Caracterización morfológica, bioquímica y molecular de cuatro accesiones de Cannabis sativa L.

dc.contributor.advisorSarmiento Salazar, Felipe
dc.contributor.advisorDarghan, Aquiles Enrique
dc.contributor.authorRomero Betancourt, Juan David
dc.contributor.researchgroupIngeniería Genética de Plantasspa
dc.date.accessioned2022-09-06T15:26:49Z
dc.date.available2022-09-06T15:26:49Z
dc.date.issued2021
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractCannabis sativa L. es una planta herbácea que recientemente ha ganado atención en el sector agrícola colombiano gracias a la legalización de su cultivo con fines medicinales e industriales. En el presente estudio se realizó la caracterización morfológica, bioquímica y molecular de cuatro accesiones de Cannabis sativa L en los departamentos colombianos de Santander, Cundinamarca y Valle del cauca. Las variables morfológicas se registraron en las etapas de plántula, floración y poscosecha. La cuantificación de cannabinoides se realizó mediante cromatografía líquida de ultra eficiencia (UHPLC), y finalmente la caracterización molecular comprendió la genotipificación y secuenciación de los genes THCA sintasa / CBD sintasa. Los análisis estadísticos evidenciaron la falta de homogeneidad y distinguibilidad de las accesiones en la mayoría de las variables evaluadas. El contenido de cannabinoides mostró amplios intervalos de variación para la media dentro y entre las accesiones, y en el caso específico del contenido de tetrahidrocannabinol los promedios siempre superaron el límite de concentración establecido por la legislación colombiana. Las genotipificación mediante marcadores moleculares mostró una gran mayoría de pools heterocigotos, seguidos de homocigotos para CBDA sintasa y solo dos homocigotos para THCA sintasa. La secuenciación de los genes CBDA/THCA sintasa reveló la presencia de polimorfismos que afectan la eficiencia de la enzima que codifican, lo cual repercute sobre los niveles de acumulación de cannabinoides. Según estos resultados no es posible definir como variedades los materiales evaluados en este estudio ya que es evidente la heterogeneidad al interior de cada accesión, de forma alternativa, se propone una nueva clasificación de los individuos en tres grupos producto del análisis de clúster, la cual fue consistente para variables morfológicas, y variables de rendimiento. La metodología aquí reportada complementa el protocolo de caracterización morfológica propuesto por el Instituto Colombiano Agropecuario (ICA) y permite la identificación de diferencias no evidentes que afectan de forma significativa el criterio de clasificación de variedades vegetales. (Texto tomado de la fuente)spa
dc.description.abstractCannabis sativa L. is an herbaceous plant that has recently gained attention in the Colombian agricultural sector thanks to the legalization of its cultivation for medicinal and industrial purposes. In the present study, the morphological, biochemical and molecular characterization of four accessions of Cannabis sativa L was carried out in the Colombian departments of Santander, Cundinamarca and Valle del cauca. Morphological variables were recorded in the seedling, flowering and postharvest stages. The quantification of cannabinoids was carried out using ultra high performance liquid chromatography (UHPLC), and finally the molecular characterization included the genotyping and sequencing of the THCA synthase / CBD synthase alleles of the B locus. the accessions in most of the variables evaluated. The cannabinoid content showed wide ranges of variation for the mean within and between the accessions, and in the specific case of the tetrahydrocannabinol content, the averages always exceeded the concentration limit established by Colombian legislation. Molecular marker genotyping showed a large majority of heterozygous pools, followed by homozygous for CBDA synthase and only two homozygous for THCA synthase. The sequencing of the CBDA / THCA synthase alleles shows the presence of polymorphisms that affect the efficiency of the enzyme they encode, which is directly related with cannabinoid accumulation levels. According to these results, it is not possible to define the accessions evaluated in this study as varieties, since the heterogeneity within each accession is evident, alternatively, a three group classification of the individuals is presented according to cluster analysis. The methodology reported here complements the morphological characterization protocol proposed by the Instituto Colombiano Agropecuario (ICA) and allows the identification of non-evident differences that significantly represent the criterion for the classification of plant varieties.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaGenéticaspa
dc.format.extent191 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82259
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Biologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAli, I., Aboul-enein, H. Y., & Cazes, J. (2014). Journal of Liquid Chromatography & A JOURNEY FROM MIKHAIL TSWETT TO NANO-LIQUID CHROMATOGRAPHY. Journal of Liquid Chromatography & Relatedspa
dc.relation.referencesAndre, C. M., Hausman, J., & Guerriero, G. (2016). Cannabis sativa : The Plant of the Thousand and One Molecules. 7(February), 1–17. https://doi.org/10.3389/fpls.2016.00019spa
dc.relation.referencesAPG. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG IV. 1–20.spa
dc.relation.referencesArbo, M., Gonzalez, M., Ocanto, N., Cáceres, A., Popoff, O., Rojas, J., … Sosa, M. (2019). Morfología de Plantas Vasculares (M. Arbo & S. Ferrucci, Eds.). Cahco-Corrientes- Argentina: FACULTAD DE CIENCIAS AGRARIAS. UNIVERSIDAD NACIONAL DEL NORDESTE.spa
dc.relation.referencesBewley-Taylor, D., Blickman, T., & Jelsma, M. (2014). The Rise and Decline of Cannabis Prohibition. Jubels, Amsterdam.spa
dc.relation.referencesBorna, T., Salami, S. A., & Shokrpour, M. (2017). High resolution melting curve analysis revealed SNPs in major cannabinoid genes associated with drug and non-drug types of Cannabis. Biotechnology and Biotechnological Equipment, 31(4), 839–845. https://doi.org/10.1080/13102818.2017.1333456spa
dc.relation.referencesBrenneisen, R. (2007). Chemistry and analysis of phytocannabinoids and other Cannabis constituents. In In Marijuana and the Cannabinoids (pp. 17–49). Humana Press.spa
dc.relation.referencesCampbell, L. G., Peach, K., & Wizenberg, S. B. (2021). Dioecious hemp ( Cannabis sativa L .) plants do not express significant sexually dimorphic morphology in the seedling stage. Scientific Reports,spa
dc.relation.referencesCampiglia, E., Radicetti, E., & Mancinelli, R. (2017). Plant density and nitrogen fertilization affect agronomic performance of industrial hemp ( Cannabis sativa L .) in Mediterranean environment. Industrial Crops & Products, 100, 246–254. https://doi.org/10.1016/j.indcrop.2017.02.022spa
dc.relation.referencesCascini, F., Passerotti, S., Boschi, I., Legale, M., Cuore, S., & Sanita, I. (2013). Analysis of THCA synthase gene expression in Cannabis : A preliminary study by real-time quantitative PCR. Forensic Science International, 231(1–3), 208–212. https://doi.org/10.1016/j.forsciint.2013.05.019spa
dc.relation.referencesCastillo Murcia, Fernanda. Súarez Devia, A. (2020). LOS REFERENTES DEL CULTIVO, PRODUCCION Y COMERCIALIZACION DE CANNABIS MEDICINAL EN COLOMBIA. UNIVERSIDAD TECNOLOGICA Y PEDAGOGICA DE COLOMBIA.spa
dc.relation.referencesChandra, S., Lata, H., & ElSohly, M. (2017). Cannabis sativa L. - Botany and Biotechnology. In Springer. https://doi.org/10.1007/978-3-319-54564-6spa
dc.relation.referencesCitti, C., Linciano, P., Panseri, S., Vezzalini, F., Forni, F., Vandelli, M. A., … Stewart, D. (2019). Cannabinoid Profiling of Hemp Seed Oil by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. 10(February), 1–17. https://doi.org/10.3389/fpls.2019.00120spa
dc.relation.referencesClarke, B. R. C., & Merlin, M. D. (2018). CANNABIS TAXONOMY : The ‘Sativa’ Vs . “Indica” debate. (January).spa
dc.relation.referencesClarke, R. C. (1981). Marijuana Botany An Advanced Study: The Propagation and Breeding of Distinctive Cannabis. Ronin publishing.spa
dc.relation.referencesClarke, R. C., & Merlin, M. D. (2016). Cannabis Domestication, Breeding History, Present-day Genetic Diversity, and Future Prospects. Critical Reviews in Plant Sciences, 35(5–6), 293–327. https://doi.org/10.1080/07352689.2016.1267498spa
dc.relation.referencesCronin, A. H. (2020). Room to Grow : A Comparative Analysis of Cannabis Regulation Models in Europe CANNABIS REGULATION MODELS IN EUROPE. Independent Study Project (ISP) Collection, 3338(1–21).spa
dc.relation.referencesCunningham, G. C. (2021). The State and Cannabis: What is Success? A Comparative Analysis of Cannabis Policy in The United States of America, Uruguay, and Canada. Wright State University.spa
dc.relation.referencesDe Meijer, E., Bagatta, M., Carboni, A., Crucitti, P., Moliterni, C. V. M., Ranalli, P., & Mandolino, G. (2003). The Inheritance of Chemical Phenotype in Cannabis sativa L. Journal of Industrial Hemp, 8(2), 51–72. https://doi.org/10.1300/J237v08n02_04spa
dc.relation.referencesDe Meijer, E. P. M., Hammond, K. M., & Sutton, A. (2009). The inheritance of chemical phenotype in Cannabis sativa L . ( IV ): cannabinoid-free plants. 95–112. https://doi.org/10.1007/s10681-009-9894-7spa
dc.relation.referencesDe Meijer, E., van der Kamp, H. J., & van Eeuwijk, F. A. (1992). Characterisation of Cannabis accessions with regard to cannabinoid content in relation to other plant characters. Euphytica, 62(3), 187–200. https://doi.org/10.1007/BF00041753spa
dc.relation.referencesDe Meijer, M. E. P. M., Hammond, K. M., & Micheler, M. (2009). The inheritance of chemical phenotype in Cannabis sativa L . ( III ): variation in cannabichromene proportion. 293–311. https://doi.org/10.1007/s10681-008-9787-1spa
dc.relation.referencesDecorte, Simon Lenton, C. W. (2020). Legalizing Cannabis Experiences, Lessons and Scenarios. Abingdon, Oxon; New York: Routledge.spa
dc.relation.referencesFaeti, V., Mandolino, G., & Ranalli, P. (1996). Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breeding, 115(5), 367–370. https://doi.org/10.1111/j.1439-0523.1996.tb00935.xspa
dc.relation.referencesFaeti, F. V. (1999). Identification of DNA markers linked to the male sex in dioecious hemp ( Cannabis sativa L .). 86–92.spa
dc.relation.referencesFarag, S., & Kayser, O. (2017). Chapter 1 - The Cannabis Plant: Botanical Aspects. 3–12. https://doi.org/10.1016/B978-0-12-800756-3/00001-6spa
dc.relation.references, M. P., & Clarke, R. C. (2015). Physical evidence for the antiquity of Cannabis sativa L . (January 1998).spa
dc.relation.referencesFulvio, F., Paris, R., Montanari, M., Citti, C., Cilento, V., Bassolino, L., … Mandolino, G. (2021). Analysis of Sequence Variability and Transcriptional Profile of Cannabinoid synthase Genes in Cannabis sativa L . Chemotypes with a Focus on Cannabichromenic acid synthase.spa
dc.relation.referencesGarfinkel, A. R., Otten, M., & Crawford, S. (2021). SNP in Potentially Defunct Tetrahydrocannabinolic Acid Synthase Is a Marker for Cannabigerolic Acid Dominance in.spa
dc.relation.referencesGhebreyesus, T. A. (2019). Expert Committee on Drug Dependence (ECDD) recommendations about Cannabis (pp. 1–3). pp. 1–3. World Health Organization.spa
dc.relation.referencesGrassa, C. J., Wenger, J. P., Dabney, C., Poplawski, S. G., Motley, S. T., Michael, T. P., … Weiblen, G. D. (2018). A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content. BioRxiv, 1–31. https://doi.org/10.1101/458083spa
dc.relation.referencesGrof, C. P. L. (2018). Cannabis, from plant to pill. British Journal of Clinical Pharmacology, 84(11), 2463–2467. https://doi.org/10.1111/bcp.13618spa
dc.relation.referencesCunningham, G. C. (2021). The State and Cannabis: What is Success? A Comparative Analysis of Cannabis Policy in The United States of America, Uruguay, and Canada. Wright State University.Forensic Science International, 299, 142–150. https://doi.org/10.1016/j.forsciint.2019.03.046spa
dc.relation.referencesHillig, K. (2004). A chemotaxonomic analysis of terpenoid variation in Cannabis. 32, 875–891. https://doi.org/10.1016/j.bse.2004.04.004spa
dc.relation.referencesHillig, K. (2005). A S YSTEMATIC I NVESTIGATION OF C ANNABIS. Indiana University.spa
dc.relation.referencesHillig, K. (2016). A Multivariate Analysis of Allozyme Variation in 93 Cannabis Accessions from the VIR Germplasm Collection A Multivariate Analysis of Allozyme Variation in 93 Cannabis Accessions from the VIR Germplasm Collection. 7881(March). https://doi.org/10.1300/J237v09n02spa
dc.relation.referencesICA. (2004). GUÍA PARA LA PRESENTACIÓN DE INFORMES DE PRUEBAS DE EVALUACIÓN AGRONÓMICA (pp. 1–16). pp. 1–16. Bogotá, Colombia.spa
dc.relation.referencesICA. (2017). LEGISLACIÓN SOBRE PROTECCIÓN A LOS DERECHOS DE OBTENTORES DE VARIEDADES VEGETALES (pp. 1–80). pp. 1–80. Bogotá, Colombia.spa
dc.relation.referencesICA. (2020a). Protocolo para la ejecución de pruebas de evaluación agronómica (pp. 1–7). pp. 1–7. Bogotá, Colombia: Instituto Colombiano Agropecuario.spa
dc.relation.referencesICA. (2020b). Resolución 067516 (pp. 1–22). pp. 1–22. Bogotá, Colombia: Instituto Colombiano Agropecuario.spa
dc.relation.referencesIglesias Estupiñan, C., & Cifuentes Lozano, H. (2021). Estudio de Prefactibilidad para una Planta de Producción y Comercialización de Cannabis Medicinal en Pereira, Risaralda. Universidad EAFIT.spa
dc.relation.referencesJaramillo, S., & Vélez, F. (2021). CANNABIS MEDICINAL COMO MOTOR DE DESARROLLO DEL VALLE DEL CAUCA. Colegio de Estudios Superiores de Administración – CESA.spa
dc.relation.referencesJin, D., Dai, K., Xie, Z., & Jie, C. (2020). Secondary Metabolites Profiled in Cannabis Inflorescences , Leaves , Stem Barks , and Roots for Medicinal Purposes. 1–14. https://doi.org/10.1038/s41598-020-60172-6spa
dc.relation.referencesKojoma, M., Seki, H., & Yoshida, S. (2006). DNA polymorphisms in the tetrahydrocannabinolic acid ( THCA ) synthase gene in ‘“ drug-type ”’ and ‘“ fiber-type ”’ Cannabis sativa L . 159, 132–140. https://doi.org/10.1016/j.forsciint.2005.07.005spa
dc.relation.referencesKrawitz, M. A. (2021). History , science , and politics of international Cannabis scheduling , History , science , and politics. FAAAT editions.spa
dc.relation.referencesLar, E. (2016). Cannabis A botanical guide to the Cannabis plant. Retrieved from https://www.behance.net/gallery/38009975/CANNABIS-a-botanical-guidespa
dc.relation.referencesLata, H., Chandra, S., Khan, I. A., & ElSohly, M. A. (2017). Micropropagation of Cannabis sativa L.—an update. In Cannabis sativa L.-Botany and Biotechnology (pp. 285–297). Springer.spa
dc.relation.referencesLawler, A. (2019). Oldest evidence of marijuana use discovered in 2500-year-old cemetery in peaks of western China. Science. https://doi.org/10.1126/science.aay3693spa
dc.relation.referencesLazarjani, M. P., Torres, S., Hooker, T., Fowlie, C., Young, O., & Seyfoddin, A. (2020). Methods for quantification of cannabinoids : a narrative review. 2.spa
dc.relation.referencesLeizer, C. (n.d.). The Composition of Hemp Seed Oil and Its Potential as an Important Source of Nutrition.spa
dc.relation.referencesLópez, A. (2021). El control del Cannabis : de las políticas nacionales al régimen global. Desafíos, 33(1), 1–29. https://doi.org/https://doi.org/10.12804spa
dc.relation.referencesLynch, R. C., Vergara, D., Tittes, S., White, K., Schwartz, C. J., Gibbs, M. J., … Kane, N. C. (2017). Critical Reviews in Plant Sciences Genomic and Chemical Diversity in Cannabis. Critical Reviews in Plant Sciences, 35(5–6), 349–363. https://doi.org/10.1080/07352689.2016.1265363spa
dc.relation.referencesMcpartland, J. M. (2018). Cannabis Systematics at the Levels of Family , Genus , and Species. 3, 203–212. https://doi.org/10.1089/can.2018.0039spa
dc.relation.referencesMcPartland, J. M. (2017). Cannabis sativa and Cannabis indica versus “Sativa” and “Indica.” In Cannabis sativa L.-botany and biotechnology (pp. 101–121). Springer, Cham.spa
dc.relation.referencesMcpartland, J. M., & Guy, G. W. (2017). Models of Cannabis Taxonomy , Cultural Bias , and Conflicts between Scientific and Vernacular Names Models of Cannabis Taxonomy , Cultural Bias , and Conflicts between Scientific and Vernacular Names. (December 2018). https://doi.org/10.1007/s12229-017-9187-0spa
dc.relation.referencesMcpartland, J. M., Guy, G. W., & Hegman, W. (2018). Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age : a probabilistic synthesis of fossil pollen studies Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age : a probabilistic synthesis of fossil pollen studies. Vegetation History and Archaeobotany, 27(4), 635–648. https://doi.org/10.1007/s00334-018-0678-7spa
dc.relation.referencesMcpartland, J. M., Hegman, W., & Long, T. (2019). Cannabis in Asia : its center of origin and early cultivation , based on a synthesis of subfossil pollen and archaeobotanical studies. Vegetation History and Archaeobotany, (0123456789). https://doi.org/10.1007/s00334-019-00731-8spa
dc.relation.referencesMechoulam, R., & Parker, L. A. (2013). The Endocannabinoid System and the Brain. Annual Review of Psychology, 62, 21–47. https://doi.org/10.1146/annurev-psych-113011-143739spa
dc.relation.referencesMediavilla, V. (2015). Decimal code for growth stages of hemp ( Cannabis sativa L .). (January 1998).spa
dc.relation.referencesMeijer, E. P. M. De, & Hammond, K. M. (2005). The inheritance of chemical phenotype in Cannabis sativa L . ( II ): Cannabigerol predominant plants. 31, 189–198. https://doi.org/10.1007/s10681-005-1164-8spa
dc.relation.referencesMeyer, R. V. (2004). Practical High-Performance Liquid Chromatography Fourth Edition (Fourth edi). JOHN WILEY & SONS.spa
dc.relation.referencesMeza-joya, F. L., & Torres, M. (2016). Spatial diversity patterns of Pristimantis frogs in the Tropical Andes. https://doi.org/10.1002/ece3.1968spa
dc.relation.referencesMinJusticia. (2021). Listado de pequeños y medianos cultivadores. Ministerio de Justicia de Colombia.spa
dc.relation.referencesMinsalud. (2017). Decreto 613 de 2017 (pp. 1–35). pp. 1–35. Bogotá: Ministerio de salud y protección social - República de Colombia.spa
dc.relation.referencesMinsalud. (2021). Decreto 811 de 2021 (pp. 1–59). pp. 1–59. Ministerio de salud y protección social - República de Colombia.spa
dc.relation.referencesMohamed M. Radwan, Amira S. Wanas, S. C., & ElSohly, and M. A. (2017). Natural Cannabinoids of Cannabis and Methods of Analysis. In S. C. • H. Lata. & M. A. ElSohly (Eds.), Cannabis sativa L. - Botany and Biotechnology (Primera ed, pp. 161–182). Springer International Publishing.spa
dc.relation.referencesNahar, L., Onder, A., & Sarker, S. D. (2020). A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010–2019). Phytochemical Analysis, 31(4), 413–457. https://doi.org/10.1002/pca.2906spa
dc.relation.referencesOnofri, C., Meijer, E. P. M. De, & Mandolino, G. (2015). Phytochemistry Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L . and its relationship with chemical phenotype. Phytochemistry, 116, 57–68. https://doi.org/10.1016/j.phytochem.2015.03.006spa
dc.relation.referencesPacifico, D., Miselli, F., Micheler, M., Carboni, A., Ranalli, P., & Mandolino, G. (2006). Genetics and Marker-assisted Selection of the Chemotype in Cannabis sativa Genetics and marker-assisted selection of the chemotype in Cannabis sativa L . (March 2014). https://doi.org/10.1007/s11032-005-5681-xspa
dc.relation.referencesPaz, S. M., Marín-aguilar, F., Gimenez, D. G., & Fernandez-arche, M. A. (2014). Hemp ( Cannabis sativa L .) seed oil : Analytical and phytochemical characterization of unsaponifiable fraction. https://doi.org/10.1021/jf404278qspa
dc.relation.referencesPunja, Z. K., & Holmes, J. E. (2020). Hermaphroditism in Marijuana ( Cannabis sativa L .) Inflorescences – Impact on Floral Morphology , Seed Formation , Progeny Sex Ratios , and Genetic Variation. 11(June), 1–20. https://doi.org/10.3389/fpls.2020.00718spa
dc.relation.referencesQuilichini, T. D., Booth, J. K., Wong, D. C. J., Rensing, K. H., & Livingston, S. J. (2020). Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. 37–56. https://doi.org/10.1111/tpj.14516spa
dc.relation.referencesRaman, V., Lata, H., Chandra, S., Khan, I. A., & ElSohly, M. A. (2017). Morpho-anatomy of marijuana (Cannabis sativa L.). In In Cannabis sativa L.-Botany and Biotechnology (pp. 123–136). Springer.spa
dc.relation.referencesRanalli, P. (2004). Current status and future scenarios of hemp breeding. Euphytica, 140(1–2), 121–131. https://doi.org/10.1007/s10681-004-4760-0spa
dc.relation.referencesReed, J. (1914a). Morphology of Cannabis sativa L. University of Iowa Research, 1–139. Retrieved from https://ir.uiowa.edu/etd/3895spa
dc.relation.referencesReed, J. (1914b). Morphology of Cannabis sativa L.spa
dc.relation.referencesRen, G., Zhang, X., Li, Y., Ridout, K., Serrano-serrano, M. L., Yang, Y., … Nawaz, M. A. (2021). Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. 1–13.spa
dc.relation.referencesRovner, E. S. (2007). LA “ PREHISTORIA ” DE LA MARIHUANA EN COLOMBIA : CONSUMO Y CULTIVOS ENTRE LOS AÑOS 30 Y 60. Cuadernos de Economía, 207–222.spa
dc.relation.referencesSandler, L. N., Beckerman, J. L., Whitford, F., & Gibson, K. A. (2019). Cannabis as conundrum. Crop Protection, 117(November 2018), 37–44. https://doi.org/10.1016/j.cropro.2018.11.003spa
dc.relation.referencesSawler, J., Stout, J. M., Gardner, K. M., Hudson, D., & Vidmar, J. (2015). The Genetic Structure of Marijuana and Hemp The Genetic Structure of Marijuana and Hemp. (August). https://doi.org/10.1371/journal.pone.0133292spa
dc.relation.referencesSchultes, R. I. C. H. A. R. D. E. V. A. N. S., Klein, W. M., Plowman, T., & Lockwood, T. (2011). Cannabis: an example of Taxonomic Neglect. De Gruyter Mouton, 21–38.spa
dc.relation.referencesSirikantaramas, S., & Taura, F. (2017). Cannabinoids: biosynthesis and biotechnological applications. In In Cannabis sativa L.-Botany and Biotechnology (pp. 183–206). Springer, Cham.spa
dc.relation.referencesSmall, E. (2015). Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. Botanical Review, 81(3), 189–294. https://doi.org/10.1007/s12229-015-9157-3spa
dc.relation.referencesSmall, E. (2017). Classification of Cannabis sativa L . in Relation to Agricultural , Biotechnological , Medical and Recreational Utilization. In Cannabis sativa L.-Botany and biotechnology (pp. 1–62). https://doi.org/10.1007/978-3-319-54564-6spa
dc.relation.referencesSoler, S., Gramazio, P., Figàs, M. R., Vilanova, S., Rosa, E., Llosa, E. R., … Prohens, J. (2017). Genetic structure of Cannabis sativa var. indica cultivars based on genomic SSR (gSSR) markers: Implications for breeding and germplasm management. Industrial Crops and Products, 104(December 2016), 171–178. https://doi.org/10.1016/j.indcrop.2017.04.043spa
dc.relation.referencesSpitzer-rimon, B. (2019). Architecture and Florogenesis in Female Cannabis sativa Plants. (April). https://doi.org/10.3389/fpls.2019.00350spa
dc.relation.referencesStaginnus, C., Ph, D., & Siegfried, Z. (2014). A PCR marker Linked to a THCA synthase Polymorphism is a Reliable Tool to Discriminate Potentially THC-Rich Plants of Cannabis sativa L . *. (11). https://doi.org/10.1111/1556-4029.12448spa
dc.relation.referencesTang, K., Struik, P. C., Yin, X., Calzolari, D., Musio, S., Thouminot, C., & Bjelková, M. (2017). A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp ( Cannabis sativa L .) cultivation. Industrial Crops & Products, (March), 0–1. https://doi.org/10.1016/j.indcrop.2017.06.033spa
dc.relation.referencesTang, K., Struik, P. C., Yin, X., Thouminot, C., Bjelková, M., Stramkale, V., & Amaducci, S. (2016). Comparing hemp ( Cannabis sativa L .) cultivars for dual-purpose production under contrasting environments. Industrial Crops & Products, 87, 33–44. https://doi.org/10.1016/j.indcrop.2016.04.026spa
dc.relation.referencesTaxonomy, P. (2012). A Practical and Natural Taxonomy for Cannabis Author ( s ): Ernest Small and Arthur Cronquist Reviewed work ( s ): Published by : International Association for Plant Taxonomy ( IAPT ) Stable URL : http://www.jstor.org/stable/1220524 . 25(4), 405–435.spa
dc.relation.referencesThomas, B. F. (2019). Botany of Cannabis sativa L. In The Botany of Cannabis sativa L . https://doi.org/10.1016/B978-0-12-804646-3.00001-1spa
dc.relation.referencesToth, J. A., Stack, G. M., Cala, A. R., Carlson, C. H., Wilk, R. L., Crawford, J. L., … Smart, L. B. (2020). Development and validation of genetic markers for sex and cannabinoid chemotype in Cannabis sativa L . (December 2019), 213–222. https://doi.org/10.1111/gcbb.12667spa
dc.relation.referencesUNODC. (2009). Recommended methods for the identification and analysis of Cannabis and Cannabis products (S. Dr. Michael Bovens and Mr. Markus Schläpfer, Scientific Forensic Service, Zurich City Police, A. and I. D. S. A. G. for S. M. of A. and N. Z. F. L. (SMANZFL) Ms. Sue Fiddian, Manager, Botany Branch, Forensic Services Department, Victoria Police, C. Mr. Andrew Holmes, Senior Scientific Advisor, Drug Analysis Service, Health Canada, Toronto, T. N. (retired) Dr. Henk Huizer, Drugs Department, Netherlands Forensic Institute, The Hague, M. Mr. A. Kader Jackaria, Forensic Chemist and Toxicologist, S. Dr. Lee Tong Kooi, Division Director, Illicit Drugs and Toxicology Division, Applied Sciences Group, Health Sciences Authority, … U. L. and S. S. also wishes to express its thanks to D. M. B. and M. S. for Revie, Eds.). Vienna, Austria: United Nations publication.spa
dc.relation.referencesUNODC. (2020). CND votes on recommendations for Cannabis and Cannabis-related substances (pp. 1–2). pp. 1–2. Retrieved from https://www.unodc.org/documents/commissions/CND/CND_Sessions/CND_63Reconvened/Press_statement_CND_2_December.pdfspa
dc.relation.referencesUPOV. (2011). Cannabis sativa L. UNIÓN INTERNACIONAL PARA LA PROTECCIÓN DE LAS OBTENCIONES VEGETALES GINEBRA, 1–46spa
dc.relation.referencesVergara, D., Feathers, C., Huscher, E. L., Holmes, B., Haas, J. A., & Kane, N. C. (2021). Widely assumed phenotypic associations in Cannabis sativa lack a shared genetic basis. PeerJ, 1–17. https://doi.org/10.7717/peerj.10672spa
dc.relation.referencesVergara, D., Huscher, E. L., Keepers, K. G., Givens, R. M., Cizek, C. G., Torres, A., … Kane, N. C. (2019). Gene copy number is associated with phytochemistry in Cannabis sativa. 11(6), 1–12. https://doi.org/10.1093/aobpla/plz074spa
dc.relation.referencesWatts, S., Mcelroy, M., Migicovsky, Z., Maassen, H., Velzen, R. Van, & Myles, S. (2021). Cannabis labelling is associated with genetic variation in terpene synthase genes. 7(October). https://doi.org/10.1038/s41477-021-01003-yspa
dc.relation.referencesWelling, M. T., Liu, L., Shapter, T., Raymond, C. A., & King, G. J. (2016). Characterisation of cannabinoid composition in a diverse Cannabis sativa L . germplasm collection. Euphytica, 208(3), 463–475. https://doi.org/10.1007/s10681-015-1585-yspa
dc.relation.referencesWollner, H., Matchett, JR., Levine, J., & Loewe, S. (1942). Isolation of a physiologically active tetrahydrocannabinol from Cannabis sativa resin. Journal of American Society of Chemistry, 465(3), 26–29.spa
dc.relation.referencesZou, S., & Kumar, U. (2018). Cannabinoid Receptors and the Endocannabinoid System : Signaling and Function in the Central Nervous System. International Journal o f Molecular Sciences, 1–23. https://doi.org/10.3390/ijms19030833spa
dc.relation.referencesAbdelaziz, M., Alaoui, E., Melloul, M., & Hakki, E. E. (2016). Study of Moroccan Cannabis sativa DNA polymorphism in the THCA synthase gene from seized Moroccan Cannabis resin ( Hashish ) Study of Moroccan Cannabis sativa DNA polymorphism in the THCA synthase gene from seized Moroccan Cannabis resin ( Hashish ). (April).spa
dc.relation.referencesAndre, C. M., Hausman, J., & Guerriero, G. (2016). Cannabis sativa : The Plant of the Thousand and One Molecules. 7(February), 1–17. https://doi.org/10.3389/fpls.2016.00019spa
dc.relation.referencesBrenneisen, R. (2007). Chemistry and analysis of phytocannabinoids and other Cannabis constituents. In In Marijuana and the Cannabinoids (pp. 17–49). Humana Press.spa
dc.relation.referencesCampbell, B. J., Berrada, A. F., Hudalla, C., Amaducci, S., & Mckay, J. K. (2019). Genotype × Environment Interactions of Industrial Hemp Cultivars Highlight Diverse Responses to Environmental Factors. 180057. https://doi.org/10.2134/age2018.11.0057spa
dc.relation.referencesCascini, F., Farcomeni, A., Migliorini, D., Baldassarri, L., Boschi, I., Martello, S., … Bernardi, J. (2019). Highly Predictive Genetic Markers Distinguish Drug-Type from Fiber-Type Cannabis sativa L. MDPI Plants, 1–12.spa
dc.relation.referencesDanziger, N., & Bernstein, N. (2021). Shape Matters : Plant Architecture Affects Chemical Uniformity in Large-Size Medical Cannabis Plants.spa
dc.relation.referencesDe Meijer, E., Bagatta, M., Carboni, A., Crucitti, P., Moliterni, C. V. M., Ranalli, P., & Mandolino, G. (2003). The Inheritance of Chemical Phenotype in Cannabis sativa L. Journal of Industrial Hemp, 8(2), 51–72. https://doi.org/10.1300/J237v08n02_04spa
dc.relation.referencesDe Meijer, E. P. M. ., & Hammond, K. M. (2016). The inheritance of chemical phenotype in Cannabis sativa L . ( V ): regulation of the propyl- / pentyl cannabinoid ratio , completion of a genetic model. Euphytica, (V). https://doi.org/10.1007/s10681-016-1721-3spa
dc.relation.referencesDe Meijer, E., van der Kamp, H. J., & van Eeuwijk, F. A. (1992). Characterisation of Cannabis accessions with regard to cannabinoid content in relation to other plant characters. Euphytica, 62(3), 187–200. https://doi.org/10.1007/BF00041753spa
dc.relation.referencesDehnavi, M. M., Ebadi, A., Peirovi, A., Taylor, G., & Salami, S. A. (2022). THC and CBD Fingerprinting of an Elite Cannabis Collection from Iran : Quantifying Diversity to Underpin Future Cannabis Breeding.spa
dc.relation.referencesEdgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 1–19.spa
dc.relation.referencesEdgar, R. C., Drive, R. M., & Valley, M. (2004). MUSCLE : multiple sequence alignment with high accuracy and high throughput. 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340spa
dc.relation.referencesFaeti, V., Mandolino, G., & Ranalli, P. (1996). Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breeding, 115(5), 367–370. https://doi.org/10.1111/j.1439-0523.1996.tb00935.xspa
dc.relation.referencesFaeti, F. V. (1999). Identification of DNA markers linked to the male sex in dioecious hemp ( Cannabis sativa L .). 86–92.spa
dc.relation.referencesGarfinkel, A. R., Otten, M., & Crawford, S. (2021). SNP in Potentially Defunct Tetrahydrocannabinolic Acid Synthase Is a Marker for Cannabigerolic Acid Dominance in.spa
dc.relation.referencesGrassa, C. J., Weiblen, G. D., Wenger, J. P., Dabney, C., Poplawski, S. G., Motley, S. T., … Michael, T. P. (2021). A new Cannabis genome assembly associates elevated cannabid- iol ( CBD ) with hemp introgressed into marijuana. 1665–1679. https://doi.org/10.1111/nph.17243spa
dc.relation.referencesGülck, T., & Møller, B. L. (2020). Phytocannabinoids : Origins and Biosynthesis. 25(10), 985–1004. https://doi.org/10.1016/j.tplants.2020.05.005spa
dc.relation.referencesKojoma, M., Seki, H., & Yoshida, S. (2006). DNA polymorphisms in the tetrahydrocannabinolic acid ( THCA ) synthase gene in ‘“ drug-type ”’ and ‘“ fiber-type ”’ Cannabis sativa L . 159, 132–140. https://doi.org/10.1016/j.forsciint.2005.07.005spa
dc.relation.referencesLaverty, K. U., Stout, J. M., Sullivan, M. J., Shah, H., Gill, N., Holbrook, L., … Bakel, H. Van. (2019). A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC / CBD acid synthase loci. 146–156. https://doi.org/10.1101/gr.242594.118.spa
dc.relation.referencesLynch, R. C., Vergara, D., Tittes, S., White, K., Schwartz, C. J., Gibbs, M. J., … Kane, N. C. (2017). Critical Reviews in Plant Sciences Genomic and Chemical Diversity in Cannabis. Critical Reviews in Plant Sciences, 35(5–6), 349–363. https://doi.org/10.1080/07352689.2016.1265363spa
dc.relation.referencesMohamed M. Radwan, Amira S. Wanas, S. C., & ElSohly, and M. A. (2017). Natural Cannabinoids of Cannabis and Methods of Analysis. In S. C. • H. Lata. & M. A. ElSohly (Eds.), Cannabis sativa L. - Botany and Biotechnology (Primera ed, pp. 161–182). Springer International Publishing.spa
dc.relation.referencesOnofri, C., & Mandolino, G. (2017). (2017). Genomics and Molecular Markers in Cannabis sativa L. In In Cannabis sativa L.-botany and biotechnolog (p. Springer, Cham.).spa
dc.relation.referencesOnofri, C., Meijer, E. P. M. De, & Mandolino, G. (2015). Phytochemistry Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L . and its relationship with chemical phenotype. Phytochemistry, 116, 57–68. https://doi.org/10.1016/j.phytochem.2015.03.006spa
dc.relation.referencesPacifico, D., Miselli, F., Micheler, M., Carboni, A., Ranalli, P., & Mandolino, G. (2006). Genetics and marker-assisted selection of the chemotype in Cannabis sativa L. Molecular Breeding, 17(3), 257–268. https://doi.org/10.1007/s11032-005-5681-xspa
dc.relation.referencesPark, S. H., Pauli, C. S., Gostin, E. L., Staples, S. K., Seifried, D., Kinney, C., & Heuvel, B. D. Vanden. (2022). Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp ( Cannabis sativa L .). Journal of Cannabis Research, 1–13. https://doi.org/10.1186/s42238-021-00111-yspa
dc.relation.referencesQuilichini, T. D., Booth, J. K., Wong, D. C. J., Rensing, K. H., & Livingston, S. J. (2020). Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. 37–56. https://doi.org/10.1111/tpj.14516spa
dc.relation.referencesRigault, P. (2020). The Genomics of Cannabis and Its Close Relatives. (June). https://doi.org/10.1146/annurev-arplant-081519-040203spa
dc.relation.referencesSchwabe, A. L., Hansen, C. J., Hyslop, R. M., & Mcglaughlin, M. E. (2021). Comparative Genetic Structure of Cannabis sativa Including Federally Produced , Wild Collected , and Cultivated Samples. 12(September). https://doi.org/10.3389/fpls.2021.675770spa
dc.relation.referencesSirikantaramas, S., & Taura, F. (2017). Cannabinoids: biosynthesis and biotechnological applications. In In Cannabis sativa L.-Botany and Biotechnology (pp. 183–206). Springer, Cham.spa
dc.relation.referencesSirikantaramas, S., Morimoto, S., Shoyama, Y., Ishikawa, Y., Wada, Y., Shoyama, Y., & Taura, F. (2004). The Gene Controlling Marijuana Psychoactivity. 279(38), 39767–39774. https://doi.org/10.1074/jbc.M403693200spa
dc.relation.referencesSmall, E. (2015). Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. Botanical Review, 81(3), 189–294. https://doi.org/10.1007/s12229-015-9157-3spa
dc.relation.referencesStaginnus, C., Ph, D., & Siegfried, Z. (2014). A PCR marker Linked to a THCA synthase Polymorphism is a Reliable Tool to Discriminate Potentially THC-Rich Plants of Cannabis sativa L . *. (11). https://doi.org/10.1111/1556-4029.12448spa
dc.relation.referencesTahir, M. N., Shahbazi, F., Rondeau-gagné, S., & Trant, J. F. (2021). The biosynthesis of the cannabinoids.spa
dc.relation.referencesTaura, F., Sirikantaramas, S., Shoyama, Y., Yoshikai, K., Shoyama, Y., & Morimoto, S. (2007). Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Letters, 581(16), 2929–2934. https://doi.org/10.1016/j.febslet.2007.05.043spa
dc.relation.referencesToth, J. A., Smart, L. B., Smart, C. D., Carlson, C. H., Philippe, G., Rose, J. K. C., & Stack, G. M. (2021). Limited effect of environmental stress on cannabinoid profiles in cannabidiol hemp ( Cannabis sativa L .). (June), 1666–1674. https://doi.org/10.1111/gcbb.12880spa
dc.relation.referencesVelzen, R. Van, & Schranz, M. E. (2021). Origin and Evolution of the Cannabinoid Oxidocyclase Gene. 13(June), 1–18. https://doi.org/10.1093/gbe/evab130spa
dc.relation.referencesWelling, M. T., Liu, L., Shapter, T., Raymond, C. A., & King, G. J. (2016). Characterisation of cannabinoid composition in a diverse Cannabis sativa L . germplasm collection. Euphytica, 208(3), 463–475. https://doi.org/10.1007/s10681-015-1585-yspa
dc.relation.referencesCampbell LG, Naraine SGU, D. J. (2019). Phenotypic plasticity influences the success of clonal propagation in industrial pharmaceutical Cannabis sativa. 1–15.spa
dc.relation.referencesDe Meijer, E., van der Kamp, H. J., & van Eeuwijk, F. A. (1992). Characterisation of Cannabis accessions with regard to cannabinoid content in relation to other plant characters. Euphytica, 62(3), 187–200. https://doi.org/10.1007/BF00041753spa
dc.relation.referencesGrassa, C. J., Weiblen, G. D., Wenger, J. P., Dabney, C., Poplawski, S. G., Motley, S. T., … Michael, T. P. (2021). A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. 1665–1679. https://doi.org/10.1111/nph.17243spa
dc.relation.referencesVelzen, R. Van, & Schranz, M. E. (2021). Origin and Evolution of the Cannabinoid Oxidocyclase Gene. 13(June), 1–18. https://doi.org/10.1093/gbe/evab130spa
dc.relation.referencesWen, |Chi-Kuang, & Zhang, Y. (2019). Statistics as Part of Scientific Reasoning in Plant Sciences : Overlooked Issues and Recommended Solutions. Molecular Plant, (January), 7–9. https://doi.org/10.1016/j.molp.2018.11.001spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocCannabis sativa
dc.subject.agrovocGenotipos
dc.subject.agrovocgenotypes
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalCannabis sativa Lspa
dc.subject.proposalCannabis sativa Leng
dc.subject.proposalFenotipospa
dc.subject.proposalPhenotypeeng
dc.subject.proposalUHPLCspa
dc.subject.proposalUHPLCeng
dc.subject.proposalTHCspa
dc.subject.proposalTHCeng
dc.subject.proposalCBDspa
dc.subject.proposalCBDeng
dc.subject.proposalGenotipospa
dc.subject.proposalGenotypeeng
dc.subject.proposalSNPspa
dc.subject.proposalSNPeng
dc.titleCaracterización morfológica, bioquímica y molecular de cuatro accesiones de Cannabis sativa L.spa
dc.title.translatedMorphological, biochemical and molecular characterization of four accessions of Cannabis sativa L.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023911851.2022.pdf
Tamaño:
5.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tésis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: