Material compuesto epóxico/fique, como refuerzo externo en elementos de concreto sometidos a flexión

dc.contributor.advisorLuna Tamayo, Patricia
dc.contributor.authorBeltrán Martínez, Oscar David
dc.date.accessioned2023-05-19T20:08:31Z
dc.date.available2023-05-19T20:08:31Z
dc.date.issued2023-05-18
dc.descriptionilustraciones, fotografías, gráficas, planosspa
dc.description.abstractEn esta investigación se determinó la influencia de reforzar externamente vigas de concreto sometidas a flexión empleando un compuesto hecho con matriz epóxica y fibras de fique. Para esto se caracterizó mecánicamente la fibra de fique antes y después de ser sometida a un tratamiento alcalino. El tratamiento alcalino usado fue a base de hidróxido de sodio (NaOH), logrando con este procedimiento mejorar las propiedades mecánicas de la fibra de fique. Posteriormente, se caracterizó mecánicamente el tejido de fique, previamente sometido al tratamiento alcalino. Se fabricó una matriz epóxica, la cual fue sometida a ensayos de tensión para determinar sus propiedades mecánicas. Para la fabricación del compuesto epóxico/fique (EF) se emplearon dos tipos de tejidos, un tejido tupido (D) y un tejido ralo (MD), obteniendo mayores prestaciones mecánicas al emplear el tejido tupido, con un contenido de fibras de fique del 10 %, como fracción de peso. Se fabricaron vigas de concreto empleando dos tipos de resistencia a la compresión, una de 17 MPa y la otra de 24 MPa. Estas vigas fueron reforzadas externamente, en la cara inferior del elemento, empleando el compuesto EF. Posteriormente, fueron sometidas al ensayo a flexión de cuatro puntos para evaluar el comportamiento de las vigas reforzadas ante esfuerzos de flexión. Al reforzar estas vigas con el compuesto EF de observó que la resistencia a la flexión aumentó entre un 15 y 20 % para vigas con concreto de 17 MPa y un 10 % para las vigas hechas con concreto de 24 MPa. El módulo de elasticidad de las vigas reforzadas aumentó hasta un 20 % y las deflexiones se redujeron. Se propusieron unas expresiones teóricas para ser comparadas con los resultados obtenidos en el laboratorio, logrando precisión en las ecuaciones determinadas para la evaluación de esfuerzos en vigas compuestas, y una buena aproximación en la ecuación definida para la evaluación del momento nominal de la viga reforzada externamente con EF. (Texto tomado de la fuente)spa
dc.description.abstractIn this research, the influence of externally reinforcing concrete beams subjected to bending using a composite made with an epoxy matrix and fique fibers was determined. For this, the fique fiber was mechanically characterized before and after being subjected to an alkaline treatment. The alkaline treatment used was based on sodium hydroxide (NaOH), achieving with this procedure to improve the mechanical properties of fique fiber. Subsequently, the fique fabric, previously subjected to alkaline treatment, was mechanically characterized. An epoxy matrix was manufactured, which was subjected to stress tests to determine its mechanical properties. For the manufacture of the epoxy/fique composite (EF) two types of fabrics were used, a dense fabric (D) and a sparse fabric (MD), obtaining greater mechanical performance when using the dense fabric, with a fique fiber content of 10%, as a weight fraction. Concrete beams were manufactured using two types of compressive strength, one of 17 MPa and the other of 24 MPa. These beams were externally reinforced, on the lower face of the element, using the EF compound. Subsequently, they were subjected to the four-point bending test to evaluate the behavior of the reinforced beams under bending stresses. When reinforcing these beams with the EF compound, it was observed that the flexural strength increased between 15 and 20% for beams with 17 MPa concrete and 10% for beams made with 24 MPa concrete. The elastic modulus of the reinforced beams increased up to 20% and deflections were reduced. Some theoretical expressions were proposed to be compared with the results obtained in the laboratory, achieving precision in the equations determined for the evaluation of forces in composite beams, and a good approximation in the equation defined for the evaluation of the nominal moment of the externally reinforced beam. with EF.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.researchareaMateriales de construcción para estructurasspa
dc.format.extent115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83838
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesAl-mahaidi, R. K. (2018). Rehabilitation of Concrete Structures With Fiber -Reinforced Polymer. 4(9), 420spa
dc.relation.referencesAladdin, M., Alaa, M., & Ezzat, A. (2018). Performance of sustainable natural yarn reinforced polymer bars for constructions applications. Composites Part A: Applied Science and Manufacturing, 158, 359–368spa
dc.relation.referencesAlam, M., Hassan, A., & Muda, Z. (2015). Development od Kenaf fibre Reinforced Polymer Laminate for Shear Strengthening or Reinforcel Concrete Beam. Material and Structures, 49spa
dc.relation.referencesAlberto Pérez Gracia, L. (n.d.). Artículo de Monografía para optar al título de Ingeniero Mecánico Universidad Autónoma Del Caribe. Barranquilla, 2014 EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE LOS MATERIALES COMPUESTOS A BASE DE FIBRA DE FIQUE Y FIBRAS SINTÉTICAS. Retrieved from www.uac.edu.cospa
dc.relation.referencesAli, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018, May 1). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, Vol. 47, pp. 2153–2183. https://doi.org/10.1177/1528083716654468spa
dc.relation.referencesAlves, M., Castro, T., & Toledo, R. (2013). The effect of fiber morphology on the tensile strength of natural fibers. Journal of Materials Research and Technology, 2(2), 149–157. https://doi.org/10.1016/j.jmrt.2013.02.003spa
dc.relation.referencesASTM. (2002). ASTM C 78, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third Point Loading). 1–10spa
dc.relation.referencesASTM. (2013). Astm D3039/D3039M, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. Annual Book of ASTM Standards, 1–13. https://doi.org/10.1520/D3039spa
dc.relation.referencesASTM. (2014). Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. Astm C1557-14, 1–10. https://doi.org/10.1520/C1557-14.2spa
dc.relation.referencesBrent, A. (2006). Plastic: materials and processing. Upper Saddle Riverspa
dc.relation.referencesCastro, C., Palencia, A., Gutiérrez, I., Vargas, G., & Gañán, P. (2007). Determination of optimal alkaline treatment conditions for fique fiber bundles as reinforcement of composites materials. Revista Tecnica de La Facultad de Ingenieria Universidad Del Zulia, 30(2), 136–142spa
dc.relation.referencesCharlet, K., Eve, S., Jernot, J. P., Gomina, M., & Breard, J. (2009). Tensile deformation of a flax fiber. Procedia Engineering, 1(1), 233–236. https://doi.org/10.1016/j.proeng.2009.06.055spa
dc.relation.referencesCuéllar, A., & Muñoz, I. (2010). Fibra de guadua como refuerzo de matrices poliméricas. DYNA (Colombia), 77(162), 138–142spa
dc.relation.referencesDevore, J. (2005). Probabilidad y Estadística Para Ingeniería y Ciencias (6th ed.). México D.F.: Thomsonspa
dc.relation.referencesEcheverri, D., Franco, L., & Velásquez, M. (2015). Fique en Colombia. Retrieved from https://doi.org/10.22430/9789588743820spa
dc.relation.referencesEstrada, M. (2010). Extraccion y caracterizacion mecanica de las fibras de bambu ( Guadua angustifolia ) para su uso potencial como refuerzo de materiales compuestos . https://doi.org/10.13140/RG.2.1.3984.3046spa
dc.relation.referencesFaruk, O., Bledzki, K., Fink, P., & Sain, M. (2012). Biocomposites reinforced with natural fiber: 2000-2010. Progress in Polymer Science, 11spa
dc.relation.referencesGañán, P., & Mondragón, I. (2014). Influence of Compatibilizacion Treatments on the Mechanical Properties of Fique Fiber Reinforced Polypropylene Composites. International Journal of Polymer Science, 53spa
dc.relation.referencesGangaRao, H. V. S., Taly, N., & Vijay, P. V. (2006). Reinforced Concrete Design with FRP Composites. In Reinforced Concrete Design with FRP Composites. https://doi.org/10.1201/9781420020199spa
dc.relation.referencesGere, J., & Goodno, B. (2013). Mecánica De Materiales (8th ed.). México D.F.: CENGAGE Learningspa
dc.relation.referencesGómez, Alvarez, V., Rojo, P., & Vázquez, A. (2012). Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers and Polymers, 13(5), 632–640. https://doi.org/10.1007/s12221-012-0632-8spa
dc.relation.referencesGómez, S., Ramón, B., & Guzman, R. (2017). Revista UIS Ingenierías (Vol. 17)spa
dc.relation.referencesHafizah, N. A. K., Bhutta, M. A. R., Jamaludin, M. Y., Warid, M. H., Ismail, M., Rahman, M. S., … Azman, M. (2014). Kenaf fiber reinforced polymer composites for strengthening RC beams. Journal of Advanced Concrete Technology, 12(6), 167–177. https://doi.org/10.3151/jact.12.167spa
dc.relation.referencesHallonet, A., Ferrier, E., & Michel, L. (2019). Durability and tensile characterizacion of wet lay-up flax/epoxy composites used for external strengthening of RC Structures. Construction and Building Materials, 205, 679–698spa
dc.relation.referencesHidalgo, M. A., Muñoz, M. F., & Quintana, K. J. (2011). Desempeño mecánico del compuesto polietileno aluminio reforzado con agro fibras contínuas de fique. Revista Latinoamericana de Metalurgia y Materiales, 31(2), 187–194spa
dc.relation.referencesHidalgo, M., Muñoz, M., & Quintana, K. (2012). Análisis mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional. Revista Latinoamericana de Metalurgia y Materiales, 32(1), 89–95spa
dc.relation.referencesIsaza, L., & Acevedo, E. (2016). Comparación de Pruebas de Normalidad. XXI Simposio Internacional de Estadisticas 2015, 77(Zimmerman 2011), 8–11. Retrieved from http://simposioestadistica.unal.edu.co/fileadmin/content/eventos/simposioestadistica/documentos/memorias/Memorias_2016/Posters/16._Pruebas_Normalidad_Cortes_Rave___Hernandez.pdfspa
dc.relation.referencesJoshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371–376. https://doi.org/10.1016/j.compositesa.2003.09.016spa
dc.relation.referencesKu, H., Wang, H., & Trada, M. (2011). A review on the tensile propierties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42, 856–873spa
dc.relation.referencesLiu, D., Song, J., Anderson, D., & Chang, P. (2012). Bamboo Fiber and its Reinforced Composites: Structure and Propierties. Cellulose, 19spa
dc.relation.referencesLópez M., J. (2012). Refuerzo a flexión de vigas de hormigón mediante polímeros reforzados con fibra de carbonospa
dc.relation.referencesLuna, P. (2020). Mechanical behavior of a composite material using a polyester matrix reinforced with Guadua angustifolia bamboo fibersspa
dc.relation.referencesLuna, P., Mariño, A., Lizarazo, J., & Beltrán, O. (2017). Dry etching plasma applied to fique fibers: Influence on their mechanical properties and surface appearance. Procedia Engineering, 200, 141–147. https://doi.org/10.1016/j.proeng.2017.07.021spa
dc.relation.referencesMachado, L., & Dos Santos, J. (2017). Novel fibre metal laminate sandwich composite with sisal woven core. Industrial Crops and Products, 99spa
dc.relation.referencesMahjoub, R., & Mohamad, J. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 55, 103–113. https://doi.org/10.1016/j.conbuildmat.2014.01.036spa
dc.relation.referencesMartínez, L. (2010). Inumerables usos del Fique. FEDEFIQUEspa
dc.relation.referencesMatallana, R. (2019). El Concreto fundamentos y nuevas tecnologías (1st ed.). Medellín: Constructora Conconcretospa
dc.relation.referencesMathWorks. (2016). MatLab 2016a. Natick, Massachusetts: The Math Works Incspa
dc.relation.referencesMenna, C., Asprone, D., Durante, M., Zinno, A., Balsamo, A., & Prota, A. (2015). Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. Construction and Building Materials, 100, 111–121. https://doi.org/10.1016/j.conbuildmat.2015.09.051spa
dc.relation.referencesMera, J., & García, E. (2013). Fabricación de papel artesanal a partir de Fique como fuente de fibra alternativa. Investigación, Tecnología y Ciencia, 15, 31–35spa
dc.relation.referencesMicrosoft. (2016). Excel 2016. USspa
dc.relation.referencesMohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/243947spa
dc.relation.referencesMuñoz, M., Hidalgo, M., & Mina, J. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-Al/fique composite. Polymers, 10(10). https://doi.org/10.3390/polym10101050spa
dc.relation.referencesMuñoz, M., & Mina, J. (2014). Fique Fiber an alternative for reinforced pastics. Influence of surface modification. In Biotecnología en el Sector Agropecuario y Agroindustrial (Vol. 12)spa
dc.relation.referencesPinzón Galvis, S. (2013). Análisis de la resistencia a compresión y fl exión del concreto modifi cado con fi bra de fi que. Retrieved from www.veoverde.com/2009/07/fispa
dc.relation.referencesPradeep, P., Raja, J., Ramachandran, M., & Retnam, S. (2015). Mechanical Characterization of jute fiber over glass and carbon fiber reinforced polymer composites. International Journal of Applied Engineering Research, 10(11), 10392–10396spa
dc.relation.referencesRaju, B., Hiremath, S. R., & Roy Mahapatra, D. (2018, November 15). A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Composite Structures, Vol. 204, pp. 607–619. https://doi.org/10.1016/j.compstruct.2018.07.125spa
dc.relation.referencesRamón Valencia, F., Lopez-Arraiza, A., Múgica, J. I., Aurrekoetxea, J., Suarez, J. C., & Ramón-Valencia, B. (2015). Influence of seawater immersion in low energy impact behavior of a novel colombian fique fiber reinforced bio-resin laminate. DYNA, 82(194), 170–177. https://doi.org/10.15446/dyna.v82n194.48622spa
dc.relation.referencesRibot, N. M. H., Ahmad, Z., Mustaffa, N. K., & Alam, S. (2011). Mechanical propertise of Kenaf fiber composite using co-Cured in-line fiber joint. International Journal of Engineering Science and Technology (IJEST), ISSN, 3(4), 975–5462spa
dc.relation.referencesSegura, J. (2011). Estructuras de concreto I. Bogotá: Universidad Nacional de Colombiaspa
dc.relation.referencesSegurado, J. (2004). Micromecánica computacional de materiales compuestos reforzados con partículas. Universidad Politécnica de Madridspa
dc.relation.referencesSen, T., & Reddy, H. (2013). Strengthening of RC Beams in Flexure Using Natural Jute Fibre Textile Reinforced Composite System and its Comparative Study with CFRP and GFRP Strengthening System. International Journal of Sustainable Bult Environment, 2, 41–55spa
dc.relation.referencesSen, Tara, & Reddy, H. N. J. (2013). Pretreatment of woven jute FRP composite and its use in strengthening of reinforced concrete beams in flexure. Advances in Materials Science and Engineering, 2013. https://doi.org/10.1155/2013/128158spa
dc.relation.referencesSilva, F. de A., Chawla, N., & Filho, R. D. de T. (2008). Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology, 68(15–16), 3438–3443. https://doi.org/10.1016/j.compscitech.2008.10.001spa
dc.relation.referencesSowndharya, D., Kathirvel, M., & Yuvaraj, K. (2019). Strengthening of RC Beam using Numerous Natural Fibre Laminates - a Review. (September)spa
dc.relation.referencesSpiegel, M. (1997). Estadística (2nd ed.). Madrid: Mc Graw Hillspa
dc.relation.referencesSreekumar, P. (2008). Matrices for natural-fiber reinforced composites. Woodhead Publishing in Materials, 2spa
dc.relation.referencesTeles, M. C. A., Altoé, G. R., Netto, P. A., Colorado, H., Margem, F. M., & Monteiro, S. N. (2015). Fique fiber tensile elastic modulus dependence with diameter using the weibull statistical analysis. Materials Research, 18, 193–199. https://doi.org/10.1590/1516-1439.364514spa
dc.relation.referencesTicoalu, A., Aravinthan, T., & Cardona, F. (1997). Gathering in Chicago. Editor and Publisher, 130(17), 13-X1spa
dc.relation.referencesTong, F. S., Chin, S. C., Doh, S. I., & Gimbun, J. (2017). Natural Fiber Composites as Potential External Strengthening Material – A Review. Indian Journal of Science and Technology, 10(2). https://doi.org/10.17485/ijst/2017/v10i2/110368spa
dc.relation.referencesTudjono, S., Lie, H. A., & Hidayat, B. A. (2015). An experimental study to the influence of fiber reinforced polymer (FRP) confinement on beams subjected to bending and shear. Procedia Engineering, 125, 1070–1075. https://doi.org/10.1016/j.proeng.2015.11.164spa
dc.relation.referencesUribe, J. (2002). Análisis de estructuras. Bogotá: Editorial Escuela Colombiana de Ingenieríaspa
dc.relation.referencesWu, Z., Li, W., & Sakuma, N. (2006). Innovative externally bonded FRP/concrete hybrid flexural members. Composite Structures, 72(3), 289–300. https://doi.org/10.1016/j.compstruct.2004.12.002spa
dc.relation.referencesWullin, Q., Endo, T., & Hirostsu, T. (2010). Structure and properties of composites of highly crystalline cellulose with polypropylene: Effects of polypropylene molecular weigtht. Materials Research, 5spa
dc.relation.referencesYan, L., Su, S., & Chouw, N. (2015). Microstructure, flexural properties and durability of coir fibre reinforced concrete beams externally strengthened with flax FRP composites. Composites Part B: Engineering, 80, 343–354. https://doi.org/10.1016/j.compositesb.2015.06.011spa
dc.relation.referencesZakikhani, P., Zahari, R., & Sultan, M. (2014). Bamboo Fibre Extraction and Reinforced Polymer Composite Material. International Journal of Chemical, Nuclear, Materials Ans Metallurgical Enggineering, 8spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificiosspa
dc.subject.lembConstrucciones compuestasspa
dc.subject.lembComposite constructioneng
dc.subject.lembIngeniería de estructurasspa
dc.subject.lembStructural engineeringeng
dc.subject.proposalFibras de fiquespa
dc.subject.proposalFique fiberseng
dc.subject.proposalfibras naturalesspa
dc.subject.proposalnatural fiberseng
dc.subject.proposalmateriales compuestosspa
dc.subject.proposalcomposite materialseng
dc.subject.proposalmatriz epóxicaspa
dc.subject.proposalepoxy matrixeng
dc.subject.proposalrefuerzo externospa
dc.subject.proposalexternal reinforcementeng
dc.subject.proposalreforzamiento en vigasspa
dc.subject.proposalbeam reinforcementeng
dc.titleMaterial compuesto epóxico/fique, como refuerzo externo en elementos de concreto sometidos a flexiónspa
dc.title.translatedEpoxy/fique composite material, as external reinforcement in concrete elements subjected to flexioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030616003.2023.pdf
Tamaño:
3.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: