Efecto de la rotación del sustrato sobre los exponentes de escalamiento de la rugosidad en películas crecidas mediante la técnica GLAD

dc.contributor.advisorRestrepo Parra, Elisabethspa
dc.contributor.advisorEscobar Rincón, Danielspa
dc.contributor.authorMendoza Rincón, Sebastian Camilospa
dc.contributor.researchgroupLaboratorio de Física del Plasmaspa
dc.date.accessioned2020-08-13T16:44:04Zspa
dc.date.available2020-08-13T16:44:04Zspa
dc.date.issued2020spa
dc.description.abstractEl presente trabajo es un estudio de la influencia de la rotación del sustrato, sobre los exponentes de escalamiento de la rugosidad de películas delgadas de circonio (Zr). Películas de Zr fueron depositadas mediante la técnica magnetron sputtering, acoplando la técnica GLAD (del ingles, Glancing Angle Deposition); esta última inclina y rota el sustrato durante el proceso de deposición. Se varió la velocidad de rotación del sustrato y el tiempo de deposición. Por otra parte, para implementar la técnica GLAD, se diseñó y se construyó un sistema de movimiento para manipular el sustrato durante el crecimiento. Posteriormente, se caracterizó la morfología superficial mediante microscopia de fuerza atómica (AFM), con el fin de extraer los exponentes de escalamiento de rugosidad αloc, crecimiento β y dinámico 1/z. Se evidenció que los exponentes de αloc y 1/z no son influenciados por la rotación; sin embargo, el exponente de crecimiento β aumentó con la rotación, el cual fue estudiado a través de simulaciones de Monte Carlo cinético, haciendo uso de códigos establecidos. En consecuencia, se estableció que el aumento de β es debido a que la rotación puede disminuir la energía de difusión de los átomos entrantes, generando superficies más rugosas. Ademas, las películas exhibieron exponentes de escalamiento adicionales, debido a la formación de una superficie montañosa, la cual tiene una longitud característica y una longitud de correlación, que disminuyeron con la rotación. (Texto tomado de la fuente)spa
dc.description.abstractIn the present work, it was studied the substrate rotation influence over the roughness scaling exponents of zirconium (Zr) thin films. The thin films were grown by magnetron sputtering coupled with GLAD (Glancing Angle Deposition) technique. On the experiments, substrate rotation and deposition time were varied. To implement GLAD technique, it was designed and built a motion system to manipulate the substrate. Later, superficial morphology was carried out by atomic force microscopy (AFM) to obtain the scaling exponents of roughness αloc, growth β and dynamic 1/z. It was found that the coatings exhibit additional scaling exponents due to the formation of a mounded surface, which has a characteristic length that decreases as rotation speed increases. Moreover, it was proved the dynamic1/z and roughness αloc exponents do not change with rotation speed. However, β exponent increases with rotation speed, this change was studied by Monte Carlo Kinetic simulation with existing codes. It was established that the increment of β is due to rotation speed could reduce diffusion energy of incident atoms generating rougher surfaces.eng
dc.description.additionalTesis presentada como requisito parcial para optar al título de: Magíster en Ciencias - Física. -- Línea de Investigación: Recubrimientos por técnicas PVD.spa
dc.description.degreelevelMaestríaspa
dc.format.extent121spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMendoza-Rincon, S-M. (2020). EFECTO DE LA ROTACIÓN DEL SUSTRATO SOBRE LOS EXPONENTES DE ESCALAMIENTO DE LA RUGOSIDAD EN PELÍCULAS CRECIDAS MEDIANTE LA TÉCNICA GLAD (Tesis de Maestria). Universidad Nacional de Colombia sede Manizales, Manizales, Caldas, Colombiaspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78027
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesW. Steckelmacher, “Handbook of plasma processing technology: Fundamentals, etching, deposition and surface interactions,” Vacuum, vol. 42, no. 12, p. 779, 2012.spa
dc.relation.referencesP. K. Chu and X. Lu, Low Temperature Plasma Technology, P. K. Chu and X. Lu, Eds. CRC Press, 2013.spa
dc.relation.referencesJ. Harry, Introduction to Plasma Technology: Science, Engineering and Applications, Wiley-VCH, Ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2010.spa
dc.relation.referencesC. S. Wong and R. Mongkolnavin, Elements of Plasma Technology, ser. Springer- Briefs in Applied Sciences and Technology. Singapore: Springer Singapore, 2016.spa
dc.relation.referencesP. M. Martin, Handbook of Deposition Technologies for Films and Coatings - Science, Applications and Technology. Elsevier, 2009.spa
dc.relation.referencesS. Swann, “Magnetron sputtering,” Physics in Technology, vol. 19, no. 6, pp. 67–75, 1988.spa
dc.relation.referencesK. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology. William Andrew, 2004.spa
dc.relation.referencesM. W. Thompson, “Atomic collision cascades in solids,” Vacuum, vol. 66, no. 2, pp. 99–114, 2002.spa
dc.relation.referencesR. Alvarez, J. M. Garcia-Martin, A. Garcia-Valenzuela, M. Macias-Montero, F. J. Ferrer, J. Santiso, V. Rico, J. Cotrino, A. R. Gonzalez-Elipe, and A. Palmero, “Nanostructured Ti thin films by magnetron sputtering at oblique angles,” Journal of Physics D: Applied Physics, vol. 49, no. 4, p. 45303, 2015.spa
dc.relation.referencesK. Van Aeken, S. Mahieu, and D. Depla, “The metal flux from a rotating cylindrical magnetron: A Monte Carlo simulation,” Journal of Physics D: Applied Physics, vol. 41, no. 20, 2008.spa
dc.relation.referencesM. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films Engineering the Nanoscale, 1st ed. JohnWiley & Sons, Ltd, 2014.spa
dc.relation.referencesK. Oura, M. Katayama, A. V. Zotov, V. G. Lifshits, and A. A. Saranin, Surface Science, ser. Advanced Texts in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.spa
dc.relation.referencesM. A. M. José, S. O., and J. I., Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones. Consejo Superior de Investigaciones Científicas, 2003.spa
dc.relation.referencesS. Mukherjee and D. Gall, “Structure zone model for extreme shadowing conditions,” Thin Solid Films, vol. 527, pp. 158–163, 2013.spa
dc.relation.referencesM. Pelliccione, T. Karabacak, and T. M. Lu, “Breakdown of dynamic scaling in surface growth under shadowing,” Physical Review Letters, vol. 96, no. 14, 2006.spa
dc.relation.referencesM. Pelliccione and T. M. Lu, Evolution of Thin Film Morphology. Springer, 2008.spa
dc.relation.referencesB. Movchan and A. Demchishin, “Structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxides, and zirconium dioxide in vacuum.” Fiz. Metal. Metalloved. 28: 653-60, 1969.spa
dc.relation.referencesJ. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings.” J Vac Sci Technol, vol. 11, no. 4, pp. 666–670, 1974.spa
dc.relation.referencesC. Eisenmenger-Sittner, “Growth Control and Thickness Measurement of Thin Films,” in digital Encyclopedia of Applied Physics. Weinheim, Germany: Wiley- VCH Verlag GmbH & Co. KGaA, 2019, pp. 1–44.spa
dc.relation.referencesA. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics. SPIE Publications, 2005.spa
dc.relation.referencesJ. M. Siewert, J. M. Laforge, M. T. Taschuk, and M. J. Brett, “Disassembling glancing angle deposited films for high throughput, single post growth scaling measurements.” Microscopy and microanalysis, vol. 18, no. 5, pp. 1135–42, 2012.spa
dc.relation.referencesA. Soni and K. R. Mavani, “Controlling porosity and ultraviolet photoresponse of crystallographically oriented ZnO nanostructures grown by pulsed laser deposition,” Scripta Materialia, vol. 162, pp. 24–27, 2019.spa
dc.relation.referencesM. Martín, P. Salazar, R. Álvarez, A. Palmero, C. López-Santos, J. L. González- Mora, and A. R. González-Elipe, “Cholesterol biosensing with a polydopaminemodified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition,” Sensors and Actuators, B: Chemical, vol. 240, pp. 37–45, 2017.spa
dc.relation.referencesS. Sarkar and S. K. Pradhan, “Silica-based antireflection coating by glancing angle deposition,” Surface Engineering, vol. 35, no. 11, pp. 1–4, 2019.spa
dc.relation.referencesP. A. Cormier, J. Dervaux, N. Szuwarski, Y. Pellegrin, F. Odobel, E. Gautron, M. Boujtita, and R. Snyders, “Single Crystalline-like and Nanostructured TiO2 Photoanodes for Dye Sensitized Solar Cells Synthesized by Reactive Magnetron Sputtering at Glancing Angle,” Journal of Physical Chemistry C, vol. 122, no. 36, pp. 20 661–20 668, 2018.spa
dc.relation.referencesM. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro and nanostructured thin films,” Journal of Vacuum Science & Technology a, vol. 25, no. 5, pp. 1317–1335, 2007.spa
dc.relation.referencesJ. Takadoum, Ed., Nanomaterials and Surface Engineering. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013.spa
dc.relation.referencesP. Eaton and P. West, Atomic Force Microscopy. Oxford University Press, 2010.spa
dc.relation.referencesB. Voigtländer, Atomic Force Microscopy, ser. NanoScience and Technology. Cham: Springer International Publishing, 2019.spa
dc.relation.referencesR. Reifenberger, Fundamentals of Atomic Force Microscopy. World Scientific Publishing Co. Pte. Ltda, 2016.spa
dc.relation.referencesP. Klapetek, Quantitative Data Processing in Scanning Probe Microscopy, 1st ed. Elsevier, 2013, vol. 1, no. 4.spa
dc.relation.referencesD. Vick, T. Smy, and M. J. Brett, “Growth behavior of evaporated porous thin films,” Journal of Materials Research, vol. 17, no. 11, pp. 2904–2911, 2011.spa
dc.relation.referencesY. Zhao, G. C. Wang, and T. M. Lu, Characterization of Amorphous and Crystalline Rough Surface Principles and Applications. Academic Press, 2001.spa
dc.relation.referencesA. L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth. Cambridge University Press, 1995.spa
dc.relation.referencesB. B. Mandelbrot, The fractal geometry of nature. W. H. Freeman and Company, 1982.spa
dc.relation.referencesB. C. Mohanty, H. R. Choi, and Y. S. Cho, “Scaling of surface roughness in sputterdeposited ZnO:Al thin films,” Journal of Applied Physics, vol. 106, no. 5, 2009.spa
dc.relation.referencesT. Merkh, R. Spivey, and T. M. Lu, “Time Invariant Surface Roughness Evolution during Atmospheric Pressure Thin Film Depositions,” Scientific Reports, vol. 6, pp. 1–6, 2016.spa
dc.relation.referencesM. Kardar, G. Parisi, and Y. C. Zhang, “Dynamic scaling of growing interfaces,” Physical Review Letters, vol. 56, no. 9, pp. 889–892, 1986.spa
dc.relation.referencesT. D. Jacobs, T. Junge, and L. Pastewka, “Quantitative characterization of surface topography using spectral analysis,” Surface Topography: Metrology and Properties, vol. 5, no. 1, 2017.spa
dc.relation.referencesR. A. L. Almeida, “Kardar-Parisi-Zhang Universality, Anomalous Scaling and Crossover Effects in the Growth of Cdte Thin Films,” Ph.D. dissertation, Universidade Federal de Vicosa, 2015.spa
dc.relation.referencesG. Pradhan, P. P. Dey, and A. K. Sharma, “Anomalous kinetic roughening in growth of MoS 2 films under pulsed laser deposition,” RSC Advances, vol. 9, no. 23, pp. 12 895–12 905, 2019.spa
dc.relation.referencesJ. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM The Stopping and Range of Ions in Matter. SRIM, 2008.spa
dc.relation.referencesS. Lucas and P. Moskovkin, “Simulation at high temperature of atomic deposition, islands coalescence, Ostwald and inverse Ostwald ripening with a general simple kinetic Monte Carlo code,” Thin Solid Films, vol. 518, no. 18, pp. 5355–5361, 2010.spa
dc.relation.referencesD. O. Smith, M. S. Cohen, and G. P. Weiss, “Oblique-incidence anisotropy in evaporated permalloy films,” Journal of Applied Physics, vol. 31, no. 10, pp. 1755–1762, 1960.spa
dc.relation.referencesJ. M. Nieuwenhuizen and H. B. Haanstra, “Microfractography of thin films,” Philips Tech Rev, vol. 1965, no. 3, pp. 1–2, 1966.spa
dc.relation.referencesN. G. Nakhodkin and A. I. Shaldervan, “Effect of vapour incidence angles on profile and properties of condensed films,” Thin Solid Films, vol. 10, no. 1, pp. 109–122, 1972.spa
dc.relation.referencesY. Taga and T. Motohiro, “Growth of birefringent films by oblique deposition,” Journal of Crystal Growth, vol. 99, no. 1-4, pp. 638–642, 1990.spa
dc.relation.referencesK. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 13, no. 3, pp. 1032–1035, 1995.spa
dc.relation.referencesJ. M. García-Martín, R. Alvarez, P. Romero-Gómez, A. Cebollada, and A. Palmero, “Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures,” Applied Physics Letters, vol. 97, no. 17, pp. 97–100, 2010.spa
dc.relation.referencesS. Mukherjee and D. Gall, “Anomalous scaling during glancing angle deposition,” Applied Physics Letters, vol. 95, no. 17, pp. 1–3, 2009.spa
dc.relation.referencesS. Mukherjee, C. M. Zhou, and D. Gall, “Temperature-induced chaos during nanorod growth by physical vapor deposition,” Journal of Applied Physics, vol. 105, no. 9, 2009.spa
dc.relation.referencesA. Dolatshahi-Pirouz, M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition,” Physical Review B - Condensed Matter and Materials Physics, vol. 77, no. 11, pp. 1–5, 2008.spa
dc.relation.referencesA. Siad, A. Besnard, C. Nouveau, and P. Jacquet, “Critical angles in DC magnetron glad thin films,” Vacuum, vol. 131, pp. 305–311, 2016.spa
dc.relation.referencesB. Dick, M. J. Brett, and T. Smy, “Investigation of substrate rotation at glancing incidence on thin-film morphology,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, no. 6, p. 2569, 2003.spa
dc.relation.referencesS. Liedtke, C. Grüner, A. Lotnyk, and B. Rauschenbach, “Glancing angle deposition of sculptured thin metal films at room temperature,” Nanotechnology, vol. 28, no. 38, 2017.spa
dc.relation.referencesC. Patzig, A. Miessler, T. Karabacak, and B. Rauschenbach, “Arbitrarily shaped Si nanostructures by glancing angle ion beam sputter deposition,” Physica Status Solidi (B) Basic Research, vol. 247, no. 6, pp. 1310–1321, 2010.spa
dc.relation.referencesF. Liu, C. Yu, L. Shen, J. Barnard, and G. J. Mankey, “The magnetic properties of cobalt films produced by glancing angle deposition,” IEEE Transactions on Magnetics, vol. 36, no. 5 I, pp. 2939–2941, 2000.spa
dc.relation.referencesC. Buzea, G. Beydaghyan, C. Elliott, and K. Robbie, “Control of power law scaling in the growth of silicon nanocolumn pseudo regular arrays deposited by glancing angle deposition,” Nanotechnology, vol. 16, no. 10, pp. 1986–1992, 2005.spa
dc.relation.referencesT. Karabacak, P. Singh, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Scaling during shadowing growth of isolated nanocolumns,” Physical Review B - Condensed Matter and Materials Physics, vol. 68, no. 12, pp. 1–5, 2003.spa
dc.relation.referencesK. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” Journal of Applied Physics, vol. 97, no. 1, 2005.spa
dc.relation.referencesR. B. Tokas, S. Jena, J. Misal, K. Rao, S. Polaki, C. Pratap, D. Udupa, S. Thakur, S. Kumar, and N. Sahoo, “Study of ZrO2 thin films deposited at glancing angle by radio frequency magnetron sputtering under varying substrate rotation,” Thin Solid Films, vol. 645, no. 2017, pp. 290–299, 2018.spa
dc.relation.referencesM. Backholm, M. Foss, and K. Nordlund, “Roughness of glancing angle deposited titanium thin films: An experimental and computational study,” Nanotechnology, vol. 23, no. 38, 2012.spa
dc.relation.referencesR. Gavrila, A. Dinescu, and D. Mardare, “A Power Spectral Density Study of Thin Films Morphology Based on AFM Profiling,” Romanian Journal of Information Science and Technology, vol. 10, no. 3, pp. 291–300, 2007.spa
dc.relation.referencesD. Nečas and P. Klapetek, “Gwyddion: An open-source software for SPM data analysis,” Central European Journal of Physics, vol. 10, no. 1, pp. 181–188, 2012.spa
dc.relation.referencesY. Gan, “Atomic and subnanometer resolution in ambient conditions by atomic force microscopy,” Surface Science Reports, vol. 64, no. 3, pp. 99–121, 2009.spa
dc.relation.referencesJ. E. Miranda, M. J. Goeckner, J. Goree, and T. E. Sheridan, “Monte Carlo simulation of ionization in a magnetron plasma,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 8, no. 3, p. 1627, 1990.spa
dc.relation.referencesD. Kumičáková, V. Tlach, and M. Císar, “Testing the Performance Characteristics of Manipulating Industrial Robots,” Transactions of the VŠB - Technical University of Ostrava, Mechanical Series, vol. 62, no. 1, pp. 39–50, 2016.spa
dc.relation.referencesR. Kesarwani, P. P. Dey, and A. Khare, “Correlation between surface scaling behavior and surface plasmon resonance properties of semitransparent nanostructured Cu thin films deposited via PLD,” RSC Advances, vol. 9, no. 14, pp. 7967–7974, 2019.spa
dc.relation.referencesN. Sharma, K. Prabakar, S. Dash, and A. K. Tyagi, “Growth kinetics of ion beam sputtered Al thin films by dynamic scaling theory,” Thin Solid Films, vol. 573, pp. 84–89, 2014.spa
dc.relation.referencesM. Backholm, M. Foss, and K. Nordlund, “Roughness scaling in titanium thin films: A three-dimensional molecular dynamics study of rotational and static glancing angle deposition,” Applied Surface Science, vol. 268, pp. 270–273, 2012.spa
dc.relation.referencesD. K. Goswami and B. N. Dev, “Observation of smoothing and self-affine fractal roughness on MeV ion-irradiated Si surfaces,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 212, no. 1-4, pp. 253–257, 2003.spa
dc.relation.referencesT. J. Oliveira and F. D. Aarão Reis, “Roughness exponents and grain shapes,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 83, no. 4, pp. 1–7, 2011.spa
dc.relation.referencesT. J. Oliveira and F. D. Aarao Reis, “Effects of grains’ features in surface roughness scaling,” Journal of Applied Physics, vol. 101, no. 6, 2007.spa
dc.relation.referencesM. A. Auger, L. Vázquez, R. Cuerno, M. Castro, M. Jergel, and O. Sánchez, “Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering,” Physical Review B - Condensed Matter and Materials Physics, vol. 73, no. 4, pp. 1–7, 2006.spa
dc.relation.referencesT. Karabacak, “Thin-film growth dynamics with shadowing and re-emission effects,” Journal of Nanophotonics, vol. 5, no. 1, p. 052501, 2011.spa
dc.relation.referencesT. Karabacak, G.-C. Wang, and T.-M. Lu, “Quasi-periodic nanostructures grown by oblique angle deposition,” Journal of Applied Physics, vol. 94, no. 12, p. 7723, 2003.spa
dc.relation.referencesT. Karabacak, G. Wang, and T. Lu, “Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 4, pp. 1778– 1784, 2004.spa
dc.relation.referencesY. Zhang, E. Barrena, X. Zhang, A. Turak, F. Maye, and H. Dosch, “New insight into the role of the interfacial molecular structure on growth and scaling in organic heterostructures,” Journal of Physical Chemistry C, vol. 114, no. 32, pp. 13 752– 13 758, 2010.spa
dc.relation.referencesM. Pelliccione, T. Karabacak, C. Gaire, G. C. Wang, and T. M. Lu, “Mound formation in surface growth under shadowing,” Physical Review B - Condensed Matter and Materials Physics, vol. 74, no. 12, pp. 1–10, 2006.spa
dc.relation.referencesS. Thomas, S. H. Al-Harthi, R. V. Ramanujan, Z. Bangchuan, L. Yan, W. Lan, and M. R. Anantharaman, “Surface evolution of amorphous nanocolumns of Fe-Ni grown by oblique angle deposition,” Applied Physics Letters, vol. 94, no. 6, 2009.spa
dc.relation.referencesA. Gambardella, M. Berni, G. Graziani, A. Kovtun, A. Liscio, A. Russo, A. Visani, and M. Bianchi, “Nanostructured Ag thin films deposited by pulsed electron ablation,” Applied Surface Science, vol. 475, pp. 917–925, 2019.spa
dc.relation.referencesA. M. Rosa, E. P. Da Silva, E. Amorim, M. Chaves, A. C. Catto, P. N. Lisboa-Filho, and J. R. Bortoleto, “Growth evolution of ZnO thin films deposited by RF magnetron sputtering,” Journal of Physics: Conference Series, vol. 370, no. 1, 2012.spa
dc.relation.referencesF. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Powerlaw scaling during shadowing growth of nanocolumns by oblique angle deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 25, no. 1, p. 160, 2007.spa
dc.relation.referencesJ. R. Bortoleto, M. Chaves, A. M. Rosa, E. P. Da Silva, S. F. Durrant, L. D. Trino, and P. N. Lisboa-Filho, “Growth evolution of self-textured ZnO films deposited by magnetron sputtering at low temperatures,” Applied Surface Science, vol. 334, pp. 210–215, 2015.spa
dc.relation.referencesJ.-S. Liang, S.-H. Chen, E.-Y. Lin, D.-F. Luo, and S.-J. Jiang, “Morphology evolution of glancing angle deposition Ag films on nanosphere-array substrates: Kinetic Monte Carlo simulation,” Computational Materials Science, vol. 79, pp. 31–35, 2013.spa
dc.relation.referencesY. Shim, V. Borovikov, and J. G. Amar, “Effects of shadowing and steering in obliqueincidence metal (100) epitaxial growth,” Physical Review B - Condensed Matter and Materials Physics, vol. 77, no. 23, pp. 1–13, 2008.spa
dc.relation.referencesL. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO 2 thin films prepared by glancing angle deposition,” Nanotechnology, vol. 23, no. 20, 2012.spa
dc.relation.referencesG. Zhang, B. L. Weeks, and M. Holtz, “Application of dynamic scaling to the surface properties of organic thin films: Energetic materials,” Surface Science, vol. 605, no. 3-4, pp. 463–467, 2011.spa
dc.relation.referencesL. Peverini, E. Ziegler, T. Bigault, and I. Kozhevnikov, “Dynamic scaling of roughness at the early stage of tungsten film growth,” Physical Review B - Condensed Matter and Materials Physics, vol. 76, no. 4, pp. 1–5, 2007.spa
dc.relation.referencesT. Fu and Y. G. Shen, “Surface growth and anomalous scaling of sputter-deposited Al films,” Physica B: Condensed Matter, vol. 403, no. 13-16, pp. 2306–2311, 2008.spa
dc.relation.referencesT. Karabacak, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Physical Review B, vol. 64, no. February, pp. 1–6, 2001.spa
dc.relation.referencesM. Pelliccione and T. M. Lu, “Non-local effects in thin film growth,” pp. 1207–1225, 2007.spa
dc.relation.referencesF. Liu, C. Li, M. Zhu, J. Gu, and Y. Zhou, “Kinetic roughening and mound surface growth in microcrystalline silicon thin films,” Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 7, no. 3-4, pp. 533–536, 2010.spa
dc.relation.referencesA. K. Manna, V. Solanki, D. Kanjilal, and S. Varma, “Dynamics of surface evolution of rutile TiO2(110) after ion irradiation,” Radiation Effects and Defects in Solids, vol. 0150, no. 110, 2018.spa
dc.relation.referencesJ. J. Ramasco, J. M. López, and M. A. Rodríguez, “Generic dynamic scaling in kinetic roughening,” Physical Review Letters, vol. 84, no. 10, pp. 2199–2202, 2000.spa
dc.relation.referencesJ. M. López, M. A. Rodríguez, and R. Cuerno, “Superroughening versus intrinsic anomalous scaling of surfaces,” Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 56, no. 4, pp. 3993–3998, 1997.spa
dc.relation.referencesP. Jain, J. S. Juneja, T. Karabacak, E. J. Rymaszewski, and T. M. Lu, “Surface Roughness Evolution in Amorphous Tantalum Oxide Films Deposited by Pulsed Reactive Sputtering,” MRS Proceedings, vol. 749, p. W5.11, 2002.spa
dc.relation.referencesY. Kudriavtsev, A. Villegas, A. Godines, and R. Asomoza, “Calculation of the surface binding energy for ion sputtered particles,” Applied Surface Science, vol. 239, no. 3-4, pp. 273–278, 2005.spa
dc.relation.referencesK. Obara, Z. Fu, M. Arima, T. Yamada, T. Fujikawa, N. Imamura, and N. Terada, “Collision processes between sputtered particles on high speed rotating substrate and atomic mass dependence of sticking coefficient,” Journal of Crystal Growth, vol. 237-239, no. 1-4 III, pp. 2041–2045, 2002.spa
dc.relation.referencesT. Karabacak, H. Guclu, and M. Yuksel, “Network behavior in thin film growth dynamics,” Physical Review B - Condensed Matter and Materials Physics, vol. 79, no. 19, pp. 1–11, 2009.spa
dc.relation.referencesB. Dick, M. J. Brett, and T. Smy, “Controlled growth of periodic pillars by glancing angle deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, no. 1, p. 23, 2003.spa
dc.relation.referencesT. Karabacak, A. Mallikarjunan, J. P. Singh, D. Ye, G. C. Wang, and T. M. Lu, “BPhase Tungsten Nanorod Formation By Oblique-Angle Sputter Deposition,” Applied Physics Letters, vol. 83, no. 15, pp. 3096–3098, 2003.spa
dc.relation.referencesJ. P. Singh, F. Tang, T. Karabacak, T.-M. Lu, and G.-C. Wang, “Enhanced cold field emission from <100> oriented β–W nanoemitters,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, no. 3, p. 1048, 2004.spa
dc.relation.referencesJ. P. Singh, T. Karabacak, D.-X. Ye, D.-L. Liu, C. Picu, T.-M. Lu, and G.-C. Wang, “Physical properties of nanostructures grown by oblique angle deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 23, no. 5, p. 2114, 2005.spa
dc.relation.referencesS. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by Glancing Angle Deposition,” Thin Solid Films, vol. 494, no. 1-2, pp. 234–239, 2006.spa
dc.relation.referencesR. Figueroa, T. G. S. Cruz, and A. Gorenstein, “WO3 pillar-type and helical-type thin film structures to be used in microbatteries,” Journal of Power Sources, vol. 172, no. 1, pp. 422–427, 2007.spa
dc.relation.referencesC. Patzig, T. Karabacak, B. Fuhrmann, and B. Rauschenbach, “Glancing angle sputter deposited nanostructures on rotating substrates: Experiments and simulations,” Journal of Applied Physics, vol. 104, no. 9, pp. 1–9, 2008.spa
dc.relation.referencesS. V. Kesapragada, P. R. Sotherland, and D. Gall, “Ta nanotubes grown by glancing angle deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 26, no. 2, p. 678, 2008.spa
dc.relation.referencesY. He and Y. Zhao, “Mg nanostructures tailored by glancing angle deposition,” Crystal Growth and Design, vol. 10, no. 1, pp. 440–448, 2010.spa
dc.relation.referencesD. Deniz, D. J. Frankel, and R. J. Lad, “Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition,” Thin Solid Films, vol. 518, no. 15, pp. 4095–4099, 2010.spa
dc.relation.referencesK. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir, vol. 26, no. 6, pp. 4368– 4376, 2010.spa
dc.relation.referencesS. V. Kesapragada, T. J. Yim, J. S. Dordick, R. S. Kane, and D. Gall, “Selective Assembly of Multi-Component Nanosprings and Nanorods,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 3, pp. 2252–2256, 2010.spa
dc.relation.referencesG. K. Kannarpady, K. R. Khedir, H. Ishihara, J. Woo, O. D. Oshin, S. Trigwell, C. Ryerson, and A. S. Biris, “Controlled growth of self-organized hexagonal arrays of metallic nanorods using template-assisted glancing angle deposition for superhydrophobic applications,” ACS Applied Materials and Interfaces, vol. 3, no. 7, pp. 2332–2340, 2011.spa
dc.relation.referencesK. R. Khedir, G. K. Kannarpady, H. Ishihara, J. Woo, C. Ryerson, and A. S. Biris, “Design and fabrication of teflon-coated tungsten nanorods for tunable hydrophobicity,” Langmuir, vol. 27, no. 8, pp. 4661–4668, 2011.spa
dc.relation.referencesL. Chen, L. Andrea, Y. P. Timalsina, G. C. Wang, and T. M. Lu, “Engineering epitaxialnanospiral metal films using dynamic oblique angle deposition,” Crystal Growth and Design, vol. 13, no. 5, pp. 2075–2080, 2013.spa
dc.relation.referencesJ. Dervaux, P.-a. Cormier, S. Konstantinidis, R. Di Ciuccio, O. Coulembier, P. Dubois, and R. Snyders, “Deposition of porous titanium oxide thin films as anode material for dye sensitized solar cells,” Vacuum, vol. 114, no. April, pp. 213–220, 2015.spa
dc.relation.referencesS. Chatterjee, M. Kumar, S. Gohil, and T. Som, “An oblique angle radio frequency sputtering method to fabricate nanoporous hydrophobic TiO2 film,” Thin Solid Films, vol. 568, no. 1, pp. 81–86, 2014.spa
dc.relation.referencesJ. F. Gouyet and A. L. R. Bug, “Physics and Fractal Structures,” American Journal of Physics, vol. 65, no. 7, pp. 676–677, 1997.spa
dc.relation.referencesF. Family and T. Vicsek, Dynamics of Fractal Surfaces, F. Family and T. Vicsek, Eds. World Scientific Publishing Co. Pte. Ltda, 1991.spa
dc.relation.referencesD. A. Mirabella, M. P. Suárez, C. M. Aldao, and R. R. Deza, “Unstable growth and anomalous scaling,” Physica A: Statistical Mechanics and its Applications, vol. 514, pp. 79–89, 2019.spa
dc.relation.referencesJ. M. A. Siewert, “Dissassembling Glancing Angle Deposited Films for High Throughput Growth Scaling Analysis,” Ph.D. dissertation, University of Alberta, 2012.spa
dc.relation.referencesJ. Soriano, J. J. Ramasco, M. A. Rodríguez, A. Hernández-Machado, and J. Ortín, “Anomalous Roughening of Hele-Shaw Flows with Quenched Disorder,” Physical Review Letters, vol. 89, no. 2, pp. 8–11, 2002.spa
dc.relation.referencesJ. Dervaux, P. Cormier, P. Moskovskin, O. Douheret, S. Konstantinidis, R. Lazzaroni, S. Lucas, and R. Snyders, “Synthesis of nanostrutured Ti thin films by combining glancing angle deposition and magentorn sputttering : a joint experimental and modelling study,” in Preparation, vol. 636, pp. 644–657, 2017.spa
dc.relation.referencesR. Krishnan, T. M. Lu, and N. Koratkar, “Functionally strain-graded nanoscoops for high power Li-ion battery anodes,” Nano Letters, vol. 11, no. 2, pp. 377–384, 2011.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalTécnica GLADspa
dc.subject.proposalGLAD techniqueeng
dc.subject.proposalMagnetron sputteringeng
dc.subject.proposalMagnetron sputteringspa
dc.subject.proposalExponentes de escalamientospa
dc.subject.proposalScaling exponentseng
dc.subject.proposalRugosidadspa
dc.subject.proposalRoughnesseng
dc.subject.proposalAFMeng
dc.subject.proposalAFMspa
dc.subject.proposalNanostructured materialseng
dc.subject.proposalMateriales nanoestructuradosspa
dc.subject.proposalNanoestructurasspa
dc.subject.proposalNanostructureseng
dc.titleEfecto de la rotación del sustrato sobre los exponentes de escalamiento de la rugosidad en películas crecidas mediante la técnica GLADspa
dc.title.alternativeSubstrate rotation effect over roughness scaling exponents in thin films grown by GLAD techniquespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053837939.2020.pdf
Tamaño:
26.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: