En 6 día(s), 16 hora(s) y 47 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Síntesis de la aleación intermetálica Fe60Al40 por el método de molienda mecánica en presencia de campo magnético y su caracterización estructural, morfológica y termomagnética

dc.contributor.advisorRosales Rivera, Andrésspa
dc.contributor.authorMolano Ruales, Diego Andrésspa
dc.contributor.researchgroupMagnetismo y Materiales Avanzadosspa
dc.date.accessioned2020-10-23T20:56:04Zspa
dc.date.available2020-10-23T20:56:04Zspa
dc.date.issued2020spa
dc.description.abstractEn el presente trabajo realizamos un estudio experimental detallado sobre la síntesis, caracterización estructural, morfológica y magnética para aleaciones intermetálicas Fe60Al40 (en porcentaje atómico) obtenidas mediante un proceso de aleación mecánica. La aleación mecánica se realizó utilizando un dispositivo de molienda, en el que el movimiento de bolas puede ser controlado por un campo magnético externo de hasta 1.5 kOe (equipo Uni-Ball-Mill 5) para diferentes intervalos de tiempo de molienda, t = 12, 24, 36, 48, 72, y 120 horas. Estas aleaciones se prepararon a partir de precursores de polvo de hierro y aluminio (99,9% de pureza), que se ponderaron por separado con el fin de obtener la composición deseada. La caracterización se llevó a cabo a través de difracción de rayos X (XRD), microscopía electrónica de barrido (SEM), magnetómetro de muestra vibratorio (VSM), y análisis termogravimétrico (TGA). Se obtuvo una aleación intermetálica con estructura bcc para un tiempo de molienda igual o superior a 72 horas de molienda. El análisis de los resultados de XRD indicó que el tamaño medio del cristalito disminuye mientras que las microtensiones presentes en estas aleaciones aumentan con el aumento del tiempo de molienda. Los resultados de la caracterización morfológica por SEM mostraron que en el proceso de fresado para obtener la aleación FeAl, las partículas de polvo de Hierro y Aluminio de las que se obtiene, evolucionan a través de diferentes etapas, incluyendo formas, tamaños, fractura, soldadura y cizallamiento. Las mediciones de magnetización a temperatura ambiente revelaron que la magnetización de saturación disminuye casi linealmente con el aumento del tiempo de fresado. A su vez, el campo coercitivo aumenta con el tiempo de molienda, alcanza un máximo a las 72 horas de molienda, y luego disminuye para mayores tiempos de molienda. (Texto tomado de la fuente)spa
dc.description.abstractIIn the present work we make a detail experimental study on synthesis, structural, morphological, and magnetic characterization is presented for Fe60Al40 (at. %) intermetallic alloys obtained by means of a mechanical alloying process. The mechanical alloying was performed using a milling device with magnetically controlled balls movement (Uni-Ball-Mill 5 equipment) for different intervals of milling time, t = 12, 24, 36, 48, 72, and 120 hours. These alloys were prepared from Iron and Aluminum powder precursors (99.9% purity), which were separately weighted in order to obtain the desired composition. The characterization was carried out via X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). An intermetallic alloy with bcc structure was obtained at and after 72 hours of milling time. Analysis of XRD results indicated that the crystallite average size decreases while the micro strains present in these intermetallic alloys increase with the increase of milling time. The results of the morphological characterization by SEM showed that in the milling process to obtain the FeAl alloy, the dust particles of Iron and Aluminum from which it is obtained, evolve through different stages, including shapes, sizes, fracture, welding and shearing. The magnetization measurements at room temperature revealed that the saturation magnetization quasi-linearly decreases with the increase of milling time. In turn, the coercive field increases with milling time and goes through a maximum at t = 72 hours before finally decreasing.eng
dc.description.additionalTesis presentada como requisito parcial para optar el título de: Magister en Ciencias - Física.spa
dc.description.degreelevelMaestríaspa
dc.format.extent112spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationD. A. Molano R., A. Rosales-Rivera, Síntesis de la aleación intermetálica Fe60Al40 por el método de molienda mecánica en presencia de campo magnético y su caracterización estructural, morfológica y termomagnéticaspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78558
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.references[1] C. C. Koch, Material synthesis by Mechanical alloy. Annu. Re. Mater. Sci,121 143, 1989.spa
dc.relation.references[2] R. Sundaresan and F. H. Froes, Mechanical Alloying.spa
dc.relation.references[3] R. L. White, "The Use of Mechanical Alloying in the Manufacture of Multifilamentary Superconducting Wire," Ph.D. Thesis, Stanford Univ., 1979.spa
dc.relation.references[4] J.S. Benjamin, ScientifIC American, 234 (5) (1976), p. 40spa
dc.relation.references[5] S. Gialanella, Intermetallics 3 (I 995) 73-76spa
dc.relation.references[6] F. Reyes-Gómez, W.R. Aguirre-Contreras, G.A. Pérez Alcázar, J.A. Tabares, Journal of Alloys and Compounds 735 (2018) 870-879spa
dc.relation.references[7] A.K. Arzhnikov, L.V. Dobysheva, M.A. Timirgazin, J. Magn. Magn. Mater. 320 (2008) 1904spa
dc.relation.references[8] D.A. Días, J. Ricardo de Sousa, J.A. Plascak, Phys. Lett. A 373 (2009) 3513spa
dc.relation.references[9] M.J. Besnus, A. Herr, J.P. Meyer, J. Phys. F Met. Phys. 5 2138 (1975)spa
dc.relation.references[10] Y. Yanga, I. Barker, P. Martin, Phil. Mag. A 79 (1999) 449.spa
dc.relation.references[11] A. Taylor, R.M. Jones, J. Phys. Chem. Solids 6 (1958) 16spa
dc.relation.references[12] X. Amils, J. Nogués, S. Suriñach, J.S. Muñoz, M.D. Baró, A. Hernando, J.P. Morniroli, Phys. Rev. B 63 (2001), 052402.spa
dc.relation.references[13] A. Arrott, H. Sato, Phys. Rev. 114 (1959) 1420spa
dc.relation.references[14] G.P. Huffman, R.M. Fisher, J. Appl. Phys. 38 (1967) 735spa
dc.relation.references[15] J. Nogués, E. Apiñaniz, J. Sort, M. Amboage, M. d’Astuto, O. Mathon, R. Puzniak, I. Fita, J. S. Gritaonandia, S. Suriñach, J. S. Muñoz, M. D. Baró, F. Plazaola, and F. Baudelet; PHYSICAL REVIEW B 74, 024407 2006.spa
dc.relation.references[16] X. Amiles, J. Nogues, S. Suriñach; IEEE Transactions on magnetics, vol 34 No 4, July 1998, 1129-1131.spa
dc.relation.references[17] Calka, A., Varin, R. A., Application of Controlled Ball Milling in Materials Processing, Proc. Int. Symp. on Processing and Fabrication of Advanced Materials IX (PFAM-IX), T.S. Srivatsan, R.A. Varin, M. Khor (Eds.) (ASM International, Materials Park, OH, pp.263-287, 2001.spa
dc.relation.references[18] Bohn R, Hanbold T, Birringer R, Gleiter H. Nanocrystalline intermetallic compounds-an approach to ductility? Scripta Metallurgica et Materialia. 1991;25:81spa
dc.relation.references[19] M. I. Raviathul and N. Krishna Mukhopadhyay, Estructural and Mechanical Behavior of Al-Fe intermetallics, DOI: 10.5772/intechopen.73944.spa
dc.relation.references[20] Jang JS, Koch CC. The Hall-Petch relationship in nanocrystalline iron produced by ball milling. Scripta Metallurgica et Materialia. 1990;24:1599.spa
dc.relation.references[21] Koch CC, Cho YS. Nanocrystals by high energy ball milling. Nanostructured Materials. 1992;1:207spa
dc.relation.references[22] Ermakov A, Yurchikov E, Barinov V. The magnetic properties of amorphous Y-Co alloy powders obtained by mechanical comminution. Physics of Metals and Metallography.1981;52:50spa
dc.relation.references[23] Ermakov AY, Yurchikov YY, Barinov VA. Magnetic properties of amorphous powders prepared by the mechanical grinding of Y-Co alloys. Fizika Metallov I Metallovedenie. 1981;52:1184spa
dc.relation.references[24] Physics of magnetism and magnetic materials, K. H. J. Buschow and F. R. De Boer, 2003.spa
dc.relation.references[1] Bohn R, Hanbold T, Birringer R, Gleiter H. Nanocrystalline intermetallic compounds-an approach to ductility? Scripta Metallurgica et Materialia. 1991;25:81.spa
dc.relation.references[2] Jang JS, Koch CC. The Hall-Petch relationship in nanocrystalline iron produced by ball milling. Scripta Metallurgica et Materialia. 1990;24:1599.spa
dc.relation.references[3] Koch CC, Cho YS. Nanocrystals by high energy ball milling. Nanostructured Materials. 1992;1:207spa
dc.relation.references[4] Ermakov A, Yurchikov E, Barinov V. The magnetic properties of amorphous Y-Co alloy powders obtained by mechanical comminution. Physics of Metals and Metallography.1981;52:50spa
dc.relation.references[5] Ermakov AY, Yurchikov YY, Barinov VA. Magnetic properties of amorphous powders prepared by the mechanical grinding of Y-Co alloys. Fizika Metallov I Metallovedenie. 1981;52:1184spa
dc.relation.references[6] C. C. Koch, Material synthesis by Mechanical alloy. Annu. Re. Mater. Sci,121 143, 1989.spa
dc.relation.references[7] J.S. Benjamin, ScientifIC American, 234 (5) (1976), p. 40spa
dc.relation.references[8] R. Sundaresan and F. H. Froes, Mechanical Alloying.spa
dc.relation.references[9] R. L. White, "The Use of Mechanical Alloying in the Manufacture of Multifilamentary Superconducting Wire," Ph.D. Thesis, Stanford Univ., 1979.spa
dc.relation.references[10] S. Gialanella, Intermetallics 3 (I 995) 73-76spa
dc.relation.references[11] Calka, A., Varin, R. A., Application of Controlled Ball Milling in Materials Processing, Proc. Int. Symp. on Processing and Fabrication of Advanced Materials IX (PFAM-IX), T.S. Srivatsan,spa
dc.relation.references[12] F. Reyes-Gómez, W.R. Aguirre-Contreras, G.A. Pérez Alcázar, J.A. Tabares, Journal of Alloys and Compounds 735 (2018) 870-879spa
dc.relation.references[1] Benjamín, J. S. 1970. Metall. Trans. 1:2943-51spa
dc.relation.references[2] V. A. Peña Rodriguez, J. Quispe Marcatoma, Aplicación de la mecano-síntesis en la producción de materiales magnéticos blandos, Universidad Nacional Mayor de San Marcos.spa
dc.relation.references[3] C. Casas Quesada, J. A. Benito Páramo, Influencia de la distribución bimodal de grano contenido en oxígeno y vías de consolidación sobre la resistencia y ductilidad para el hierro UF obtenido por molienda mecánica, Barcelona, 2014.spa
dc.relation.references[4] C. C. Koch, Material synthesis by Mechanical alloy. Annu. Re. Mater. Sci, 121 143, 1989.spa
dc.relation.references[5] A. Gómez, Amorfización de aleaciones metálicas mediante aleado mecánico, Sevilla, 2016.spa
dc.relation.references[6] J. Y. Huang, Y. K. Wu and H. Q. Ye Acta Mater. 44. 1201 (1996).spa
dc.relation.references[7] A. Calka, R.A. Varin, in: Proc. Int. Symp. Processing and Fabrication of Advanced Materials IX (PEAM-IX) (Eds. T.S. Srivatsan, R.A. Varin and M. Khor), ASM International, Materials Park, OH, 2001, p.263-287.spa
dc.relation.references[8] B. D. Cullity. Elements of X-Ray Diffraction, 2nd Edition. Addison-Wesley Publishing Company, Inc. London, Amsterdam, Ontario, Sidney 1978spa
dc.relation.references[9] D. R. Askeland, P. P. Fulay, W. J. Wright. Ciencia e Ingeniería de materiales, Ed. Cengage Learning, sexta edición.spa
dc.relation.references[10] J. D. WINEFORDNER. Chemical Analysis. Introduction to X-Ray Powder Diffractometry. Vol 138. Ed John Wiley & Sons, Inc. EE UU. 1996.spa
dc.relation.references[11] I. C. NOYAN, J.B. COHEN. Residual Stress; Measurement by diffraction and Interpretation. Springer–Verlag, New York, 1987spa
dc.relation.references[12] S. Foner, Rev. Sci. Instrum 27, 548 (1956)spa
dc.relation.references[13] B. D. Cullity, C.D. Graham. Introduction to Magnetic materials 2nd Edition. WILEY. A 34ear wiley & sons Inc. Publicationspa
dc.relation.references[14] MICROSCOPÍA ELECTRÓNICA DE BARRIDO EN LA CARACTERIZACIÓN DE MATERIALES, Miguel Ipohorski y Patricia B. Bozzano.spa
dc.relation.references[15] Estudio de Materiales Nanométricos con Microscopio Electrónico de Barrido SEM. Rodolfo Salas Cepedaspa
dc.relation.references[16] https://sites.ualberta.ca/~ccwj/teaching/microscopy/spa
dc.relation.references[17] J.A. Dean. The Analytical Chemistry Handbook. McGraw-Hill, Second Edition 1995.spa
dc.relation.references[18] D.A. Skoog, F.J. Holler, S.R. Crouch and D. Harris (Editor). Principles of Instrumental Analysis, Sixth Edition. Thomson Brooks/Cole. 2007, 900-904.spa
dc.relation.references[19] Calka, A., Varin, R. A., Application of Controlled Ball Milling in Materials Processing, Proc. Int. Symp. On Processing and Fabrication of Advanced Materials IX (PFAM-IX), T.S. Srivatsan, R.A. Varin, M. Khor (Eds.) (ASM International, Materials Park, OH, pp.263-287, 2001.spa
dc.relation.references[20] David Jailes, Introduction to magnetism and magnetic materials, Springer-Science + Bussines media, B. V.spa
dc.relation.references[1] X. Amils, J. Nogues, S. Surinach, M. D. Baro and J. S. Munoz: IEEE Trans. Magn. 34 (1998) 1129.spa
dc.relation.references[2] X. Amils, J.S. Garitaonandia, J. Nogues, S. Surinach, F. Plazaola, J.S. Muñoz and M.D. Baró: J. Non-Crys. Sol. 287 (2001) 272-276.spa
dc.relation.references[3] J. Nogués, E. Apiñaniz ,J. Sort, M. Amboage, M. d’Astuto, O. Mathon, R. Puzniak, I. Fita, J. S. Garitaonandia, S. Suriñach, J. S. Muñoz, M. D. Baró, F. Plazaola, and F. Baudelet: Phy. Rev. B 74, 024407 (2006).spa
dc.relation.references[4] Materials Data JADE XRD Pattern Processing. MDI Materials Data. 1999.spa
dc.relation.references[5] M.L. Ramón García. Determinación del tamaño de cristal utilizando el software Jade 6.5. Centro de Investigación en Energía, Universidad Nacional Autónoma de México. 2007.spa
dc.relation.references[6] D. Von Rohr. Jade User’s Manual. 2002.spa
dc.relation.references[1] L. Castex, J. L. Lebrun, G. Maeder, J. M. Sprauel, Publs Scient. Tech. ENSAM, 22, 51-60 (1981).spa
dc.relation.references[2] N. Boukherroub, A. Guittoum, N. Souami, K. Akkouche, S. Boutarfaia. EPJ Web of Conferences 29, 00010 (2012).spa
dc.relation.references[3] M. Krasnowski, A. Grabias, T. Kulik, J. Alloys Compd. 424 (2006) 119–127.spa
dc.relation.references[4] Sh. Ehtemam Haghighi, K. Janghorban, S. Izadi, Journal of Alloys and Compounds 495 (2010) 260–264.spa
dc.relation.references[5] X. Amils, J.S. Garitaonandia, J. Nogues, S. Surinach, F. Plazaola, J.S. Muñoz and M.D. Baró: J. Non-Crys. Sol. 287 (2001) 272-276.spa
dc.relation.references[6] M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol and M. Dammak, J. Nanomater. 2010, 712407 (2010).spa
dc.relation.references[7] B. Avar, M. Gogebakan, S. Ozcan, S. Kerly. J. of the Korean Phys. Society, Vol. 65, No. 5, September 2014, pp. 664∼670.spa
dc.relation.references[8] M. H. Enayati, G. R. Aryanpour and A. Ebnonnasir, Int. J. Ref. Met. Hard. Mater. 27, 159 (2009).spa
dc.relation.references[9] F. A. Mohamed, Acta Materialia, vol. 51, pp. 4107–4119, 2003.spa
dc.relation.references[10] H.-J. Fecht, “Nanostructure formation by mechanical attrition,” Nanostructured Materials, vol. 6, no. 1-4, pp. 33–42, 1995.spa
dc.relation.references[11] J. Rawers and D. Cook, Nanostructured Materials, vol. 11, no. 3, pp. 331–342, 1999.spa
dc.relation.references[12] G. K. Williamson and R. E. Smallman, Philosophical Magazine, vol. 1, no. 1, pp. 34–46, 1956spa
dc.relation.references[13] R. E. Smallman and K. H. Westmacott, Philosophical Magazine, vol. 2, no. 17, pp. 669–683, 1957.spa
dc.relation.references[14] Y. H. Zhao, H. W. Shang, and K. Lu, Acta Materialia, vol. 49, pp. 365–375, 2001.spa
dc.relation.references[15] W. Hu, T. Kato and M. Fukumoto. Materials Transactions, Vol. 44, No. 12 (2003) pp. 2678 to 2687spa
dc.relation.references[16] M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol and M. Dammak, J. Alloys Comp. 509, 3293 (2011).spa
dc.relation.references[17] M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol and M. Dammak, Journal of Nanomaterials, 2010.spa
dc.relation.references[18] A. Calka and D. Waxler, A Study of the Evolution of Particle Size and Geometry during Ball Milling, Journal of Metastable and Nanocrystalline Materials (2001).spa
dc.relation.references[19] C. Suryanarayana, Progress in Materials Science, 46(1), 1 (2001).spa
dc.relation.references[20] R. A. RODRÍGUEZ-DÍAZ, JUAN FRAUSTO-SOLIS, A. SEDANO, A. MOLINA, J. PORCAYO-CALDERÓN, J. JUAREZ-ISLAS, Digest Journal of Nanomaterials and Biostructures Vol. 10, No. 2, April - June 2015, p. 577 - 586spa
dc.relation.references[21] B. D. Cullity, C.D. Graham. Introduction to Magnetic materials 2nd Edition. WILEY. A john wiley & sons Inc. publication.spa
dc.relation.references[22] G. G. Lee, H. Hashimoto and R. Watanabe, Mater. Trans JIM 36 (1995) 548.spa
dc.relation.references[23] J. Nogués, E. Apiñaniz ,J. Sort, M. Amboage, M. d’Astuto, O. Mathon, R. Puzniak, I. Fita, J. S. Garitaonandia, S. Suriñach, J. S. Muñoz, M. D. Baró, F. Plazaola, and F. Baudelet: Phy. Rev. B 74, 024407 (2006).spa
dc.relation.references[24] X. Amils, J. Nogues, S. Surinach, M. D. Baro and J. S. Munoz: IEEE Trans. Magn. 34 (1998) 1129.spa
dc.relation.references[25] M. Krifa, M. Mhadhbi, L. Escoda, J. M. Guell, J. J. Sunol, N. Llorca-Isern, C. Artieda-Guzman and M. Khitouni, Powder Tech. 246, 117 (2013).spa
dc.relation.references[26] Q. Zeng, I. Baker, Intermetallics 14, 396 - 405 (2006).spa
dc.relation.references[27] J. A. Plascak, L. E. Zamora and G. A. P. Alcazar, Phys. Rev. B 61, 3188 (2000).spa
dc.relation.references[28] R. Bernal-Correa, A. Rosales-Rivera, P. Pineda-Gomez and N. A. Salazar, J. Alloys Comp. 495, 491 (2010).spa
dc.relation.references[29] B. Avar, M. Gogebakan, S. Ozcan, S. Kerli, Journal of the Korean Physical Society, Vol. 65, No. 5, September 2014, pp. 664∼670.spa
dc.relation.references[30] A. Sharifati, S. Sharafi, Mater. Des. 41, 8 (2012).spa
dc.relation.references[31] A. Guittoum, A. Layadi, A. Bourzami, H. Tafat, N. Souami, S. Boutarfaia and D. Lacour, J. Magn. Magn. Mater. 320, 1385 (2008).spa
dc.relation.references[32] M. J. Besnus, A Herr and A. J. P. Meyer: J. Phys. F 5 (1975) 2138.spa
dc.relation.references[33] V. Sundararajan, B. R. Sahu, D. G. Kanhere, P. V. Panat and G. P. Das: J. Phys.: Condens. Matter. 7 (1995) 6019.spa
dc.relation.references[34] A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro and M. R. Ibarra: Phys. Rev. B58 (1998) R11864.spa
dc.relation.references[35] K. Tarigan, S. K. Oh, T. L. Phan, S. C. Yu and D. S. Yang, J. of the Korean Physical Society, Vol. 57, No. 6, 2010, pp. 1555∼1558spa
dc.relation.references[36] David Jiles, Introduction to magnetism and magnetic materials, Springer Science+Business Media (1991).spa
dc.relation.references[1] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination Phys. Rev. 56 (1939) 978.spa
dc.relation.references[2] S. Dinilchenko et al., Research and Technology Crystal 37 (2002).spa
dc.relation.references[3] G. Caglioti, A. Paoletti y F.P. Ricci, Nucl. Instrum. Methods 9 (1960).spa
dc.relation.references[1] Williamson G. K., Hall W.H. 1953; 1: 22-31.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalAleado mecánicospa
dc.subject.proposalMechanical alloyeng
dc.subject.proposalTransición de fase ferromagnética-paramagnéticaspa
dc.subject.proposalFerromagnetic-paramagnetic phase transitioneng
dc.subject.proposalStructural, Morphological and thermomagnetic characterizationeng
dc.subject.proposalCaracterización estructural, Morfológica y termomagnéticaspa
dc.subject.proposalCiencia de los materialesspa
dc.subject.proposalMaterials scienceeng
dc.titleSíntesis de la aleación intermetálica Fe60Al40 por el método de molienda mecánica en presencia de campo magnético y su caracterización estructural, morfológica y termomagnéticaspa
dc.title.alternativeSynthesis of the Fe60Al40 intermetallic alloy by the mechanical grinding method in the presence of magnetic field and its structural, morphological and thermo-magnetic characterizationspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1060650439.2020.pdf
Tamaño:
5.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: