Simulación de una cámara anódica y el efecto de su composición sobre la e ciencia de una celda de combustible microbiana

dc.contributor.advisorPinzón Velasco, Andrés Mauriciospa
dc.contributor.authorChingaté Barbosa, Edwin Antoniospa
dc.contributor.corporatenameDepartamento de Ingeniería de Sistemas e Industrialspa
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biología de Sistemasspa
dc.coverage.sucursalUniversidad Nacional de Colombia - Sede Bogotáspa
dc.date.accessioned2020-01-24T15:06:20Zspa
dc.date.available2020-01-24T15:06:20Zspa
dc.date.issued2019-10-17spa
dc.description.abstractSe desarrolló un modelo de la cámara anódica en una celda de combustible microbiana para mejorar la comprensión de los fenómenos biológicos que suceden al interior de dicho dispositivo. La posibilidad de transferir electrones a un aceptor insoluble en el medio extracelular fue incluida en una reconstrucción metabólica a escala genómica de Geobacter sulfurreducens disponible en la literatura y luego se usó dicha reconstrucción para representar el comportamiento de este microorganismo en un ambiente modificado de la librería BacArena en R. Fue posible reducir el tiempo de cómputo a una milésima del necesario con el código original de BacArena gracias a la aproximación del estado estable presentada en este trabajo. Se logró recrear el comportamiento de la corriente reportado en la literatura, el desarrollo de biopelículas de hasta 48 μm y la identificación de la erosión, el gradiente de concentración y el espacio como los limitantes de la generación de corriente en una celda de combustible microbiana.spa
dc.description.abstractA model for a microbial fuel cell’s anode chamber was developed in order to improve understanding of biological processes inside this device. A Geobacter sulfurreducens’ genome scale metabolic model from literature was modified by addition of external electron transfer reaction, then it was used in an modified BacArena’s environment as microorganism’s representation. Running time was reduced to a thousandth of BacArena’s original code by integration of steady state approximation. It was possible to recreate current’s behavior reported in literature, development of biofilms up 48 μm and identification of erosion, concentration gradient and space as current generation constraints in a microbial fuel cellspa
dc.format.extent115spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75517
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.relation.referencesAbul, A., Zhang, J., Steidl, R., Reguera, G., & Tan, X. (2016). Microbial fuel cells: Control-oriented modeling and experimental validation. In 2016 American Control Conference (pp. 412–417). IEEE.spa
dc.relation.referencesAkiba, T., Bennetto, H. P., Stirling, J. L., & Tanaka, K. (1987). Electricity production from alkalophilic organisms. Biotechnology Letters, 9(9), 611–616.spa
dc.relation.referencesAlberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). New York: Garland Science.spa
dc.relation.referencesALCALDÍA MAYOR DE BOGOTÁ, D. C. (2018). Por el cual se liquida el Presupuesto Anual de Rentas e Ingresos y de Gastos e iversiones de Bogotá, Distrito Capital, para la vigencia fiscal comprendida entre el 1 de enero y 31 de diciembre de 2019 y se dictan otras disposiciones, en cumplimiento de Ac. Retrieved December 27, 2018, from http://www.desarrolloeconomico .gov.co/sites/default/files/presupuesto/2.\_decreto\_presupuesto\_2019.pdfspa
dc.relation.referencesAnderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., … Lovley, D. R. (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69(10), 5884–5891.spa
dc.relation.referencesAnderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 40(3), 178–187.spa
dc.relation.referencesAppleton, A., & Vanbergen, O. (2013). Crash Course: Metabolism and Nutrition (4th ed.). Edinburgh: Mosby Ltd.spa
dc.relation.referencesAzadi, P., Malina, R., Barrett, S. R. H., & Kraft, M. (2017). The evolution of the biofuel science. Renewable and Sustainable Energy Reviews, 76, 1479–1484.spa
dc.relation.referencesBard, A. J., & Faulkner, L. R. (2001). Electrochemical methods : fundamentals and applications (2nd ed.). New york: Wiley.spa
dc.relation.referencesBaron, S. S., & Rowe, J. J. (1981). Antibiotic action of pyocyanin. Antimicrobial Agents and Chemotherapy, 20(6), 814–820.spa
dc.relation.referencesBatstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., … Vavilin, V. A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65–73.spa
dc.relation.referencesBauer, E., Zimmermann, J., Baldini, F., Thiele, I., & Kaleta, C. (2017). BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLOS Computational Biology, 13(5), e1005544.spa
dc.relation.referencesBertini, I., Cavallaro, G., & Rosato, A. (2006). Cytochrome c: Occurrence and Functions. Chemical Reviews, 106(1), 90–115.spa
dc.relation.referencesBond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science (New York, N.Y.), 295(5554), 483–485.spa
dc.relation.referencesBond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69(3), 1548–1555.spa
dc.relation.referencesBourdakos, N., Marsili, E., & Mahadevan, R. (2014). A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell. Biotechnology and Bioengineering, 111(4), 709–718.spa
dc.relation.referencesCord-Ruwisch, R., Lovley, D. R., & Schink, B. (1998). Growth of geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Applied and Environmental Microbiology, 64(6), 2232–2236.spa
dc.relation.referencesCortés, E. (2014). Agua en Bogotá: Especial sobre cómo salvar el Agua de la Capital Colombiana. EL TIEMPO. Retrieved from https://www.eltiempo.com/Multimedia/especiales/salvar\_agua\_bogota/spa
dc.relation.referencesDu, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482.spa
dc.relation.referencesEmde, R., Swain, A., & Schink, B. (1989). Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Applied Microbiology and Biotechnology, 32(2), 170–175.spa
dc.relation.referencesEsteve-Nuñez, A., Rothermich, M., Sharma, M., & Lovley, D. (2005). Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environmental Microbiology, 7(5), 641–648.spa
dc.relation.referencesFell, D. A., & Small, J. R. (1986). Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochemical Journal, 238(3), 781–786.spa
dc.relation.referencesFranks, A. E., Glaven, R. H., & Lovley, D. R. (2012). Real-Time Spatial Gene Expression Analysis within Current-Producing Biofilms. ChemSusChem, 5(6), 1092–1098.spa
dc.relation.referencesFranks, A. E., & Nevin, K. P. (2010). Microbial Fuel Cells, A Current Review. Energies, 3(5), 899–919.spa
dc.relation.referencesFreguia, S., Masuda, M., Tsujimura, S., & Kano, K. (2009). Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry, 76(1–2), 14–18.spa
dc.relation.referencesGajda, I., Greenman, J., & Ieropoulos, I. A. (2018). Recent advancements in real-world microbial fuel cell applications. Current Opinion in Electrochemistry, 11, 78–83.spa
dc.relation.referencesGeelhoed, J. S., Henstra, A. M., & Stams, A. J. M. (2016). Carboxydotrophic growth of Geobacter sulfurreducens. Applied Microbiology and Biotechnology, 100(2), 997–1007.spa
dc.relation.referencesGorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., … Fredrickson, J. K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11358–11363.spa
dc.relation.referencesGudmundsson, S., & Thiele, I. (2010). Computationally efficient flux variability analysis. BMC Bioinformatics, 11(1), 489.spa
dc.relation.referencesHarcombe, W. R., Riehl, W. J., Dukovski, I., Granger, B. R., Betts, A., Lang, A. H., … Segrè, D. (2014). Metabolic Resource Allocation in Individual Microbes Determines Ecosystem Interactions and Spatial Dynamics. Cell Reports, 7(4), 1104–1115.spa
dc.relation.referencesHarris, D. C. (2007). Quantitative chemical analysis (8th ed.). New york: W.H. Freeman and Co.spa
dc.relation.referencesHenson, M. A. (2015). Genome-scale modelling of microbial metabolism with temporal and spatial resolution. Biochemical Society Transactions, 43(6), 1164–1171.spa
dc.relation.referencesHolzman, D. C. (2005). Microbe power! Environmental Health Perspectives, 113(11), A754-7.spa
dc.relation.referencesHüttemann, M., Pecina, P., Rainbolt, M., Sanderson, T. H., Kagan, V. E., Samavati, L., … Lee, I. (2011). The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion, 11(3), 369–381.spa
dc.relation.referencesIeropoulos, I., Greenman, J., & Melhuish, C. (2008). Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research, 32(13), 1228–1240.spa
dc.relation.referencesIeropoulos, I., Melhuish, C., Greenman, J., & Horsfield, I. (2005). EcoBot-II: An Artificial Agent with a Natural Metabolism. International Journal of Advanced Robotic Systems, 2(4), 31.spa
dc.relation.referencesJaeger, K.-E., Ransac, S., Dijkstra, B. W., Colson, C., Heuvel, M., & Misset, O. (1994). Bacterial lipases. FEMS Microbiology Reviews, 15(1), 29–63.spa
dc.relation.referencesJayasinghe, N., Franks, A., Nevin, K. P., & Mahadevan, R. (2014). Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation. Biotechnology Journal, 9(10), 1350–1361.spa
dc.relation.referencesKim, B.-C., Leang, C., Ding, Y.-H. R., Glaven, R. H., Coppi, M. V, & Lovley, D. R. (2005). OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens. Journal of Bacteriology, 187(13), 4505–4513.spa
dc.relation.referencesKim, B.-C., Qian, X., Leang, C., Coppi, M. V, & Lovley, D. R. (2006). Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens. Journal of Bacteriology, 188(8), 3138–3142.spa
dc.relation.referencesKim, J. R., Jung, S. H., Regan, J. M., & Logan, B. E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13), 2568–2577.spa
dc.relation.referencesKing, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., … Lewis, N. E. (2016). BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Research, 44(D1), D515–D522.spa
dc.relation.referencesKluger, J. (2009). The Electric Microbe - The 50 Best Inventions of 2009 - TIME. Retrieved from http://content.time.com/time/specials/packages/article/0,28804,1934027\_1934003\_1933965,00.htmlspa
dc.relation.referencesLevar, C. E., Hoffman, C. L., Dunshee, A. J., Toner, B. M., & Bond, D. R. (2017). Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME Journal.spa
dc.relation.referencesLloyd, J. R., Blunt-Harris, E. L., & Lovley, D. R. (1999). The periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III). Journal of Bacteriology, 181(24), 7647–7649.spa
dc.relation.referencesLogan, B. E. (2007). Microbial Fuel Cells (1st ed.). Hoboken, NJ, USA: John Wiley & Sons, Inc.spa
dc.relation.referencesLovley, D. R., & Phillips, E. J. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54(6), 1472–1480.spa
dc.relation.referencesLovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4(7), 497–508.spa
dc.relation.referencesLovley, D. R. (2012). Electromicrobiology. Annual Review of Microbiology, 66(1), 391–409.spa
dc.relation.referencesLovley, D. R. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology, 17(3), 327–332.spa
dc.relation.referencesLovley, D. R. (2008). The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology, 19, 564–571.spa
dc.relation.referencesMagnúsdóttir, S., Heinken, A., Kutt, L., Ravcheev, D. A., Bauer, E., Noronha, A., … Thiele, I. (2016). Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature Biotechnology, 35(1), 81–89.spa
dc.relation.referencesMahadevan, R., Bond, D. R., Butler, J. E., Esteve-Nuñez, A., Coppi, M. V., Palsson, B. O., … Lovley, D. R. (2006). Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Applied and Environmental Microbiology, 72(2), 1558–1568.spa
dc.relation.referencesMahadevan, R., Palsson, B. O., & Lovley, D. R. (2011). In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nature Reviews Microbiology, 9(1), 39–50.spa
dc.relation.referencesMajewski, R. A., & Domach, M. M. (1990). Simple constrained-optimization view of acetate overflow inE. coli. Biotechnology and Bioengineering, 35(7), 732–738.spa
dc.relation.referencesMarcus, A. K., Torres, C. I., & Rittmann, B. E. (2007). Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnology and Bioengineering, 98(6), 1171–1182.spa
dc.relation.referencesMartins, G., Peixoto, L., Ribeiro, D. C., Parpot, P., Brito, A. G., & Nogueira, R. (2010). Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): Phylogenetic affiliation and electrochemical activity of sediment bacteria. Bioelectrochemistry, 78(1), 67–71.spa
dc.relation.referencesMcMurry, J. (2012). Organic chemistry. (Lisa Lockwood, Ed.) (8th ed.). China: Mary Finch.spa
dc.relation.referencesMethé, B. A., Nelson, K. E., Eisen, J. A., Paulsen, I. T., Nelson, W., Heidelberg, J. F., … Fraser, C. M. (2003). Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science (New York, N.Y.), 302(5652), 1967–1969.spa
dc.relation.referencesMeyer, T. E., Tsapin, A. I., Vandenberghe, I., De Smet, L., Frishman, D., Nealson, K. H., … Van Beeumen, J. J. (2004). Identification of 42 Possible Cytochrome C Genes in the Shewanella oneidensis Genome and Characterization of Six Soluble Cytochromes. OMICS: A Journal of Integrative Biology, 8(1), 57–77.spa
dc.relation.referencesMiyamoto, T., & Amrein, H. (2017). Gluconeogenesis: An ancient biochemical pathway with a new twist. Fly, 11(3), 218–223.spa
dc.relation.referencesMünzner, U., Klipp, E., & Krantz, M. (2018). A comprehensive, mechanistically detailed, and executable model of the Cell Division Cycle in Saccharomyces cerevisiae. BioRxiv, 298745.spa
dc.relation.referencesOcchipinti, R., Somersalo, E., & Calvetti, D. (2010). Energetics of inhibition: insights with a computational model of the human GABAergic neuron-astrocyte cellular complex. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 30(11), 1834–1846.spa
dc.relation.referencesOliveira, V. B., Simões, M., Melo, L. F., & Pinto, A. M. F. R. (2013). Overview on the developments of microbial fuel cells. Biochemical Engineering Journal, 73(15), 53–64.spa
dc.relation.referencesOrth, J. D., Palsson, B. O., & Fleming, R. M. T. (2010). Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. EcoSal Plus, 4(1).spa
dc.relation.referencesOrth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245–248.spa
dc.relation.referencesOrtiz-Martínez, V. M., Salar-García, M. J., de los Ríos, A. P., Hernández-Fernández, F. J., Egea, J. A., & Lozano, L. J. (2015). Developments in microbial fuel cell modeling. Chemical Engineering Journal, 271(1), 50–60.spa
dc.relation.referencesPalsson, B. (2015). Systems biology : constraint-based reconstruction and analysis. Chelsea: Cambridge University Press .spa
dc.relation.referencesPiccolino, M. (1998). Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Research Bulletin, 46(5), 381–407.spa
dc.relation.referencesPinzon, W., Vega, H., Gonzalez, J., & Pinzon, A. (2018). Mathematical Framework Behind the Reconstruction and Analysis of Genome Scale Metabolic Models. Archives of Computational Methods in Engineering, 1–14.spa
dc.relation.referencesPotter, M. C. (1911). Electrical Effects Accompanying the Decomposition of Organic Compounds. Proceedings of the Royal Society B: Biological Sciences, 84(571), 260–276.spa
dc.relation.referencesRabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 70(9), 5373–5382.spa
dc.relation.referencesRabaey, K., Girguis, P., & Nielsen, L. K. (2011). Metabolic and practical considerations on microbial electrosynthesis. Current Opinion in Biotechnology, 22(3), 371–377.spa
dc.relation.referencesRabaey, K., Rodríguez, J., Blackall, L. L., Keller, J., Gross, P., Batstone, D., … Nealson, K. H. (2007). Microbial ecology meets electrochemistry: Electricity-driven and driving communities. ISME Journal, 1(1), 9–18.spa
dc.relation.referencesRabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298.spa
dc.relation.referencesRabaey, K., Angenent, L., Schröder, U., & Keller, J. (2010). Bioelectrochemical systems : from extracellular electron transfer to biotechnological application. London: IWA Publishing.spa
dc.relation.referencesRabaey, K., Boon, N., Höfte, M., & Verstraete, W. (2005). Microbial Phenazine Production Enhances Electron Transfer in Biofuel Cells.spa
dc.relation.referencesRahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S.-E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756.spa
dc.relation.referencesRahimnejad, M., Najafpour, G. D., Ghoreyshi, A. A., Talebnia, F., Premier, G. C., Bakeri, G., … Oh, S.-E. (2012). Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. Journal of Microbiology, 50(4), 575–580.spa
dc.relation.referencesRamirez, A., Gomez, H., Pantevez, C., Barriga, A., Diaz, L., Lopez, C., Diaz, A., & Mendez, J. (2019). INFORME MENSUAL DE ACTIVIDADES FEBRERO 2019. Bogotá: PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES EL SALITRE. Retrieved June 12, 2019, from https://www.acueducto.com.co/wps/html/resources/2019L/PTAR/INFORME\_FINAL\_FEBRERO\_2019.pdfspa
dc.relation.referencesReguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 72(11), 7345–7348.spa
dc.relation.referencesRifkin, J. (2002). The hydrogen economy : the creation of the worldwide energy web and the redistribution of power on earth. New York: J.P. Tarcher/Putnam.spa
dc.relation.referencesSantoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244.spa
dc.relation.referencesSavinell, J. M., & Palsson, B. O. (1992). Network analysis of intermediary metabolism using linear optimization: II. Interpretation of hybridoma cell metabolism. Journal of Theoretical Biology, 154(4), 455–473.spa
dc.relation.referencesSeeliger, S., Cord-Ruwisch, R., & Schink, B. (1998). A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. Journal of Bacteriology, 180(14), 3686–3691.spa
dc.relation.referencesShi, L., Chen, B., Wang, Z., Elias, D. A., Mayer, M. U., Gorby, Y. A., … Squier, T. C. (2006). Isolation of a High-Affinity Functional Protein Complex between OmcA and MtrC: Two Outer Membrane Decaheme c-Type Cytochromes of Shewanella oneidensis MR-1. Journal of Bacteriology, 188(13), 4705–4714.spa
dc.relation.referencesStern, M., & Geaby, A. L. (1957). Electrochemical Polarization. Journal of The Electrochemical Society, 104(1), 56.spa
dc.relation.referencesStratford, J. P., Beecroft, N. J., Slade, R. C. T., Grüning, A., & Avignone-Rossa, C. (2014). Anodic microbial community diversity as a predictor of the power output of microbial fuel cells. Bioresource Technology, 156, 84–91.spa
dc.relation.referencesSuárez, M. (2011). Electroquímica física e interfacial: una aproximación teórica (1st ed.). Bogotá: Editorial Universidad Nacional de Colombia.spa
dc.relation.referencesTan, Y., Adhikari, R. Y., Malvankar, N. S., Pi, S., Ward, J. E., Woodard, T. L., … Lovley, D. R. (2016). Synthetic Biological Protein Nanowires with High Conductivity. Small (Weinheim an Der Bergstrasse, Germany), 12(33), 4481–4485.spa
dc.relation.referencesThauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriology Reviews, 41(1), 100–180.spa
dc.relation.referencesTreybal, R. (1997). Mass transfer operations (2nd ed.). Bogotá.spa
dc.relation.referencesTsompanas, M.-A., Adamatzky, A., Ieropoulos, I., Phillips, N., Sirakoulis, G. C., & Greenman, J. (2018). Modelling Microbial Fuel Cells using lattice Boltzmann methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1–1.spa
dc.relation.referencesVarma, A., Boesch, B. W., & Palsson, B. O. (1993). Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Applied and Environmental Microbiology, 59(8), 2465–2473.spa
dc.relation.referencesVarma, A., & Palsson, B. O. (1994). Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Applied and Environmental Microbiology, 60(10), 3724.spa
dc.relation.referencesvon Canstein, H., Ogawa, J., Shimizu, S., & Lloyd, J. R. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology, 74(3), 615–623.spa
dc.relation.referencesWalter, X. A., Merino-Jiménez, I., Greenman, J., & Ieropoulos, I. (2018). PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 392, 150–158.spa
dc.relation.referencesWatnick, P., & Kolter, R. (2000). Biofilm, city of microbes. Journal of Bacteriology, 182(10), 2675–2679.spa
dc.relation.referencesWelty, J. R., Rorrer, G. L., & Foster, D. G. (2013). Fundamentals of momentum, heat, and mass transfer (6th ed.). New york: Wiley.spa
dc.relation.referencesXia, C., Zhang, D., Pedrycz, W., Zhu, Y., & Guo, Y. (2018). Models for Microbial Fuel Cells: A critical review. Journal of Power Sources, 373, 119–131.spa
dc.relation.referencesZhi, W., Ge, Z., He, Z., & Zhang, H. (2014). Methods for understanding microbial community structures and functions in microbial fuel cells: A review. Bioresource Technology, 171, 461–468.spa
dc.relation.referencesZomorrodi, A. R., & Segrè, D. (2016). Synthetic Ecology of Microbes: Mathematical Models and Applications. Journal of Molecular Biology, 428(5), 837–861.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddcBibliotecología y ciencias de la informaciónspa
dc.subject.ddcQuímica y ciencias afinesspa
dc.subject.proposalReconstrucciones metabólicas a escala genómica; Biopelícula; Análisis de balance de flujo espacio-temporal; Estado estable; Celda de combustible microbiana; Geobacter sulfurreducensspa
dc.titleSimulación de una cámara anódica y el efecto de su composición sobre la e ciencia de una celda de combustible microbianaspa
dc.title.alternativeSimulation of an anodic chamber and effect of its composition over microbial fuel cell performance.spa
dc.typeReportespa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032469202.2019.pdf
Tamaño:
7.54 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: