Algebraic properties of weak quantum symmetries

dc.contributor.advisorChelsea, Walton
dc.contributor.advisorMilton Armando, Reyes Villamil
dc.contributor.authorCalderón Mateus, Fabio Alejandro
dc.contributor.orcidCalderón, Fabio [0000-0003-1777-0805]spa
dc.date.accessioned2023-07-31T19:42:30Z
dc.date.available2023-07-31T19:42:30Z
dc.date.issued2023-07-24
dc.description.abstractThis thesis investigates the properties of weak bialgebras and weak Hopf algebras, their (co)representations, and applications in groupoids, path algebras, and Lie algebroids. The research employs algebraic and categorical techniques to explore the foundational properties of these structures, establishing connections between algebraic and categorical frameworks, and addressing open problems related to their actions on noncommutative graded algebras. By combining theoretical findings and practical examples, this work enhances our understanding of weak Hopf algebras as symmetry generators and their broader implications in various mathematical contexts. Our results contribute to the field of noncommutative algebra and Hopf algebras, paving the way for future research in these areas. (Texto tomado de la fuente)eng
dc.description.abstractEsta tesis investiga las propiedades de las biálgebras débiles (weak bialgebras) y las álgebras de Hopf débiles (weak Hopf algebras), sus (co)representaciones y aplicaciones en groupoides, álgebras de caminos y álgebroides de Lie. La investigación emplea técnicas algebraicas y categóricas para explorar las propiedades fundamentales de estas estructuras, estableciendo conexiones entre los marcos algebraicos y categóricos, y abordando problemas abiertos relacionados con sus acciones en álgebras graduadas no conmutativas. Combinando hallazgos teóricos y ejemplos prácticos, este trabajo mejora nuestra comprensión de las álgebras de Hopf débiles como generadores de simetrías y sus implicaciones más amplias en diversos contextos matemáticos. Nuestros resultados contribuyen al campo del álgebra no conmutativa y las álgebras de Hopf, allanando el camino para futuras investigaciones en estas áreas.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.format.extentvii, 79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84376
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesM. Alves, E. Batista, and J. Vercruysse. Partial representations of hopf algebras. J. Algebra, 426:137–187, 2015.spa
dc.relation.referencesN. Andruskiewitsch, W. R. Ferrer-Santos, and H. J. Schneider, editors. New trends in Hopf algebra theory. Proceedings of the Colloquium on Quantum Groups and Hopf Algebras held in La Falda, August 9–13, 1999, volume 267 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 2000.spa
dc.relation.referencesI. Assem, A. Skowronski, and D. Simson. Elements of the representation theory of associative algebras. Vol. 1: Techniques of representation theory, volume 65 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2006.spa
dc.relation.referencesG. Böhm. Hopf Algebras and Their Generalizations from a Category Theoretical Point of View, volume 2226 of Lecture Notes in Mathematics. Springer International Publishing, 2018.spa
dc.relation.referencesY. Bahturin. Identical Relations in Lie Algebras, volume 68 of De Gruyter Expositions in Mathematics. De Gruyter, sec edition, 2021. Translated from the Russian by Bahturin.spa
dc.relation.referencesG. Böhm, S. Caenepeel, and K. Janssen. Weak bialgebras and monoidal categories. Comm. Algebra, 39(12):4584–4607, 2011.spa
dc.relation.referencesM. Artin, W. Schelter, and J. Tate. Quantum deformations of GLn. Comm. Pure Appl. Math., 44(8-9):879–895, 1991spa
dc.relation.referencesT. Brzeziński, S. Caenepeel, and G. Militaru. Doi-Koppinen modules for quantum groupoids. J. Pure Appl. Algebra, 175(1-3):45–62, 2002. Special volume celebrating the 70th birthday of Professor Max Kelly.spa
dc.relation.referencesD. Bagio, D. Florez, and A. Paques. Partial actions of ordered groupoids on rings. J. Algebra Appl., 09(3):501–517, 2010.spa
dc.relation.referencesK. A. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser Basel, 2002.spa
dc.relation.referencesG. Böhm, J. Gómez-Torrecillas, and E. López-Centella. On the category of weak bialgebras. J. Algebra, 399:801–844, 2014.spa
dc.relation.referencesR. Brown, P. J. Higgins, and R. Sivera. Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids. Number 15 in Tracts in Mathematics. EMS Press, 2011.spa
dc.relation.referencesG. Bôhm, F. Nill, and K. Szlachányi. Weak Hopf algebras. I. Integral theory and C*-structure. J. Algebra, 221(2):385–438, 1999.spa
dc.relation.referencesD. Bagio and A. Paques. Partial groupoid actions: Globalization, Morita theory, and Galois theory. Comm. Algebra, 40(10):3658–3678, 2012.spa
dc.relation.referencesM. Brion. Representations of quivers. In Geometric methods in representation theory (I), volume 24 of Séminaires & Congrès: Collection SMF, pages 103–144. Société Mathématique de France, 2012spa
dc.relation.referencesJ. Cuadra, P. Etingof, and C. Walton. Semisimple Hopf actions on Weyl algebras. Adv. Math., 282:47–55, 2015.spa
dc.relation.referencesJ. Cuadra, P. Etingof, and C. Walton. Finite dimensional Hopf actions on Weyl algebras. Adv. Math., 302:25–39, 2016.spa
dc.relation.referencesS. Caenepeel and E. De Groot. Modules over weak entwining structures. In N. Andruskiewitsch, W. R. Ferrer-Santos, and H. J. Schneider, editors, New trends in Hopf algebra theory. Proceedings of the Colloquium on Quantum Groups and Hopf Algebras held in La Falda, August 9–13, 1999, volume 267 of Contemp. Math., pages 31–54. Amer. Math. Soc., Providence, RI, 2000.spa
dc.relation.referencesF. Calderón, H. Huang, E. Wicks, and R. Won. Symmetries captured by actions of weak Hopf algebras. arXiv preprint arXiv:2209.11903, 2023.spa
dc.relation.referencesK. Chan, E. Kirkman, C. Walton, and J. J. Zhang. Quantum binary polyhedral groups and their actions on quantum planes. J. Reine Angew. Math., 719:211–252, 2016.spa
dc.relation.referencesF. U. Coelho and S. X. Liu. Generalized path algebras. In F. van Oystaeyen and M. Saorin, editors, Interactions between ring theory and representations of algebras, volume 210 of Lecture Notes in Pure and Applied Mathematics, pages 53–66. CRC, 2000.spa
dc.relation.referencesD. Cheng and F. Li. The structure of weak Hopf algebras corresponding to Uq(sl2). Comm. Algebra, 37(3):729–742, 2009.spa
dc.relation.referencesG. Böhm and K. Szlachányi. Weak C*-Hopf algebras: the coassociative symmetry of non-integral dimensions. In R. Budzyński, W. Pusz, and S. Zakrzewski, editors, Quantum groups and quantum spaces (Warsaw, 1995), volume 40 of Banach Center Publ., pages 9–19. Polish Acad. Sci. Inst. Math., Warsaw, 1997.spa
dc.relation.referencesM. Cohen and S. Montgomery. Group-graded rings, smash products, and group actions. Trans. Amer. Math. Soc., 282(1):237–258, 1984.spa
dc.relation.referencesF. Castro, A. Paques, G. Quadros, and A. Sant’Ana. Partial actions of weak Hopf algebras: Smash product, globalization and Morita theory. J. Pure Appl. Algebra, 219(12):5511–5538, 2015.spa
dc.relation.referencesF. Calderón and A. Reyes. On the (partial) representation category of weak Hopf algebras. In preparation, 2023.spa
dc.relation.referencesF. Calderón and C. Walton. Algebraic properties of face algebras. J. Algebra Appl., 22(03):2350076, 2023.spa
dc.relation.referencesS. Dăscălescu, C. Năstăsescu, and Ş. Raianu. Hopf Algebras: An Introduction, volume 235 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., first edition, 2001.spa
dc.relation.referencesM. Dokuchaev. Recent developments around partial actions. São Paulo J. Math. Sci., 13(1):195–247, 2018.spa
dc.relation.referencesB. Day and C. Pastro. Note on Frobenius monoidal functors. New York J. Math., 14:733–742, 2008.spa
dc.relation.referencesP. Etingof and C. H. Eu. Koszulity and the Hilbert series of preprojective algebras. Math. Res. Lett., 14(4):589–596, 2007.spa
dc.relation.referencesP. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.spa
dc.relation.referencesS. Eilenberg and T. Nakayama. On the dimension of modules and algebras, II: Frobenius algebras and quasi-Frobenius rings. Nagoya Math. J., 9:1–16, 1955.spa
dc.relation.referencesP. Etingof and C. Walton. Semisimple Hopf actions on commutative domains. Adv. Math., 251:47–61, 2014.spa
dc.relation.referencesP. Etingof and C. Walton. Finite dimensional Hopf actions on algebraic quantizations. Algebra Number Theory, 10(10):2287–2310, 2016.spa
dc.relation.referencesP. Etingof and C. Walton. Finite dimensional Hopf actions on deformation quantizations. Proc. Amer. Math. Soc., 145(5):1917–1925, 2016.spa
dc.relation.referencesE. Fontes, G. Martini, and G. Fonseca. Partial actions of weak Hopf algebras on coalgebras. J. Algebra Appl., 21(01):Paper No. 2250012, 35, oct 2020.spa
dc.relation.referencesG. Fonseca, G. Martini, and L. Silva. Partial (co)actions of Taft and Nichols Hopf algebras on their base fields. Int. J. Algebra Comput., 31(07):1471–1496, 2021.spa
dc.relation.referencesG. Fonseca, G. Martini, and L. Silva. Partial (co)actions of Taft and Nichols Hopf algebras on algebras. ArXiv preprint arXiv:math/2208.05141, 2022.spa
dc.relation.referencesR. Fröberg. Koszul algebras. In D. Dobbs, M. Fontana, and S. E. Kabbaj, editors, Advances in commutative ring theory, volume 205 of Lecture Notes in Pure and Applied Mathematics, pages 337–350. Marcel Dekker, 1999.spa
dc.relation.referencesK. R. Goodearl and R. B. Jr Warfield. An Introduction to Noncommutative Noetherian Rings, volume 61 of London Mathematical Society Student Texts. Cambridge University Press, second edition, 2004.spa
dc.relation.referencesT. Hayashi. Quantum group symmetry of partition functions of IRF models and its application to Jones’ index theory. Comm. Math. Phys., 157(2):331–345, 1993.spa
dc.relation.referencesT. Hayashi. Compact quantum groups of face type. Publ. Res. Inst. Math. Sci., 32(2):351–369, 1996.spa
dc.relation.referencesT. Hayashi. Face algebras and unitarity of SU(N)L-TQFT. Comm. Math. Phys., 203(1):211–247, 1999.spa
dc.relation.referencesH. Huang, C. Walton, E. Wicks, and R. Won. Universal quantum semigroupoids. J. Pure Appl. Algebra, 227:107193, 2023.spa
dc.relation.referencesA. Ibort and M. Rodríguez. An introduction to groups, groupoids and their representations. CRC Press, 2019.spa
dc.relation.referencesA. Ibort and M. Rodríguez. On the structure of finite groupoids and their representations. Symmetry, 11(3):414, 2019.spa
dc.relation.referencesL. Kong and I. Runkel. Cardy algebras and sewing constraints. I. Comm. Math. Phys., 292(3):871–912, 2009.spa
dc.relation.referencesK. Mackenzie. Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Mathematical Society Lecture Note Series. Cambridge University Press, 1987.spa
dc.relation.referencesJ. M. Moreno-Fernández and M. Siles-Molina. Graph algebras and the Gelfand-Kirillov dimension. J. Algebra Appl., 17(05):1850095, 15, 2018.spa
dc.relation.referencesS. Montgomery. Hopf Algebras and Their Actions on Rings, volume 82 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, 1993.spa
dc.relation.referencesG. Martini, A. Paques, and L. Duarte-Silva. Partial actions of a Hopf algebra on its base field and the corresponding partial smash product algebra. J. Algebra Appl., 22(06):2350140, 2022.spa
dc.relation.referencesJ. C. McConnell and J. C. Robson. Noncommutative Noetherian rings, volume 30 of Graduate Studies in Mathematics. American Mathematical Society, 2001.spa
dc.relation.referencesD. Nikshych. Quantum groupoids, their representation categories, symmetries of von Neumann factors, and dynamical quantum groups. PhD thesis, University of California, 2001.spa
dc.relation.referencesD. Nikshych. On the structure of weak Hopf algebras. Adv. Math., 170(2):257–286, 2002.spa
dc.relation.referencesD. Nikshych. Semisimple weak Hopf algebras. J. Algebra, 275(2):639–667, 2004.spa
dc.relation.referencesF. Nill. Axioms for weak bialgebras. arXiv preprint arXiv:math/9805104, 1998.spa
dc.relation.referencesF. Nill, K. Szlachanyi, and H. W. Wiesbrock. Weak Hopf Algebras and Reducible Jones Inclusions of Depth 2. I: From Crossed products to Jones towers. arXiv preprint arXiv:math/9806130, 1998.spa
dc.relation.referencesD. Nikshych, V. Turaev, and L. Vainerman. Invariants of knots and 3-manifold from quantum groupoids. Topology Appl., 127(1-2):91–123, 2003.spa
dc.relation.referencesD. Nikshych and L. Vainerman. Finite quantum groupoids and their applications. In S. Montgomery and H. J. Schneider, editors, New directions in Hopf algebras, volume 43 of Mathematical Sciences Research Institute Publications, pages 211–262. Cambridge Univ. Press, Cambridge, 2002.Ispa
dc.relation.referencesA. Paques and D. Flôres. Duality for groupoid (co)actions. Comm. Algebra, 42(2):637–663, 2013.spa
dc.relation.referencesH. Pfeiffer. Fusion categories in terms of graphs and relations. Quantum Topol., 2(4):339–379, 2011.spa
dc.relation.referencesJ. Pradines. Théorie de lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux. C. R. Math. Acad. Sci. Paris, 264:A245–A248, 1967.spa
dc.relation.referencesA. Paques and T. Tamusiunas. A Galois-Grothendieck-type correspondence for groupoid actions. Algebra Discrete Math., 17(1):80–97, 2014.spa
dc.relation.referencesG. S. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 108(2):195–222, 1963.spa
dc.relation.referencesD. Rogalski, R. Won, and J. J. Zhang. A proof of the Brown-Goodearl conjecture for module-finite weak Hopf algebras. Algebra Number Theory, 15(4):971–997, 2021.spa
dc.relation.referencesPaolo Saracco. On anchored Lie algebras and the Connes-Moscovici’s bialgebroid construction. ArXiv preprint arXiv:math/2009.14656, 2020.spa
dc.relation.referencesPaolo Saracco. Universal enveloping algebras of Lie-Rinehart algebras as a left adjoint functor. ArXiv preprint arXiv:math/2102.01553, 2021.spa
dc.relation.referencesM. Siles-Molina. Algebras of quotients of path algebras. J. Algebra, 319(12):5265–5278, 2008.spa
dc.relation.referencesR. Street. Quantum Groups: a path to current algebra, volume 19 of Australian Mathematical Society Lecture Series. Cambridge University Press, 2007.spa
dc.relation.referencesI. Shestakov and U. Umirbaev. The tame and the wild automorphisms of polynomial rings in three variables. J. Amer. Math. Soc., 17(1):197–227, 2004.spa
dc.relation.referencesK. Szlachányi. Finite quantum groupoids and inclusions of finite type. In Mathematical physics in mathematics and physics (Siena, 2000), volume 30 of Fields Inst. Commun., pages 393–407. Amer. Math. Soc., Providence, RI, 2001.spa
dc.relation.referencesK. Szlachányi. Adjointable monoidal functors and quantum groupoids. In Hopf algebras in noncommutative geometry and physics, volume 239 of Lecture Notes in Pure and Appl. Math., pages 291–307. Dekker, New York, 2005.spa
dc.relation.referencesV. Ufnarovski˘ı. A growth criterion for graphs and algebras defined by words. Mat. Zametki, 31(3):465–472, 476, 1982.spa
dc.relation.referencesJ. C. Várilly. Hopf algebras in noncommutative geometry. In A. Cardona, S. Paycha, and H. Ocampo, editors, Geometric and Topological Methods for Quantum Field Theory, pages 1–85. World Scientific, 2003.spa
dc.relation.referencesC. Walton and X. Wang. On quantum groups associated to non-Noetherian regular algebras of dimension 2. Math. Z., 284(1-2):543–574, 2016.spa
dc.relation.referencesC. Walton, E. Wicks, and R. Won. Algebraic structures in comodule categories over weak bialgebras. Comm. Algebra, 50(7):2877–2910, 2022.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.lembFormas matemáticasspa
dc.subject.lembForms (mathematics)eng
dc.subject.proposalMonoidal categoryeng
dc.subject.proposalWeak Hopf algebraeng
dc.subject.proposalRepresentation theoryeng
dc.subject.proposalGroupoideng
dc.subject.proposalLie algebroideng
dc.subject.proposalPath algebraeng
dc.subject.proposalQuivereng
dc.subject.proposalÁlgebra de Hopf débilspa
dc.subject.proposalCategoría monoidalspa
dc.subject.proposalTeoría de representacionesspa
dc.subject.proposalGrupoidespa
dc.subject.proposalAlgebroide de Liespa
dc.subject.proposalÁlgebra de caminosspa
dc.subject.proposalCarcajspa
dc.titleAlgebraic properties of weak quantum symmetrieseng
dc.title.translatedPropiedades algebraicas de las simetrías cuánticas débilesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
_FC__Doctoral_Dissertation.pdf
Tamaño:
852.41 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: