Metodología para optimización de sistemas de trasmisión de potencia de engranajes rectos para reducción de vibraciones

dc.contributor.advisorCortés Ramos, Henry Octavio
dc.contributor.authorTorres Molano, Henry Fernando
dc.contributor.researchgroupGrupo de modelado y métodos numéricos en ingenieríaspa
dc.date.accessioned2023-08-31T20:29:56Z
dc.date.available2023-08-31T20:29:56Z
dc.date.issued2023-08-31
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEste trabajo presenta una metodología viable para el desarrollo de análisis de un sistema de transmisión de potencia de engranajes cilíndricos de dientes rectos para la reducción de vibraciones, en base a un caso de estudio científico revisado y estudiado múltiples veces por diferentes investigadores para obtener los parámetros óptimos. Las etapas del proyecto fueron apoyadas por herramientas de MATLAB (solucionador de ecuaciones diferenciales y librerías de optimización). (Texto tomado de la fuente) Inicialmente se realizó un estudio sobre la dinámica de sistemas de transmisión de potencia, revisando tipo de modelos, planteamiento matemático, factores que generan vibraciones y parámetros geométricos del sistema que afectan su masa, rigidez y amortiguamiento. Por otro lado, se realizó una revisión del proceso de optimización para la reducción de vibraciones teniendo en cuenta planteamientos de función objetivo y restricciones. Se planteó un modelo dinámico por medio de parámetros concentrados, teniendo en cuenta todas sus características geométricas, condiciones iniciales y parámetros con el fin de validar la rigidez y desplazamientos con respecto a un caso de estudio. Posteriormente, sobre este modelo se pasó a realizar el proceso de optimización para obtener una reducción en las vibraciones, que se pueden ver expresadas en términos del error de transmisiónspa
dc.description.abstractThis document presents a viable methodology for the development of analysis of a spur gear power transmission system for vibration reduction, based on a scientific case study reviewed and studied multiple times by different researchers to obtain the optimal parameters. The Project stages were supported by MATLAB tools (differential equation solver and optimization libraries). Initially, a study on the dynamics of power transmission systems was carried out, reviewing the type of models, mathematical approach, factors that generate vibrations and geometric parameters of the system that fail its mass, stiffness, and damping. On the other hand, a review of the optimalization process for vibrations reduction was carried out taking into account objective function approaches and restrictions. A dynamic model was proposed by means of concentrated parameters, considering all its geometric characteristics, initial conditions, and parameters in order to validate the stiffness and displacements with respect to a case study. Subsequently, these results were the conditions to perform the optimization process to obtain a reduction in vibrations, which can be expressed in terms of transmission error.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagisterspa
dc.description.researchareaIngeniería de Diseño y Biomecánicaspa
dc.format.extent88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84622
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesR. G. Richard G. Budynas, J. Keith. Nisbett, and J. Edward. Shigley, Shigley’s mechanical engineering design. Mcgraw-hill, 2011.spa
dc.relation.referencesS. L. Harris, ‘Dynamic loads on the teeth of spur gears’, Proceedings of the Institution of Mechanical Engineers, Vol. 172, no. 1, pp. 87-112, 1958, doi:10.1243.1958.172.017.02.spa
dc.relation.referencesR. W. Gregory, S. L. Harris, and r. G. Munro, ‘Applied mechanics group dynamic behaviour of spur gears.’, Vol. 178, no. 1, pp. 207-218, 1963, doi:10.1177/002034836317800130.spa
dc.relation.referencesD. James. D. Smith, Gear noise and vibration. Marcel dekker, 2003.spa
dc.relation.referencesA. Kahraman, d. R. Houser professor memasme, and j. J. Zakrajsek memasme, ‘Dynamic analysis of geared rotors by finite elements’, 1992. [online]. Available: http://asme.org/termsspa
dc.relation.referencesA. Kahraman and r. Singh, ‘Non-linear dynamics of a spur gear pair’, Journal of Sound and Vibration, Vol. 142, no. 1, pp. 49-75, 1990, doi: 10.1016/0022- 460X(90)90582-K.spa
dc.relation.referencesh. Nevzat özgüven and d. R. Houser, ‘mathematical models used in gear dynamics—a review’, journal of sound and vibration, vol. 121, no. 3. Academic press, pp. 383–411, 1988. Doi: 10.1016/s0022-460x(88)80365-1.spa
dc.relation.referencesD. Qin and Y. Shao, ‘Power transmissions.’, Crc Press Taylor and Francis Group, 2016.spa
dc.relation.referencesz. Chen, z. Zhu, and y. Shao, ‘fault feature analysis of planetary gear system with tooth root crack and flexible ring gear rim’, eng fail anal, vol. 49, pp. 92– 103, mar. 2015, doi: 10.1016/j.engfailanal.2014.12.014.spa
dc.relation.referencesM. Faggioni, F. Pellicano, a. Andrisano, and G. Bertacchi, ‘Dynamic optimization of spur gears’. [online]. Available: http://www.asme.ospa
dc.relation.referencesW. Schiehlen, ‘Computational Dynamics: theory and applications of multibody systems’, european journal of mechanics, a/solids, vol. 25, no. 4, pp. 566–594, jul. 2006, doi: 10.1016/j.euromechsol.2006.03.004.spa
dc.relation.references. Khemili and l. Romdhane, ‘Dynamic analysis of a flexible slider-crank mechanism with clearance’, european journal of mechanics, a/solids, vol. 27, no. 5, pp. 882–898, sep. 2008, doi: 10.1016/j.euromechsol.2007.12.004.spa
dc.relation.referencesI. Khemili and l. Romdhane, ‘Dynamic analysis of a flexible slider – crank mechanism with clearance’, vol. 27, pp. 882–898, 2008, doi: 10.1016/j.euromechsol.2007.12.004.spa
dc.relation.referencesH. Torres, ‘Metodología del análisis del comportamiento dinámico estructural de sistemas multicuerpo con elementos flexibles y su aplicación al manipulador de arquitectura paralela tipo delta de la universidad santo tomas.’, universidad santo tomas, 2017.spa
dc.relation.referencesA. Tuplin, ‘gear tooth stresses at high speed’. Proceedings of the institution of mechanical engineers, vol. 16, pp. 162–167, 1950.spa
dc.relation.referencesA. Tuplin, ‘gear tooth stresses at high speed’. Proceedings of the institution of mechanical engineers, vol. 16, pp. 162–167, 1950.spa
dc.relation.referencesR. Tharmakulasingam, ‘Transmission error in spur gears: static and dynamic finite-element modeling and design optimization’, 2009.spa
dc.relation.referencesG. Kelly, Mechanical engineering, advanced vibration analysis, Crc Press, 2006.spa
dc.relation.referencesH. Nevzat Özgüven, D.R. Houser, ‘Mathematical models used in gear dynamics-a review’, Journal of Sound and Vibration, vol. 121, pp. 383–411, 1988, doi: 10.1016/s0022-460x(88)80365-1spa
dc.relation.referencesH. D. Nelson, ‘Finite element simulation of rotor bearing systems with internal damping’, no. 76, pp. 1–6, 1976.spa
dc.relation.referencesZ. G. Wang, C. C. Lo, y. C. Chen, and h. C. Liu, ‘Dynamic modelling, optimization and experiment for a high-speed spur gear set’, machines, vol. 10, no. 8, aug. 2022, doi: 10.3390/machines10080653.spa
dc.relation.referencesZ. G. Wang, C. C. Lo, y. C. Chen, and h. C. Liu, ‘Dynamic modelling, optimization and experiment for a high-speed spur gear set’, machines, vol. 10, no. 8, aug. 2022, doi: 10.3390/machines10080653.spa
dc.relation.referencesD. C. H. Y. And Z. S. Sun, ‘A rotary model for spur gear dynamics.’, Asme journal of mechanisms, transmissions and automation in design, vol. 107, no. December, pp. 529 – 535, 1985.spa
dc.relation.referencesT. S. M. Umezawa, ‘Vibration of power transmission helical gears (approximate equation of tooth stiffness)’, bulletin of jsme, vol. 1, no. 4, pp. 197–402, 1958.spa
dc.relation.referencesA. Kahraman, h. Ozguven, and d. R. Houser, ‘Dynamic analysis of geared rotors by finite elements’, journal of mechanical design, vol. 114, no. September 1992, pp. 507–514, 1992, doi: 10.1115/1.2926579.spa
dc.relation.referencesZ. Rao, C. Y. Zhou, Z. H. Deng, and M. Y. Fu, ‘Nonlinear torsional instabilities in two-stage gear systems with flexible shafts’, International Journal of Mechanical Sciences, vol. 82, pp. 60–66, 2014, doi: 10.1016/j.ijmecsci.2014.02.021.spa
dc.relation.referencesZ. Rao, C. Y. Zhou, Z. H. Deng, and M. Y. Fu, ‘Nonlinear torsional instabilities in two-stage gear systems with flexible shafts’, International Journal of Mechanical Sciences, vol. 82, pp. 60–66, 2014, doi: 10.1016/j.ijmecsci.2014.02.021.spa
dc.relation.referencesF. Shakeriaski, M. Mirparizi, F. Sheykhsamani, and M. Alihajabasi, ‘Vibration behavior optimization of planetary gear sets’, propulsion and power research, vol. 3, no. 4, pp. 196–206, dec. 2014, doi: 10.1016/j.jppr.2014.11.002.spa
dc.relation.referencesF. Shakeriaski, M. Mirparizi, F. Sheykhsamani, and M. Alihajabasi, ‘Vibration behavior optimization of planetary gear sets’, propulsion and power research, vol. 3, no. 4, pp. 196–206, dec. 2014, doi: 10.1016/j.jppr.2014.11.002.spa
dc.relation.referencesZ. Chen, Z. Zhu, and Y. Shao, ‘Fault feature analysis of planetary gear system with tooth root crack and flexible ring gear rim’, Engineering Failure Analysis, vol. 49, pp. 92–103, 2015, doi: 10.1016/j.engfailanal.2014.12.014.spa
dc.relation.referencesA. Saxena, A. Parey, and M. Chouksey, ‘Study of modal characteristics of a geared rotor system’, Procedia technology, vol. 23, pp. 225–231, 2016, doi: 10.1016/j.protcy.2016.03.021.spa
dc.relation.referencesA. Saxena, A. Parey, and M. Chouksey, ‘Study of modal characteristics of a geared rotor system’, Procedia technology, vol. 23, pp. 225–231, 2016, doi: 10.1016/j.protcy.2016.03.021.spa
dc.relation.referencesD. Yang, Z. Sun. ‘A Rotary Model for Spur Gear Dynamics.’, ASME, vol. 107, no. 4, pp. 529–535, 1985, doi:10.1115/1.3260759.spa
dc.relation.referencesC. Liu, Z. Fang, and F. Wang, ‘An improved model for dynamic analysis of a double-helical gear reduction unit by hybrid user-defined elements: experimental and numerical validation’, Mechanism and Machine Theory, vol. 127, pp. 96–111, sep. 2018, doi: 10.1016/j.mechmachtheory.2018.04.022.spa
dc.relation.referencesS. P. Radzevich, Dudley’s handbook of practical gear design and manufacture. Crc press, 2021. Doi: 10.1201/9781003126881.spa
dc.relation.referencesA. Vallejo, ‘Dinámica de sistemas multicuerpo rígido-flexibles en coordenadas absolutas’, M.S tesis, Universidad de Sevilla, España, 2006.spa
dc.relation.referencesA. Matamoros, ‘Simulación del comportamiento dinámico de un vehículo de carga utilizando elementos finitos.’, revista ciencia e ingeniería., vol. 28, no. September, p. 2015, 2015.spa
dc.relation.referencesP . Madrid, ‘Análisis dinámico de sistemas multicuerpo’, Universidad Politécnica de Madrid, Pp. 1–54, 2000.spa
dc.relation.referencesS. P. Radzevich, ‘Advances in gear design and manufacture.’ Crc press, 2019. Doi: 10.1201/9781351049832.spa
dc.relation.referencesG. Niemann, and h, winter. ‘General transmisions, gearboxes fundamentals, spur gears.’, band 2: getriebe allgemein, zahnradgetriebe - grundlagen, stirnradgetriebe, springer, 2003.spa
dc.relation.referencesO. D. Mohammed, m. Rantatalo, and j. O. Aidanpää, ‘Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis’, Mechanical Systems and Signal Processing, vol. 54, pp. 293–305, mar. 2015, doi: 10.1016/j.ymssp.2014.09.001.spa
dc.relation.referencesO. D. Mohammed, m. Rantatalo, and j. O. Aidanpää, ‘Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis’, Mechanical Systems and Signal Processing, vol. 54, pp. 293–305, mar. 2015, doi: 10.1016/j.ymssp.2014.09.001.spa
dc.relation.referencesO. D. Mohammed, ‘dynamic modelling, and vibration analysis for gear tooth crack detection.’, D. thesis, Lulea university Technology, Sweden 2015.spa
dc.relation.referencesO. D. Mohammed, ‘dynamic modelling, and vibration analysis for gear tooth crack detection.’, D. thesis, Lulea university Technology, Sweden 2015.spa
dc.relation.referencesO. D. Mohammed, m. Rantatalo, and j. O. Aidanpää, ‘Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis’, Mechanical Systems and Signal Processing, vol. 54, pp. 293–305, mar. 2015, doi: 10.1016/j.ymssp.2014.09.001.spa
dc.relation.referencesY. Yang, J. Wang, Q. Zhou, Y. Huang, J. Zhu, and W. Yang, ‘Mesh stiffness modeling considering actual tooth profile geometry for a spur gear pair’, Mechanics and industry, vol. 19, no. 3, 2018, doi: 10.1051/meca/2018026.spa
dc.relation.referencesO. D. Mohammed, M. Rantatalo, and J. O. Aidanpää, ‘Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis’, Mechanical Systems and Signal Processing, vol. 54, pp. 293–305, mar. 2015, doi: 10.1016/j.ymssp.2014.09.001.spa
dc.relation.referencesSato, Umezawa, and Ishikawa, ‘Effects of contact ratio and profile correction’, Bull. JSME 26, 1983.spa
dc.relation.referencesd. R. Houser, ‘Optimum profile modifications for the minimization of static transmission errors of spur gears’, Journal of Mechanisms, Transmissions, and Automation in Design, vol. 108, no. 1, pp. 86.94, 1986. doi: 10.1115/1.3260791.spa
dc.relation.referencesV. Simon, ‘Optimal tooth modifications for spur and helical gears’, Journal of Mechanisms, Transmissions, and Automation in Design, vol. 111, no. 1, pp.611-615, 1989, doi: 10.1115/1.3259044.spa
dc.relation.referencesP. Velex, M. Maatar, ‘A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behaviour’, vol.191, no. 5, pag. 629-660, 1996, doi: 10.1006/jsvi.1996.0148.spa
dc.relation.referencesR. G. Parker, S. M. Vijayakar, and T. Imajo, ‘Non-linear dynamic response of a spur gear pair: modelling and experimental comparisons’, J sound vib, vol. 237, no. 3, pp. 435–455, oct. 2000, doi: 10.1006/jsvi.2000.3067.spa
dc.relation.referencesS. S. Ghosh and G. Chakraborty, ‘On optimal tooth profile modification for reduction of vibration and noise in spur gear pairs’, Mechanism and Machine Theory, vol. 105, pp. 145–163, nov. 2016, doi: 10.1016/j.mechmachtheory.2016.06.008.spa
dc.relation.referencess. S. Ghosh and g. Chakraborty, ‘on optimal tooth pro fi le modi fi cation for reduction of vibration and noise in spur gear pairs’, vol. 105, pp. 145–163, 2016, doi: 10.1016/j.mechmachtheory.2016.06.008.spa
dc.relation.referencesJ. R. Colbourne, ‘The geometry of involute gears.’, Springer new york, 1987. Doi: 10.1007/978-1-4612-4764-7.spa
dc.relation.referencesY. Yang, J. Wang, Q. Zhou, Y. Huang, J. Zhu, and W. Yang, ‘Mesh stiffness modeling considering actual tooth profile geometry for a spur gear pair’, Mechanics and industry, vol. 19, no. 3, 2018, doi: 10.1051/meca/2018026.spa
dc.relation.referencesG. Bonori, M. Barbieri, and F. Pellicano, ‘Optimum profile modifications of spur gears by means of genetic algorithms’, J sound vib, vol. 313, no. 3–5, pp. 603–616, jun. 2008, doi: 10.1016/j.jsv.2007.12.013.spa
dc.relation.referencesYang, Lin, ‘Hertzian damping, tooth friction and bending elasticity in gear impact dynamics’, Journal of Mechanisms, Transmissions, and Automation in Design, vol.109, no. 2, pp. 189-196l, 1987, doi: 10.1115/1.3267437.spa
dc.relation.referencesJ. Flek, M. Dub, J. Kolář, F. Lopot, and K. Petr, ‘Determination of mesh stiffness of gear analytical approach vs. fem analysis.’, applied sciences, vol. 11, no. 11, pp. 4960,2021, doi: 10.3390/app11114960.spa
dc.relation.referencesY. Wang, Y. Shao, Z. Chen, M. Du, and H. Xiao, ‘Mesh stiffness calculation of helical gears with profile modification’ International Conference of Fluid Power and Mechatronic Control Engineering, 2018.spa
dc.relation.referencesS. Chul Kim, S. Gon Moon, J. Hyeon sohn, Y. Jun Park, C. Ho Choi, and G. Ho lee, ‘Macro geometry optimization of a helical gear pair for mass, efficiency, and transmission error’, Mechanism and Machine Theory, vol. 144, feb. 2020, doi: 10.1016/j.mechmachtheory.2019.103634.spa
dc.relation.referencesC. Choi, H. Ahn, Y. Jun Park, G. Ho Lee, and S. Chul Kim, ‘Influence of gear tooth addendum and dedendum on the helical gear optimization considering mass, efficiency, and transmission error’, Mechanism and Machine Theory, vol. 166, dec. 2021, doi: 10.1016/j.mechmachtheory.2021.104476.spa
dc.relation.referencesJ. Fraczek and M. Wojtyra, ‘multibody dynamics: Computational Methods and Applications’, media, Spring, 2011.spa
dc.relation.referencesD. Andrés and A. Marín, Dinámica elementos finitos (caso lineal). Universidad Nacional, Colombia, 2006.spa
dc.relation.referencesM. Paz, ‘Dinámica estructural, teoría y calculo’. Reverte, 1992.spa
dc.relation.referencesR. Zaradnik, S. Raichman, and A. Mirasso, ‘Comparación de diversas matrices de masas’, vol. Xxviii, pp. 3–6, 2009.spa
dc.relation.referencesR. F. Aguilar, Análisis matricial de estructuras, Espe, Ecuador, 2014.spa
dc.relation.referencesU. Nacional, ‘Matrices de rigidez y masa de elementos continuos’, facultad ingeniería mecánica.spa
dc.relation.referencesX. Tian, ‘Dynamic simulation for system response of gearbox including localized gear faults.’, Library and archives Canada, bibliothèque et archives Canada, 2005.spa
dc.relation.referencesG. Bejarano, ‘Validación experimental del comportamiento dinámico de sistemas flexibles multicuerpo y su aplicación a un robot industrial de arquitectura paralela.’, CIMM, no. 1, pp. 5–8, 2015.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.lembEngranajesspa
dc.subject.lembGearingeng
dc.subject.lembFrecuencia modulada (radio)-transmisores y transmisiónspa
dc.subject.lembRadio frequency modulation - Transmitters and transmissionspa
dc.subject.proposalTransmisión de potenciaspa
dc.subject.proposalReducción de vibracionesspa
dc.subject.proposalOptimizaciónspa
dc.subject.proposalError de transmisiónspa
dc.subject.proposalPower transmissioneng
dc.subject.proposalVibration reductioneng
dc.subject.proposalOptimizationeng
dc.subject.proposalTransmission erroreng
dc.titleMetodología para optimización de sistemas de trasmisión de potencia de engranajes rectos para reducción de vibracionesspa
dc.title.translatedMethodology for optimisation of spur gear power transmission systems for vibration reductioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016063160.2023.pdf
Tamaño:
2.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: