Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca

dc.contributor.advisorSerna Cock, Liliana
dc.contributor.advisorSolanilla Duque, José Fernando
dc.contributor.authorParra Campos, Amanda
dc.date.accessioned2021-05-25T21:40:20Z
dc.date.available2021-05-25T21:40:20Z
dc.date.issued2021
dc.descriptionIlustraciones, tablasspa
dc.description.abstractLa acumulación indiscriminada de materiales de desecho de origen petroquímico, ha impulsado investigaciones que conllevan a obtener materiales amigables con el ambiente empleando materias primas renovables. La presente tesis tuvo como objetivo el establecimiento de las condiciones de proceso para la extracción de micropartículas de bagazo de fique y la evaluación del efecto de su incorporación en un material espumado obtenido a partir de almidón de yuca. La extracción de las micropartículas se realizó mediante un proceso de hidrólisis con ácido sulfúrico empleando bagazo de fique previamente acondicionado. Para determinar las condiciones del proceso, se corrió un diseño factorial 33 en el que se evaluó la concentración de ácido (5, 10 y 15%), la temperatura (70, 80 y 90°C) y el tiempo (3, 5 y 7h) de hidrólisis, obteniéndose efecto significativo sobre las propiedades morfológicas, químicas y térmicas destacándose grupos funcionales, morfología, color y temperaturas de degradación y fusión característicos de la celulosa, siendo 10%, 70°C y 7h las condiciones que permitieron obtener el menor tamaño de partícula. Para determinar el efecto de la incorporación de las micropartículas sobre las propiedades de las espumas, se evaluó un diseño unifactorial con cinco niveles de concentración de micropartículas (0,0; 0,5; 0,75; 1,0 y 1,25%) en la mezcla de obtención de espuma, encontrando efecto significativo en las propiedades de índice de expansión, densidad, compresibilidad y absorción de agua, siendo el tratamiento 0,75% el que presentó destacadas propiedades con respecto a los demás tratamientos. Lo cual indica que el bagazo de fique en concentraciones adecuadas tiene potencial de aprovechamiento en la producción y mejora de las propiedades de espumas a base de almidón.spa
dc.description.abstractThe indiscriminate accumulation of waste materials of petrochemical origin has prompted research that leads to obtaining environmentally friendly materials using renewable raw materials. The objective of this thesis was to establish the process conditions for the extraction of microparticles of fique bagasse and the evaluation of the effect of their incorporation in a foamed material obtained from cassava starch. The extraction of the microparticles was carried out by means of a hydrolysis process with sulfuric acid using previously conditioned fique bagasse. To determine the process conditions, a 33 factorial design was run in which the acid concentration (5, 10 and 15%), temperature (70, 80 and 90 ° C) and time (3, 5 and 7h) of hydrolysis, obtaining a significant effect on the morphological, chemical and thermal properties, highlighting functional groups, morphology, color and degradation and melting temperatures characteristic of cellulose, with 10%, 70 ° C and 7h being the conditions that allowed obtaining the smallest size of particle. To determine the effect of the incorporation of the microparticles on the properties of the foams, a unifactorial design was evaluated with five levels of concentration of microparticles (0.0, 0.5, 0.75, 1.0 and 1.25%) in the mixture for obtaining foam, finding a significant effect on the properties of expansion index, density, compressibility and water absorption, being the 0.75% treatment the one that presented outstanding properties with respect to the other treatments. This indicates that fique bagasse in adequate concentrations has potential for use in the production and improvement of the properties of starch-based foams.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en ingeniería Agroindustrialspa
dc.description.methodsLas metodologías para la obtención de espumas biodegradables con la incorporación de otros componentes que se utilizaron son: metodología desarrollada por Nakasone, Ikematsu y Kobayashi, Índice de expansión radial, densidad aparente, resistencia a la compresión e índice de amortiguación, absorción de agua, adsorción de agua.spa
dc.description.researchareaDesarrollo de empaques biodegradables a partir de biomoléculas de interés agroindustrialspa
dc.description.tableofcontentsResumen, lista de figuras, lista de tablas, introducción, planteamiento del problema, justificación, marco teórico, espuma termoplástica, polímeros naturales o de base biológica, almidón, almidón de yuca (Manihot esculenta), almidón termoplástico (TPS), fique, celulosa, estado del arte, extracción de celulosa a partir de diferentes residuos lignocelulósicos mediante hidrólisis ácida, obtención de espuma a partir de almidón con la incorporación de material lignocelulósico, obtención de espuma a base de almidón mediante extrusión, objetivos, objetivo general, objetivos específicos, hipótesis, materiales y métodos, determinación del efecto de la concentración de ácido, temperatura y tiempo de hidrólisis sobre las propiedades morfológicas, químicas y térmicas de micropartículas de bagazo de fique, adecuación del bagazo de fique, deslignificación y blanqueamiento, hidrólisis ácida del bagazo de fique, caracterización de las partículas de bagazo de fique, microscopia óptica de alta resolución (MOAR), espectroscopia infrarroja por transformada de Fourier (FTIR), estimación del color, análisis termogravimétrico - TGA, calorimetría de Barrido Diferencial – DSC, diseño de experimentos, análisis estadístico, evaluación del efecto de la incorporación de micropartículas de bagazo de fique sobre las propiedades físicas, térmicas y químicas de un material espumado obtenido mediante proceso de extrusión a partir de almidón de yuca, obtención del material espumado, caracterización física y mecánica del material espumado, índice de expansión radial, densidad aparente, resistencia a la compresión e índice de amortiguación, absorción de agua, adsorción de agua, análisis termogravimétrico - TGA., calorimetría de Barrido Diferencial – DSC, diseño de experimentos, análisis estadístico, resultados y discusión, determinación del efecto de la concentración de ácido, temperatura y tiempo de hidrólisis sobre las propiedades morfológicas, químicas y térmicas de micropartículas de bagazo de fique, tamaños de partícula, espectroscopia FTIR, color, análisis térmico TGA y DSC, evaluación del efecto de la incorporación de micropartículas de bagazo de fique sobre las propiedades físicas, térmicas y químicas de material espumado obtenido mediante proceso de extrusión a partir de almidón de yuca, índice de expansión, densidad, índice de amortiguación y compresibilidad, adsorción de agua, absorción de agua, análisis temogravimétrico (TGA), calorimetría de Barrido Diferencial – DSC, espectroscopia FTIR, conclusiones y recomendaciones, conclusiones, recomendaciones, anexos.spa
dc.format.extent115 p.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79561
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.departmentMaestría en Ingeniería Agroindustrialspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmira Valle del Caucaspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrialspa
dc.relation.indexedN/Aspa
dc.relation.referencesAbinader, G., Lacoste, C., Baillif, M. Le, Erre, D., & Copinet, A. (2015). Effect of the formulation of starch-based foam cushions on the morphology and mechanical properties. Journal of Cellular Plastics, 51(1), 31-44. https://doi.org/10.1177/0021955X14527979spa
dc.relation.referencesAdel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A., & Al-Shemy, M. T. (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydrate Polymers, 83(2), 676-687. https://doi.org/10.1016/j.carbpol.2010.08.039spa
dc.relation.referencesAlban, P., Delgado, K., Ceron, A., & Villada, H. (2016). Efecto del plastificante y agente espumante en espumas termoplásticas de almidón. Agronomia Colombiana, 1, 86-88.spa
dc.relation.referencesSTM D695-15. Standar Test Method for Compressive Properties of Rigid Plastics- D695-15, Annual Book of ASTM Standards § (2015).spa
dc.relation.referencesBano, S., & Negi, Y. S. (2017). Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydrate Polymers, 157, 1041-1049. https://doi.org/10.1016/j.carbpol.2016.10.069spa
dc.relation.referencesBénézet, J. C., Stanojlovic-Davidovic, A., Bergeret, A., Ferry, L., & Crespy, A. (2012). Mechanical and physical properties of expanded starch, reinforced by natural fibres. Industrial Crops and Products, 37(1), 435-440. https://doi.org/10.1016/j.indcrop.2011.07.001spa
dc.relation.referencesBergel, B. F., Dias Osorio, S., da Luz, L. M., & Santana, R. M. C. (2018). Effects of hydrophobized starches on thermoplastic starch foams made from potato starch. Carbohydrate Polymers, 200, 106-114. https://doi.org/10.1016/j.carbpol.2018.07.047spa
dc.relation.referencesCabanes, A., Valdés, F. J., & Fullana, A. (2020). A review on VOCs from recycled plastics. Sustainable Materials and Technologies, 25, e00179. https://doi.org/10.1016/j.susmat.2020.e00179spa
dc.relation.referencesCarrillo, F., Colom, X., Suñol, J. J., & Saurina, J. (2004). Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal, 40(9), 2229-2234. https://doi.org/10.1016/j.eurpolymj.2004.05.003spa
dc.relation.referencesCarrillo, I., Mendonça, R. T., Ago, M., & Rojas, O. J. (2018). Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose, 25(2), 1011-1029. https://doi.org/10.1007/s10570-018-1653-2spa
dc.relation.referencesCastro, L., Escalante, H., Quintero, M., Ortiz, C., & Guzman, C. (2009). Producción de Biogas a partir de Bagazo generado durante el Beneficio de Fique. (Vol. 1). Recuperado de https://docplayer.es/34673055-Produccion-de-biogas-a-partir-del-bagazo-generado-durante-el-beneficio-de-fique.htmlspa
dc.relation.referencesChandanasree, D., Gul, K., & Riar, C. S. (2016). Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydrocolloids, 52, 175-182. https://doi.org/10.1016/j.foodhyd.2015.06.024spa
dc.relation.referencesCiolacu, D., Kovac, J., & Kokol, V. (2010). The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydrate Research, 345(5), 621-630. https://doi.org/10.1016/j.carres.2009.12.023spa
dc.relation.referencesCombrzy, M., Mo, L., Kwa, A., Oniszczuk, T., & Wójtowicz, A. (2018). Effect of PVA and PDE on selected structural characteristics of extrusion-cooked starch foams. Polimeros, 5169, 1-8. https://doi.org/10.1590/0104-1428.02617spa
dc.relation.referencesCombrzyński, M., Mościcki, L., Kwaśniewska, A., Oniszczuk, T., Wójtowicz, A., Solowiej, B., … Muszyński, S. (2017). Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams. International Agrophysics, 31(4), 457-463. https://doi.org/10.1515/intag-2016-0071spa
dc.relation.referencesContreras, L. K. (2015). Investigación de mercados aplicada a la gestión de poliestireno expandido en la ciudad de Pereira, año 2015. Universidad Tecnológica de Pereira.spa
dc.relation.referencesContreras, M. F., Hormaza, W. A., & Marañón, A. (2009). Fractografía de la fibra natural extraída del fique y de un material compuesto reforzado con tejido de fibra de fique y matriz resina poliester. Revista Latinoamericana de Metalurgia y Materiales, 1(1), 57-67.spa
dc.relation.referencesCorgié, S. C., Smith, H. M., & Walker, L. P. (2011). Enzymatic transformations of cellulose assessed by quantitative high-throughput fourier transform infrared spectroscopy (QHT-FTIR). Biotechnology and Bioengineering, 108(7), 1509-1520. https://doi.org/10.1002/bit.23098spa
dc.relation.referencesCruz-Tirado, J. P., Siche, R., Cabanillas, A., Díaz-Sánchez, L., Vejarano, R., & Tapia-Blácido, D. R. (2017). Properties of baked foams from oca (Oxalis tuberosa) starch reinforced with sugarcane bagasse and asparagus peel fiber. Procedia Engineering, 200, 178-185. https://doi.org/10.1016/j.proeng.2017.07.026spa
dc.relation.referencesCruz-Tirado, J. P., Tapia-Blácido, D. R., & Siche, R. (2017). Influence of proportion and size of sugarcane bagasse fiber on the properties of sweet potato starch foams. IOP Conference Series: Materials Science and Engineering, 225(1), 1-8. https://doi.org/10.1088/1757-899X/225/1/012180spa
dc.relation.referencesCruz, R. A., Martínez, A. M. M., Chávez, M. Y., Armenta, J. L. R., & Gómez, M. J. C. (2011). Aprovechamiento del bagazo de piña para obtener celulosa y bioetanol. Afinidad LXVIII, 551(1), 38-43.spa
dc.relation.referencesDas, K., Ray, D., Bandyopadhyay, N. R., & Sengupta, S. (2010). Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM. Journal of Polymers and the Environment, 18(3), 355-363. https://doi.org/10.1007/s10924-010-0167-2spa
dc.relation.referencesDayal, M. S., Goswami, N., Sahai, A., Jain, V., Mathur, G., & Mathur, A. (2013). Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydrate Polymers, 94(1), 12-16. https://doi.org/10.1016/j.carbpol.2013.01.018spa
dc.relation.referencesde Carvalho, F. A., Bilck, A. P., Yamashita, F., & Mali, S. (2018). Baked Foams Based on Cassava Starch Coated with Polyvinyl Alcohol with a Higher Degree of Hydrolysis. Journal of Polymers and the Environment, 26(4), 1445-1452. https://doi.org/10.1007/s10924-017-1046-xspa
dc.relation.referencesDebabrata, D., Hussain, S., Ghosh, A. K., & Pal, A. K. (2018). Studies on cellulose nanocrystals extracted from Musa sapientum: Structural and bonding aspects. Cellulose Chemistry and Technology, 52(9-10), 729-739.spa
dc.relation.referencesDebiagi, F., Mali, S., Grossmann, M. V. E., & Yamashita, F. (2011). Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion. Brazilian Archives of Biology and Technology, 54(5), 1043-1052. https://doi.org/10.1590/S1516-89132011000500023spa
dc.relation.referencesDelgado, K., Alban, P., Montilla, C., Ceron, A., & Villada, H. (2016). Evaluación de la densidad aparente e índice de expansión radial en espumas de almidón termoplástico. Agronomia Colombiana, 1, 104-106.spa
dc.relation.referencesDing, W., Jahani, D., Chang, E., Alemdar, A., Park, C. B., & Sain, M. (2016). Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 83, 130-139. https://doi.org/10.1016/j.compositesa.2015.10.003spa
dc.relation.referencesEcheverri, O. V., Carmona, M. R., Salazar, Y. V., & Ramírez, M. G. (2014). Producción de bioetanol empleando fermentación tradicional y extractiva a partir de jugo de fique. Hechos Microbiológicos, 4(2), 91-97.spa
dc.relation.referencesElanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., & Guthrie, J. T. (2010). Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers, 80(3), 852-859. https://doi.org/10.1016/j.carbpol.2009.12.043spa
dc.relation.referencesEngel, Juliana B., Ambrosi, A., & Tessaro, I. C. (2019). Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydrate Polymers, 225(May), 115234. https://doi.org/10.1016/j.carbpol.2019.115234spa
dc.relation.referencesEngel, Juliana Both, Ambrosi, A., & Tessaro, I. C. (2019). Development of a Cassava Starch-Based Foam Incorporated with Grape Stalks Using an Experimental Design. Journal of Polymers and the Environment, 27(12), 2853-2866. https://doi.org/10.1007/s10924-019-01566-0spa
dc.relation.referencesEscalante, H., Guzmán, C., & Castro, L. (2014). Anaerobic Digestion of Fique Bagasse: an Energy Alternative. Dyna, 81(183), 74. https://doi.org/10.15446/dyna.v81n183.34382spa
dc.relation.referencesFan, M., Dai, D., & Huang, B. (2012). Fourier Transform Infrared Spectroscopy for Natural Fibres. Fourier Transform - Materials Analysis. https://doi.org/10.5772/35482spa
dc.relation.referencesFerrer, A., Salas, C., & Rojas, O. J. (2016). Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Industrial Crops and Products, 84, 337-343. https://doi.org/10.1016/j.indcrop.2016.02.014spa
dc.relation.referencesFrone, A. N., Panaitescu, D. M., & Donescu, D. (2011). Some aspects concerning the isolation of cellulose micro- and nano-fibers. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 73(2), 133-152.spa
dc.relation.referencesGallego-Schmid, A., Mendoza, J. M. F., & Azapagic, A. (2019). Environmental impacts of takeaway food containers. Journal of Cleaner Production, 211(2019), 417-427. https://doi.org/10.1016/j.jclepro.2018.11.220spa
dc.relation.referencesGeorges, A., Lacoste, C., & Damien, E. (2018). Effect of formulation and process on the extrudability of starch-based foam cushions. Industrial Crops and Products, 115(January), 306-314. https://doi.org/10.1016/j.indcrop.2018.02.001spa
dc.relation.referencesGhanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197(June), 305-311. https://doi.org/10.1016/j.carbpol.2018.06.017spa
dc.relation.referencesGómez, C., Alvarez, V. A., Rojo, P. G., & Vázquez, A. (2012). Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers and Polymers, 13(5), 632-640. https://doi.org/10.1007/s12221-012-0632-8spa
dc.relation.referencesGutiérrez-Estupiñán, C., Gutiérrez-Gallego, J., & Sánchez-Soledad, M. (2020). Preparation of a Composite Material from Palm Oil Fiber and an Ecological Emulsion of Expanded Polystyrene Post-Consumption. Revista Facultad de Ingeniería, 29(54), e10489. https://doi.org/10.19053/01211129.v29.n54.2020.10489spa
dc.relation.referencesGuzmán, R. E., Gómez, S., Amelines, O., & Aparicio, G. M. (2018). Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf. IOP Conference Series: Materials Science and Engineering, 437(1). https://doi.org/10.1088/1757-899X/437/1/012015spa
dc.relation.referencesHamdi, M., Nasri, R., Li, S., & Nasri, M. (2019). Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: Biological potential and structural, thermal, and mechanical characterization. Food Hydrocolloids, 89(July 2018), 802-812. https://doi.org/10.1016/j.foodhyd.2018.11.062spa
dc.relation.referencesHaro, E. E., Szpunar, J. A., & Odeshi, A. G. (2018). Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles. Defence Technology, 14(3), 238-249. https://doi.org/10.1016/j.dt.2018.03.005spa
dc.relation.referencesHemmati, F., Jafari, S. M., Kashaninejad, M., & Barani Motlagh, M. (2018). Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. International Journal of Biological Macromolecules, 120, 1216-1224. https://doi.org/10.1016/j.ijbiomac.2018.09.012spa
dc.relation.referencesHidalgo-Salazar, M. A., & Correa, J. P. (2018). Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene. Results in Physics, 8, 461-467. https://doi.org/10.1016/j.rinp.2017.12.025spa
dc.relation.referencesHidayat, Y. A., Kiranamahsa, S., & Zamal, M. A. (2019). A study of plastic waste management effectiveness in Indonesia industries. AIMS Energy, 7(3), 350-370. https://doi.org/10.3934/ENERGY.2019.3.350spa
dc.relation.referencesHoyos, C. G., Zuluaga, R., Gañán, P., Pique, T. M., & Vazquez, A. (2019). Cellulose nanofibrils extracted from fique fibers as bio-based cement additive. Journal of Cleaner Production, 235, 1540-1548. https://doi.org/10.1016/j.jclepro.2019.06.292spa
dc.relation.referencesHu, A., Zhang, W., You, Q., Men, B., Liao, G., & Wang, D. (2019). A green and low-cost strategy to synthesis of tunable pore sizes porous organic polymers derived from waste-expanded polystyrene for highly efficient removal of organic contaminants. Chemical Engineering Journal, 370(February), 251-261. https://doi.org/10.1016/j.cej.2019.03.207spa
dc.relation.referencesJang, Y. C., Lee, G., Kwon, Y., Lim, J. hong, & Jeong, J. hyun. (2020). Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Resources, Conservation and Recycling, 158(February), 104798. https://doi.org/10.1016/j.resconrec.2020.104798spa
dc.relation.referencesJayamani, E., Loong, T. G., & Bakri, M. K. Bin. (2020). Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods. Polymer Bulletin, 77(4), 1605-1629. https://doi.org/10.1007/s00289-019-02824-wspa
dc.relation.referencesKaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2012). Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products, 37(1), 542-546. https://doi.org/10.1016/j.indcrop.2011.07.034spa
dc.relation.referencesKaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2014). Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers, 110, 70-77. https://doi.org/10.1016/j.carbpol.2014.03.067spa
dc.relation.referencesKaisangsri, N., Kowalski, R. J., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2019). Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams. Industrial Crops and Products, 142(September), 111810. https://doi.org/10.1016/j.indcrop.2019.111810spa
dc.relation.referencesKargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., & Thomas, S. (2017). Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer (United Kingdom), 132, 368-393. https://doi.org/10.1016/j.polymer.2017.09.043spa
dc.relation.referencesKasemsiri, P., Dulsang, N., Pongsa, U., Hiziroglu, S., & Chindaprasirt, P. (2017). Optimization of Biodegradable Foam Composites from Cassava Starch, Oil Palm Fiber, Chitosan and Palm Oil Using Taguchi Method and Grey Relational Analysis. Journal of Polymers and the Environment, 25(2), 378-390. https://doi.org/10.1007/s10924-016-0818-zspa
dc.relation.referencesKatakojwala, R., & Mohan, S. V. (2020). Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment. Journal of Cleaner Production, 249, 119342.spa
dc.relation.referencesKhai, D. M., Nhan, P. D., & Hoanh, T. D. (2017). an Investigation of the Structural Characteristics of Modified Cellulose From Acacia Pulp. Vietnam Journal of Science and Technology, 55(4), 452-460. https://doi.org/10.15625/2525-2518/55/4/9216spa
dc.relation.referencesKian, L. K., Saba, N., Jawaid, M., & Fouad, H. (2020). Characterization of microcrystalline cellulose extracted from olive fiber. International Journal of Biological Macromolecules, 156, 347-353. https://doi.org/10.1016/j.ijbiomac.2020.04.015spa
dc.relation.referencesKlemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., … Rauchfuß, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Materials Today, 21(7), 720-748. https://doi.org/10.1016/j.mattod.2018.02.001spa
dc.relation.referencesKruer-Zerhusen, N., Cantero-Tubilla, B., & Wilson, D. B. (2018). Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose, 25(1), 37-48. https://doi.org/10.1007/s10570-017-1542-0spa
dc.relation.referencesKumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry, 2(1), 1-8. https://doi.org/10.12691/jmpc-2-1-1spa
dc.relation.referencesLeal Filho, W., Saari, U., Fedoruk, M., Iital, A., Moora, H., Klöga, M., & Voronova, V. (2019). An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. Journal of Cleaner Production, 214, 550-558. https://doi.org/10.1016/j.jclepro.2018.12.256spa
dc.relation.referencesLee, S. Y., Eskridge, K. M., Koh, W. Y., & Hanna, M. A. (2009). Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design. Industrial Crops and Products, 29(2-3), 427-436. https://doi.org/10.1016/j.indcrop.2008.08.003spa
dc.relation.referencesLeite, A. L. M. P., Zanon, C. D., & Menegalli, F. C. (2017). Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydrate Polymers, 157, 962-970. https://doi.org/10.1016/j.carbpol.2016.10.048spa
dc.relation.referencesLi, W., Cao, F., Fan, J., Ouyang, S., Luo, Q., Zheng, J., & Zhang, G. (2014). Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocolloids, 40, 237-244. https://doi.org/10.1016/j.foodhyd.2014.03.012spa
dc.relation.referencesLiu, D., Zhong, T., Chang, P. R., Li, K., & Wu, Q. (2010). Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology, 101(7), 2529-2536. https://doi.org/10.1016/j.biortech.2009.11.058spa
dc.relation.referencesLiu, Y., Liu, A., Ibrahim, S. A., Yang, H., & Huang, W. (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules, 111, 717-721. https://doi.org/10.1016/j.ijbiomac.2018.01.098spa
dc.relation.referencesLopez-Gil, A., Silva-Bellucci, F., Velasco, D., Ardanuy, M., & Rodriguez-Perez, M. A. (2015). Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating. Industrial Crops and Products, 66, 194-205. https://doi.org/10.1016/j.indcrop.2014.12.025spa
dc.relation.referencesLópez M., M. A., Bolio-López, G. I., Veleva, L., López-Martínez, A., Salgado G., S., & Córdova S., S. (2016). Obtención de celulosa a partir de residuos agroindustriales de caña de azucar. Agroproducitividad, 9(7), 41-45.spa
dc.relation.referencesLucio-Idrobo, Y., Arboleda-Muñoz, G.-A., Delgado-Muñoz, K.-L., & Villada-Castillo, H.-S. (2021). Development of expanded matrix elaborated from starch and cassava flour by extrusion. Biotecnologia en el sector agropecuario y agroindustrial, 19(1), 139-152. Recuperado de http://dx.doi.org/10.18684spa
dc.relation.referencesMachado, C. M., Benelli, P., & Tessaro, I. C. (2017). Sesame cake incorporation on cassava starch foams for packaging use. Industrial Crops and Products, 102, 115-121. https://doi.org/10.1016/j.indcrop.2017.03.007spa
dc.relation.referencesMachado, C. M., Benelli, P., & Tessaro, I. C. (2019). Constrained Mixture Design to Optimize Formulation and Performance of Foams Based on Cassava Starch and Peanut Skin. Journal of Polymers and the Environment, 27(10), 2224-2238. https://doi.org/10.1007/s10924-019-01518-8spa
dc.relation.referencesMachado, C. M., Benelli, P., & Tessaro, I. C. (2020). Study of interactions between cassava starch and peanut skin on biodegradable foams. International Journal of Biological Macromolecules, 147, 1343-1353. https://doi.org/10.1016/j.ijbiomac.2019.10.098spa
dc.relation.referencesMali, S. (2018). Biodegradable foams in the development of food packaging. En Polymers for Food Applications (pp. 329-345). https://doi.org/10.1007/978-3-319-94625-2_12spa
dc.relation.referencesMali, S., Debiagi, F., Grossmann, M. V. E., & Yamashita, F. (2010). Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: A mixture design approach. Industrial Crops and Products, 32(3), 353-359. https://doi.org/10.1016/j.indcrop.2010.05.014spa
dc.relation.referencesMello, L. R. P. F., & Mali, S. (2014). Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Industrial Crops and Products, 55, 187-193. https://doi.org/10.1016/j.indcrop.2014.02.015spa
dc.relation.referencesMishra, K. R., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 1(1), 1-30. https://doi.org/10.1016/j.jscs.2018.02.005spa
dc.relation.referencesMitrus, M., Combrzyński, M., Kupryaniuk, K., Wójtowicz, A., Oniszczuk, T., Krecisz, M., … Mościcki, L. (2016). A study of the solubility of biodegradable foams of thermoplastic starch. Journal of Ecological Engineering, 17(4), 184-189. https://doi.org/10.12911/22998993/64554spa
dc.relation.referencesMitrus, M., & Moscicki, L. (2014). Extrusion-cooking of starch protective loose-fill foams. Chemical Engineering Research and Design, 92(4), 778-783. https://doi.org/10.1016/j.cherd.2013.10.027spa
dc.relation.referencesMoo-Tun, N. M., Iñiguez-Covarrubias, G., & Valadez-Gonzalez, A. (2020). Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design. Polymer Testing, 86(February). https://doi.org/10.1016/j.polymertesting.2020.106482spa
dc.relation.referencesMuños-Vélez, M. F., Hidalgo-Salazar, M. A., & Mina-Hernández, J. H. (2014). Fique Fiber an Alternative for Reinforced Plastics. Influence of Surface Modification. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(2), 60-70. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200007&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesMuñoz-Vélez, M. F., Hidalgo-Salazar, M. A., & Mina-Hernández, J. H. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-Al/fique composite. Polymers, 10(10), 1-14. https://doi.org/10.3390/polym10101050spa
dc.relation.referencesNajafi, N., Heuzey, M., Carreau, P. J., Therriault, D., & Park, C. B. (2015). Mechanical and morphological properties of injection molded linear and branched-polylactide ( PLA ) nanocomposite foams. EUROPEAN POLYMER JOURNAL, 73, 455-465. https://doi.org/10.1016/j.eurpolymj.2015.11.003spa
dc.relation.referencesNakasone, K., Ikematsu, S., & Kobayashi, T. (2016). Biocompatibility Evaluation of Cellulose Hydrogel Film Regenerated from Sugar Cane Bagasse Waste and Its in Vivo Behavior in Mice. Industrial and Engineering Chemistry Research, 55(1), 30-37. https://doi.org/10.1021/acs.iecr.5b03926spa
dc.relation.referencesNansu, W., Ross, S., Ross, G., & Mahasaranon, S. (2019). Effect of crosslinking agent on the physical and mechanical properties of a composite foam based on cassava starch and coconut residue fiber. Materials Today: Proceedings, 17, 2010-2019. https://doi.org/10.1016/j.matpr.2019.06.249spa
dc.relation.referencesOrue, A., Jauregi, A., Peña-Rodriguez, C., Labidi, J., Eceiza, A., & Arbelaiz, A. (2015). The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Composites Part B: Engineering, 73, 132-138. https://doi.org/10.1016/j.compositesb.2014.12.022spa
dc.relation.referencesOvalle-Serrano, S. A., Gómez, F. N., Blanco-Tirado, C., & Combariza, M. Y. (2018). Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products. Carbohydrate Polymers, 189(November 2017), 169-177. https://doi.org/10.1016/j.carbpol.2018.02.031spa
dc.relation.referencesOvalle-Serrano, Sergio A., Blanco-Tirado, C., & Combariza, M. Y. (2018). Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose, 25(1), 151-165. https://doi.org/10.1007/s10570-017-1599-9spa
dc.relation.referencesParida, C., Dash, S. K., & Pradhan, C. (2015). FTIR and Raman Studies of Cellulose Fibers of Luffa cylindrica. Open Journal of Composite Materials, 5(01), 5-10. https://doi.org/10.4236/ojcm.2015.51002spa
dc.relation.referencesPathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9spa
dc.relation.referencesPolat, S., Uslu, M. K., Aygün, A., & Certel, M. (2013). The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. Journal of Food Engineering, 116(2), 267-276. https://doi.org/10.1016/j.jfoodeng.2012.12.017spa
dc.relation.referencesPoletto, M., Ornaghi Júnior, H. L., & Zattera, A. J. (2014). Native cellulose: Structure, characterization and thermal properties. Materials, 7(9), 6105-6119. https://doi.org/10.3390/ma7096105spa
dc.relation.referencesPornsuksomboon, K., Holló, B. B., Szécsényi, K. M., & Kaewtatip, K. (2016). Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydrate Polymers, 136, 107-112. https://doi.org/10.1016/j.carbpol.2015.09.019spa
dc.relation.referencesPushpadass, H. A., Babu, G. S., Weber, R. W., & Hanna, M. A. (2008). Extrusion of Starch-based Loose-fill Packaging Foams # : Effects of Temperature , Moisture and Talc on Physical Properties. Packaging technology and science, 21(February), 171-183. https://doi.org/10.1002/ptsspa
dc.relation.referencesQuiévy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M., & Devaux, J. (2010). Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polymer Degradation and Stability, 95(3), 306-314. https://doi.org/10.1016/j.polymdegradstab.2009.11.020spa
dc.relation.referencesQuintero, M., Castro, L., Ortiz, C., Guzmán, C., & Escalante, H. (2012). Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresource Technology, 108, 8-13. https://doi.org/10.1016/j.biortech.2011.12.052spa
dc.relation.referencesRasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., & Khan, A. (2020). Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. International Journal of Biological Macromolecules, 160, 183-191. https://doi.org/10.1016/j.ijbiomac.2020.05.170spa
dc.relation.referencesRivera, D., Plata, L., Castro, L., Guzmán, C., & Escalante, H. (2012). Aprovechamiento del subproducto sólido de la digestión anaerobia del bagazo de fique (furcraea macrophylla) para el acondicionamiento de suelos. Red de Revistas Cientificas de America Latina y el Caribe, España y Portugal, 25(1), 25-34. https://doi.org/10.1002/jccs.201300477spa
dc.relation.referencesRudin, A., & Choi, P. (2013). Biopolymers. En The Elements of Polymer Science & Engineering (pp. 521-535). https://doi.org/10.1016/B978-0-12-382178-2.00013-4spa
dc.relation.referencesSaeed, S. E. S., El-Molla, M. M., Hassan, M. L., Bakir, E., Abdel-Mottaleb, M. M. S., & Abdel-Mottaleb, M. S. A. (2014). Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials. Carbohydrate Polymers, 99, 817-824. https://doi.org/10.1016/j.carbpol.2013.08.096spa
dc.relation.referencesShaghaleh, H., Xu, X., & Wang, S. (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 8(2), 825-842. https://doi.org/10.1039/c7ra11157fspa
dc.relation.referencesShao, X., Wang, J., Liu, Z., Hu, N., Liu, M., & Xu, Y. (2020). Preparation and Characterization of Porous Microcrystalline Cellulose from Corncob. Industrial Crops and Products, 151(September 2019), 1-6. https://doi.org/10.1016/j.indcrop.2020.112457spa
dc.relation.referencesShekar, H. S. S., & Ramachandra, M. (2018). Green Composites: A Review. Materials Today: Proceedings, 5(1), 2518-2526. https://doi.org/10.1016/j.matpr.2017.11.034spa
dc.relation.referenceshi, J., Shi, S. Q., Barnes, H. M., & Pittman, C. U. (2011). A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources, 6(1), 879-890. https://doi.org/10.15376/biores.6.1.879-890spa
dc.relation.referencesSouza, V. G. L., Fernando, A. L., Pires, J. R. A., Rodrigues, P. F., Lopes, A. A. S., & Fernandes, F. M. B. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107(April), 565-572. https://doi.org/10.1016/j.indcrop.2017.04.056spa
dc.relation.referencesSoykeabkaew, N., Thanomsilp, C., & Suwantong, O. (2015). A review: Starch-based composite foams. Composites Part A: Applied Science and Manufacturing, 78, 246-263. https://doi.org/10.1016/j.compositesa.2015.08.014spa
dc.relation.referencesTarchoun, A. F., Trache, D., Klapötke, T. M., Derradji, M., & Bessa, W. (2019). Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose, 26(13-14), 7635-7651. https://doi.org/10.1007/s10570-019-02672-xspa
dc.relation.referencesTeixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61-68. https://doi.org/10.1016/j.indcrop.2011.11.036spa
dc.relation.referencesTibolla, H., Pelissari, F. M., Martins, J. T., Vicente, A. A., & Menegalli, F. C. (2018). Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids, 75, 192-201. https://doi.org/10.1016/j.foodhyd.2017.08.027spa
dc.relation.referencesTrache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., … Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056spa
dc.relation.referencesTrisia, F., & Ian, S. (2017). Polystyrene as Hazardous Household Waste. En D. Mmereki (Ed.), Design, Control and Applications of Mechatronic Systems in Engineering (1.a ed., pp. 135-152). InTech. https://doi.org/10.5772/65865spa
dc.relation.referencesVenero, M. (2019). Análisis comparativo del impacto ambiental entre un embalaje de espuma de poliestireno expandido y un embalaje biodegradable mediante espumas matriciales. Universidad Catolica San Pablo. Recuperado de http://repositorio.ucsp.edu.pe/handle/UCSP/16126spa
dc.relation.referencesWagner, T. P. (2020). Policy Instruments To Reduce Consumption of Expanded Polystyrene Food Service Ware in the Usa. Detritus, 09(9), 11-26. https://doi.org/10.31025/2611-4135/2020.13903spa
dc.relation.referencesWicaksono, R., Syamsu, K., Yuliasih, I., & Nasir, M. (2013). Cellulose Nanofibers from Cassava Bagasse: Characterization and Application on Tapioca-Film. Chemistry and Materials Research, 313(13), 2225-2956.spa
dc.relation.referencesWulandari, W. . T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. Material Science and Engineeting, 107(1), 1-7. https://doi.org/10.1088/1757-899X/107/1/012045spa
dc.relation.referencesXie, Q., Li, F., Li, J., Wang, L., Li, Y., Zhang, C., … Chen, S. (2018). A new biodegradable sisal fiber–starch packing composite with nest structure. Carbohydrate Polymers, 189(January), 56-64. https://doi.org/10.1016/j.carbpol.2018.01.063spa
dc.relation.referencesYin, L., Liu, H., Cui, H., Chen, B., Li, L., & Wu, F. (2019). Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii). Journal of Hazardous Materials, 380(July), 120861. https://doi.org/10.1016/j.jhazmat.2019.120861spa
dc.relation.referencesYudanto, Y. A., & Diponegoro, U. (2020). Characterization of physical and mechanical properties of Biodegradable foam from maizena flour and paper waste for Sustainable packaging material. International Journal of Engineering Applied Sciences and Technology, 5(8), 1-8.spa
dc.relation.referencesZafar, M. T., Zarrinbakhsh, N., Mohanty, A. K., Misra, M., & Ghosh, A. K. (2016). Biocomposites based on poly(Lactic acid)/willow-fiber and their injection moulded microcellular foams. Express Polymer Letters, 10(2), 176-186. https://doi.org/10.3144/expresspolymlett.2016.16spa
dc.relation.referencesZhang, C. wei, Li, F. yi, Li, J. feng, Wang, L. ming, Xie, Q., Xu, J., & Chen, S. (2017). A new biodegradable composite with open cell by combining modified starch and plant fibers. Materials and Design, 120, 222-229. https://doi.org/10.1016/j.matdes.2017.02.027spa
dc.relation.referencesZhao, H., Zhao, G., Turng, L. S., & Peng, X. (2015). Enhancing Nanofiller Dispersion Through Prefoaming and Its Effect on the Microstructure of Microcellular Injection Molded Polylactic Acid/Clay Nanocomposites. Industrial and Engineering Chemistry Research, 54(28), 7122-7130. https://doi.org/10.1021/acs.iecr.5b01130spa
dc.relation.referencesZhu, Z., Hao, M., & Zhang, N. (2018). Influence of contents of chemical compositions on the mechanical property of sisal fibers and sisal fibers reinforced PLA composites. Journal of Natural Fibers, 17(1), 101-112. https://doi.org/10.1080/15440478.2018.1469452spa
dc.rightsDerechos reservados - Universidad Nacional de Colombia, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocuriCelulosa
dc.subject.agrovocuriHidrólisis
dc.subject.agrovocuriExtrusión
dc.subject.proposalresiduo lignocelulósicospa
dc.subject.proposalhidrólisisspa
dc.subject.proposalcelulosaspa
dc.subject.proposalextrusiónspa
dc.subject.proposalmaterial compuestospa
dc.subject.unescoMaterial compuesto
dc.titleExtracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yucaspa
dc.title.translatedExtraction and incorporation of fique bagasse microparticles in a foamed material obtained from cassava starcheng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto INNOVACION Caucaspa
oaire.fundernameUniversidad del Caucaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1004418510.2021.pdf
Tamaño:
4.65 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: