.referencesSane, P.; Chaudhari, S.; Nemade, P.; Sontakke, S. Photocatalytic Reduction of Chromium (VI) Using Combustion Synthesized TiO2. J. Environ. Chem. Eng. 2018, 6 (1), 68–73. https://doi.org/10.1016/j.jece.2017.11.060.spa
dc.relation.referencesKhan, S. A.; Khan, S. B.; Khan, L. U.; Farooq, A.; Akhtar, K.; Asiri, A. M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. Handb. Mater. Charact. 2018, 317–344. https://doi.org/10.1007/978-3-319-92955-2_9.spa
dc.relation.referencesJansses, M. Fundamental Measurement Techniques. In Flammability Testing of Materials Used in Construction, Transport and Mining; Apte Transport and Mining, V. B. B. T.-F. T. of M. U. in C., Ed.; Woodhead Publishing, 2006; pp 22–62. https://doi.org/https://doi.org/10.1533/9781845691042.22.spa
dc.relation.referencesClavijo, J. Caracterización de Materiales a Través de Medidas de Microscopía Electrónica de Barrido (SEM). Elementos 2013, 3 (3). https://doi.org/10.15765/e.v3i3.420.spa
dc.relation.referencesThommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117.spa
dc.relation.referencesAlothman, Z. A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials (Basel). 2012, 5 (12), 2874–2902. https://doi.org/10.3390/ma5122874.spa
dc.relation.referencesTahir, M. B.; Sohaib, M.; Sagir, M.; Rafique, M. Role of Nanotechnology in Photocatalysis. Encycl. Smart Mater. 2022, 578–589. https://doi.org/10.1016/b978-0-12-815732-9.00006-1.spa
dc.relation.referencesAndronic, L.; Isac, L.; Cazan, C.; Enesca, A. Simultaneous Adsorption and Photocatalysis Processes Based on Ternary Tio2 –Cux s–Fly Ash Hetero-Structures. Appl. Sci. 2020, 10 (22), 1–16. https://doi.org/10.3390/app10228070.spa
dc.relation.referencesBhanvase, B.; Barai, D. Nanofluids for Heat and Mass Transfer, 1st ed.; Elsevier, Ed.; Academic press- Elsevier, 2021. https://doi.org/10.1016/B978-0-12-821955-3.00009-1.spa
dc.relation.referencesNobbs, J. H. Dyers Scales for Assessing the Colour of Dyed Fabrics. In Color Science ’98; Gilchrist, J. N., Ed.; Universidad de Leeds, Reino Unido: Reino Unido, 2016; Vol. 3.spa
dc.relation.referencesYang, S.; Wu, Z.; Huang, L. P.; Zhou, B.; Lei, M.; Sun, L.; Tian, Q.; Pan, J.; Wu, W.; Zhang, H. Significantly Enhanced Dye Removal Performance of Hollow Tin Oxide Nanoparticles via Carbon Coating in Dark Environment and Study of Its Mechanism. Nanoscale Res. Lett. 2014, 9 (1), 1–9. https://doi.org/10.1186/1556-276X-9-442.spa
dc.relation.referencesChakinala, N.; Gogate, P. R.; Chakinala, A. G. Photocatalytic Degradation of Rhodamine-b over Mono- And Bi-Metallic Tio2 Catalysts. Mater. Today Proc. 2021, 43, 3066–3070. https://doi.org/10.1016/j.matpr.2021.01.403.spa
dc.relation.referencesWang, S.; Han, Z.; Di, T.; Li, R.; Liu, S.; Cheng, Z. Preparation of Pod-Shaped TiO2 and Ag@TiO2 Nano Burst Tubes and Their Photocatalytic Activity. R. Soc. Open Sci. 2019, 6 (9). https://doi.org/10.1098/rsos.191019.spa
dc.relation.referencesJin, R.; Ye, X.; Fan, J.; Jiang, D.; Chen, H. Y. In Situ Imaging of Photocatalytic Activity at Titanium Dioxide Nanotubes Using Scanning Ion Conductance Microscopy. Anal. Chem. 2019, 91 (4), 2605–2609. https://doi.org/10.1021/acs.analchem.8b05311.spa
dc.relation.referencesCarvalho, C. P.; Velásquez, M. A.; Van Rooyen, Z. Determinación Del Índice Mínimo de Materia Seca Para La Óptima Cosecha Del Aguacate ‘Hass’ En Colombia. Agron. Colomb. 2014, 32 (3), 399–406. https://doi.org/10.15446/agron.colomb.v32n3.46031.spa
dc.relation.referencesBarnett, H. L.; Hunter, B. B. Illustrated Genera of Imperfect Fungi; Burgess life science series; Burgess Publishing Company, 1972.spa
dc.relation.referencesWhite, T. J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. PCR Protoc. 1990, No. December 2015, 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1.spa
dc.relation.referencesCastellanos, D. A.; Mendoza, R.; Gavara, R.; Herrera, A. O. Respiration and Ethylene Generation Modeling of “Hass” Avocado and Feijoa Fruits and Application in Modified Atmosphere Packaging. Int. J. Food Prop. 2017, 20 (2), 333–349. https://doi.org/10.1080/10942912.2016.1160921.spa
dc.relation.referencesMendoza, R.; Castellanos, D. A.; García, J. C.; Vargas, J. C.; Herrera, A. O. Ethylene Production, Respiration and Gas Exchange Modelling in Modified Atmosphere Packaging for Banana Fruits. Int. J. Food Sci. Technol. 2016, 51 (3), 777–788. https://doi.org/10.1111/ijfs.13037.spa
dc.relation.referencesGaravito, J.; Herrera, A. O.; Castellanos, D. A. A Combined Mathematical Model to Represent Transpiration, Respiration, and Water Activity Changes in Fresh Cape Gooseberry (Physalis Peruviana) Fruits. Biosyst. Eng. 2021, 208, 152–163. https://doi.org/10.1016/j.biosystemseng.2021.05.015.spa
dc.relation.referencesMaftoonazad, N.; Ramaswamy, H. S. Effect of Pectin-Based Coating on the Kinetics of Quality Change Associated with Stored Avocados. J. Food Process. Preserv. 2008, 32 (4), 621–643. https://doi.org/10.1111/j.1745-4549.2008.00203.x.spa
dc.relation.referencesCrocetti, G. XRD Phase Analysis of TiO2 Sunscreens; NMI Nanometrology: Australia, 2012.spa
dc.relation.referencesDurango-Giraldo, G.; Cardona, A.; Zapata, J. F.; Santa, J. F.; Buitrago-Sierra, R. Titanium Dioxide Modified with Silver by Two Methods for Bactericidal Applications. Heliyon 2019, 5 (5), e01608. https://doi.org/10.1016/j.heliyon.2019.e01608.spa
dc.relation.referencesSangchay, W. Photocatalytic and Antibacterial Activity of Ag-Doped TiO 2 Nanoparticles. KKU Res.J. 2013, 18 (5), 731–738.spa
dc.relation.referencesMadadi, M.; Ghorbanpour, M.; Feizi, A. Antibacterial and Photocatalytic Activity of Anatase Phase Ag-Doped TiO2 Nanoparticles. Micro Nano Lett. 2018, 13 (11), 1590–1593. https://doi.org/10.1049/mnl.2018.5057.spa
dc.relation.referencesAli, T.; Ahmed, A.; Alam, U.; Uddin, I.; Tripathi, P.; Muneer, M. Enhanced Photocatalytic and Antibacterial Activities of Ag-Doped TiO2 Nanoparticles under Visible Light. Mater. Chem. Phys. 2018, 212, 325–335. https://doi.org/10.1016/j.matchemphys.2018.03.052.spa
dc.relation.referencesMogal, S. I.; Gandhi, V. G.; Mishra, M.; Tripathi, S.; Shripathi, T.; Joshi, P. A.; Shah, D. O. Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties. Ind. Eng. Chem. Res. 2014, 53 (14), 5749–5758. https://doi.org/10.1021/ie404230q.spa
dc.relation.referencesByrne, C.; Fagan, R.; Hinder, S.; McCormack, D. E.; Pillai, S. C. New Approach of Modifying the Anatase to Rutile Transition Temperature in TiO2 Photocatalysts. RSC Adv. 2016, 6 (97), 95232–95238. https://doi.org/10.1039/c6ra19759k.spa
dc.relation.referencesSpurr, R. A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Anal. Chem. 1957, 29 (5), 760–762. https://doi.org/10.1021/ac60125a006.spa
dc.relation.referencesChao, H. E.; Yun, Y. U.; Xingfang, H. U.; Larbot, A. Effect of Silver Doping on the Phase Transformation and Grain Growth of Sol-Gel Titania Powder. J. Eur. Ceram. Soc. 2003, 23 (9), 1457–1464. https://doi.org/10.1016/S0955-2219(02)00356-4.spa
dc.relation.referencesMunir, T; Sharif, M; Ali, H; Kashif, M; Sohail, A; Sabir, N; Amin, N; Mahmood, A; Ahmed, N. Impact of Silver Dopant on Structural and Optical Properties of TiO2 Nanoparticles. Dig. J. Nanomater. Biostructures 2019, 14 (2), 279–284. https://doi.org/10.1007/s00339-019-2594-9.spa
dc.relation.referencesMohan, D. G.; Gopi, S.; Rajasekar, V.; Krishnan, K.; Mohan, D. G.; Gopi S.; Selvarajan, L.; Rajavel, R.; Prakash, B.; Mohan, D. G.; Gopi, S.; Alloys, A. A.; Taguchi, U.; Selvarajan, L.; Sasikumar, R.; Mohan, D. G.; Naveen Kumar, P.; Muralidharan, V. Studies on Optical and Electrical Properties of Green Synthesized TiO2@Ag Core-Shell Nanocomposite Material; 2019; Vol. 27. https://doi.org/10.1080/14484846.2018.1432089.spa
dc.relation.referencesSakthivel, T; Ashok Kumar, K; Rajajeyaganthan Ramanathan; Senthilselvan, J; Jagannathan, K. Silver Doped TiO2 Nano Crystallites for Dye-Sensitized Solar Cell (DSSC) Applications. Mater. Res. Express Accept. 2017, 4 (126310), 0–68. https://doi.org/https://doi.org/10.1088/2053-1591/aa9e36.spa
dc.relation.referencesLei, X. F.; Xue, X. X.; Yang, H. Preparation and Characterization of Ag-Doped TiO 2 Nanomaterials and Their Photocatalytic Reduction of Cr(VI) under Visible Light. Appl. Surf. Sci. 2014, 321, 396–403. https://doi.org/10.1016/j.apsusc.2014.10.045.spa
dc.relation.referencesPohan, L. A. G.; Kambiré, O.; Nasir, M.; Ouattara, L. Photocatalytic and Antimicrobial Properties of [AgTiO2]:[Clay] Nanocomposite Prepared with Clay Different Ratios. Mod. Res. Catal. 2020, 09 (04), 47–61. https://doi.org/10.4236/mrc.2020.94004.spa
dc.relation.referencesKusiak-Nejman, E.; Czyżewski, A.; Wanag, A.; Dubicki, M.; Sadłowski, M.; Wróbel, R. J.; Morawski, A. W. Photocatalytic Oxidation of Nitric Oxide over AgNPs/TiO2-Loaded Carbon Fiber Cloths. J. Environ. Manage. 2020, 262. https://doi.org/10.1016/j.jenvman.2020.110343.spa
dc.relation.referencesWhite, J. L. Interpretation of Infrared Spectra of Soil Minerals. Soil Sci. 1971, 112 (1), 22–31. https://doi.org/10.1097/00010694-197107000-00005.spa
dc.relation.referencesMartinez Rojas, Vanessa;Matejova, Lenka;Lopez Milla, Alcidez;Cruz, Gerardo;Solis Veliz, José;Gomez Leon, M. PRODUCTION OF TiO 2 PARTICLES BY SOL-GEL ULTRASOUND ASSISTED FOR PHOTOCATALYTIC APPLICATIONS. Rev. la Soc. Química del Perú 2015, 81 (3), 201–211.spa
dc.relation.referencesRao, T. N.; Riyazuddin; Babji, P.; Ahmad, N.; Khan, R. A.; Hassan, I.; Shahzad, S. A.; Husain, F. M. Green Synthesis and Structural Classification of Acacia Nilotica Mediated-Silver Doped Titanium Oxide (Ag/TiO2) Spherical Nanoparticles: Assessment of Its Antimicrobial and Anticancer Activity. Saudi J. Biol. Sci. 2019, 26 (7), 1385–1391. https://doi.org/10.1016/j.sjbs.2019.09.005.spa
dc.relation.referencesGao, M. Y.; Wang, F.; Gu, Z. G.; Zhang, D. X.; Zhang, L.; Zhang, J. Fullerene-like Polyoxotitanium Cage with High Solution Stability. J. Am. Chem. Soc. 2016, 138 (8), 2556–2559. https://doi.org/10.1021/jacs.6b00613.spa
dc.relation.referencesShokri, M.; Jodat, A.; Modirshahla, N.; Behnajady, M. A. Photocatalytic Degradation of Chloramphenicol in an Aqueous Suspension of Silver-Doped TiO2 Nanoparticles. Environ. Technol. (United Kingdom) 2013, 34 (9), 1161–1166. https://doi.org/10.1080/09593330.2012.743589.spa
dc.relation.referencesChen, C.; Lei, X. F.; Xue, M. Z. A Simple Method to Synthesise Ag-Doped TiO2 Photocatalysts with Different Ag0:Ag2O Atomic Ratios for Enhancing Visible-Light Photocatalytic Activity. J. Chem. Res. 2017, 41 (8), 475–483. https://doi.org/10.3184/174751917X15012350965047.spa
dc.relation.referencesNhu, V. T. T.; Tuan, H. N. A.; Hien, N. Q.; Minh, D. Q. Synthesis of Ag Nano/TiO2 by γ-Irradiation and Optimisation of Photocatalytic Degradation of Rhodamine B. Int. J. Nanotechnol. 2018, 15 (1–3), 118–134. https://doi.org/10.1504/IJNT.2018.089563.spa
dc.relation.referencesTseng, K. H.; Chung, M. Y.; Chang, C. Y.; Cheng, T. S. A Study of Photocatalysis of Methylene Blue of TiO2 Fabricated by Electric Spark Discharge Method. J. Nanomater. 2017, 2017. https://doi.org/10.1155/2017/9346201.spa
dc.relation.referencesRasalingam, S.; Wu, C. M.; Koodali, R. T. Modulation of Pore Sizes of Titanium Dioxide Photocatalysts by a Facile Template Free Hydrothermal Synthesis Method: Implications for Photocatalytic Degradation of Rhodamine B. ACS Appl. Mater. Interfaces 2015, 7 (7), 4368–4380. https://doi.org/10.1021/am508883f.spa
dc.relation.referencesJo, Y. K.; Kim, B. H.; Jung, G. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Dis. 2009, 93 (10), 1037–1043. https://doi.org/10.1094/PDIS-93-10-1037.spa
dc.relation.referencesEncinas Basurto, D. A.; Alvarez Carvajal, F.; Armenta Calderon, A.; Gonzalez Soto, T. E.; Esquer Miranda, E.; Juarez Onofre, J.; Mendez Ibarra, R. Silver Nanoparticles Coated with Chitosan against Fusarium Oxysporum Causing the Tomato Wilt. Biotecnia 2020, 22 (3), 73–80. https://doi.org/10.18633/biotecnia.v22i3.952.spa
dc.relation.referencesKim, S. W.; Jung, J. H.; Lamsal, K.; Kim, Y. S.; Min, J. S.; Lee, Y. S. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology. 2012, pp 53–58. https://doi.org/10.5941/MYCO.2012.40.1.053.spa
dc.relation.referencesFarrokhi, S.; Ahari, H.; Abedini, M. R. Comparative Effects of Colloidal Silver Nanoparticles Used in Packaging Film and Spray in Inactivating Bacteria Experimentally Added to Chicken Eggshells. Int. J. Food Prop. 2017, 20 (10), 2314–2322. https://doi.org/10.1080/10942912.2016.1236274.spa
dc.relation.referencesBruinsma, J.; Paull, R. E. Respiration during Postharvest Development of Soursop Fruit, Annona Muricata L. Plant Physiol. 1984, 76 (1), 131–138. https://doi.org/10.1104/pp.76.1.131.spa
dc.relation.referencesTaiti, C.; Costa, C.; Menesatti, P.; Caparrotta, S.; Bazihizina, N.; Azzarello, E.; Petrucci, W. A.; Masi, E.; Giordani, E. Use of Volatile Organic Compounds and Physicochemical Parameters for Monitoring the Post-Harvest Ripening of Imported Tropical Fruits. Eur. Food Res. Technol. 2015, 241 (1), 91–102. https://doi.org/10.1007/s00217-015-2438-6.spa
dc.relation.referencesBuelvas Salgado, G. A.; Patiño Gómez, J. H.; Cano-Salazar, J. A. Evaluation of the Oil Extraction from Has Avocado (Persea Americana Mill) by the Use of an Enzymatic Treatment. Rev. Lasallista Investig. 2012, 9 (2), 138–150.spa
dc.relation.referencesKassim, A.; Workneh, T. S.; Bezuidenhout, C. N. A Review on Postharvest Handling of Avocado Fruit. African J. Agric. Res. 2013, 8 (21), 2385–2402. https://doi.org/10.5897/AJAR12.1248.spa
dc.relation.referencesHenríquez Arias, L. E.; Patiño Gómez, J. H.; Salazar, J. A. Application of the Matrixes Engineering on the Development of Minimally Processed Hass Avocado (Persea Americana Mill) with Additions of Vitamin c and Calcium. Rev. Lasallista Investig. 2013, 9 (2), 44–54.spa
dc.relation.referencesVinha, A. F.; Moreira, J.; Barreira, S. V. P. Physicochemical Parameters, Phytochemical Composition and Antioxidant Activity of the Algarvian Avocado (Persea Americana Mill.). J. Agric. Sci. 2013, 5 (12). https://doi.org/10.5539/jas.v5n12p100.spa
dc.relation.referencesMárquez, C.; Yepes, D.; Sanchez, L.; Osorio, J. Cambios Físico-Químicos Del Aguacate (Persea Americana Mill. Cv. “Hass”) En Poscosecha Para Dos Municipios de Antioquia. Temas Agrarios. 2016, pp 32–47. https://doi.org/10.21897/rta.v19i1.723.spa
dc.relation.referencesFarkas, D. F.; Lazar, M. E. Osmotic Dehydration of Apple Pieces: Effect of Temperature and Syrup Concentration on Rates. Food Technol. 1969.spa
dc.relation.referencesHenríquez Poblete, A. E. Síntesis y Modificación de Materiales Con Actividad Fotocatalítica Para La Oxofuncionalización Selectiva de Hidrocarburos Tesis Para Optar Al Grado de Doctor En Ciencias Con Mención En Química, Universidad de Concepcion, 2017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembAguacate - calidad
dc.subject.lembAgricultura - Investigaciones
dc.subject.lembCultivos alimenticios
dc.subject.lembProducción agropecuaria
dc.subject.lembNanotecnología
dc.subject.proposalNanopartículas de TiO2-Agspa
dc.subject.proposalposcosechaspa
dc.subject.proposalfotocatálisisspa
dc.subject.proposalaguacate Hassspa
dc.subject.proposalactividad antimicrobianaspa
dc.subject.proposalcontrol de etilenospa
dc.subject.proposalautocombustión en soluciónspa
dc.titleAlternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hassspa
dc.title.translatedNanotechnology-based alternatives in the control of ethylene and/or antimicrobial activity to improve the postharvest life of Hass avocado.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisMaestriaPaulaAndreaNevadoVelasquezFinal.pdf
Tamaño:
3.13 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: