Simulación de la evolución de la estructura espacial y organización celular de agregados celulares en diversas geometrías sencillas, mediante un método monte carlo cinético aplicado a un modelo reticular

dc.contributor.advisorGodoy Silva, Ruben Dario
dc.contributor.authorSanchez Rodriguez, Diego Alejandro
dc.contributor.editorRamos Murillo Ana Isabel
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2022-08-31T16:12:48Z
dc.date.available2022-08-31T16:12:48Z
dc.date.issued2021
dc.descriptionilustraciones, graficasspa
dc.description.abstractEsta tesis trata los modelos de morfogénesis, en particular los modelos de evolución guiada por contacto que son coherentes con la hipótesis de la adhesión diferencial. Se presenta una revisión de algunos modelos, sus principios biológicos subyacentes, la relevancia y aplicaciones en el marco de la bioimpresión, la ingeniería de tejidos y la bioconvergencia. Luego, se presentan los detalles de los modelos basados en métodos de Monte Carlo para profundizar más adelante en el modelo basados en algoritmos Kinetic Monte Carlo (KMC) , más específicamente, se describe en detalle un modelo KMC de autoaprendizaje (SL-KMC). Se presenta y explica la estructura algorítmica del código implementado, se evalúa el rendimiento del modelo y se compara con un modelo KMC tradicional. Finalmente, se realizan los procesos de calibración y validación, se observó que el modelo es capaz de replicar la evolución del sistema multicelular cuando las condiciones de energía interfacial del sistema simulado son similares a las del sistema de calibraciones. (Texto tomado de la fuente)spa
dc.description.abstractThis thesis treats the models for morphogenesis, in particular the contact-guided evolution models that are coherent with the differential adhesion hypothesis. A review of some models, their biological underpinning principles, the relevance and applications in the framework of bioprinting, tissue engineering and bioconvergence are presented. Then the details for the Monte Carlo methods-based models are presented to later deep dive into the Kinetic Monte Carlo (KMC) based model, and more specifically a Self-Learning KMC (SL-KMC) model is described to detail. The algorithmic structure of the implemented code is presented and explained, the model performance is assessed and compared with a traditional KMC model. Finally, the calibration and validation processes have been carried out, it was observed that the model is able to replicate the multicellular system evolution when the interfacial energy conditions of the simulated system are similar to those of the calibrations system.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.format.extent227 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82216
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesSánchez Rodríguez, D.A., A.I. Ramos-Murillo, and R.D. Godoy-Silva, Tissue engineering, 3DBioprinting, morphogenesis modelling and simulation of biostructures: Relevance, underpinning biological principles and future trends. Bioprinting, 2021. 24: p. e00171.spa
dc.relation.referencesLiu, N., et al., Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioactive Materials, 2021. 6(5): p. 1388-1401.spa
dc.relation.referencesGODT. Global Observatory on Donation and Transplantation data. 2016 25 April 2020 [cited 2020; Available from: http://www.transplant-observatory.org/summary/.spa
dc.relation.referencesHealth Resources and Services Administration. Organ Procurement and Transplantation Network. 26 April 2020 [cited 2020; Available from: https://optn.transplant.hrsa.gov/data/.spa
dc.relation.referencesMatai, I., et al., Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020. 226: p. 119536.spa
dc.relation.referencesDzobo, K., K.S.C.M. Motaung, and A. Adesida, Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences, 2019. 20(18): p. 4628.spa
dc.relation.referencesGomes, M.E., et al., Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering Part B: Reviews, 2017. 23(3): p. 211-224.spa
dc.relation.referencesLanza, R.P., R. Langer, and J. Vacanti, Chapter 1 - The History and Scope of Tissue Engineering. 2014. p. 3 - 8.spa
dc.relation.referencesMurphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 2014. 32(8): p. 773-85.spa
dc.relation.referencesNeagu, A., Role of computer simulation to predict the outcome of 3D bioprinting. Journal of 3D Printing in Medicine, 2017. 1(2): p. 103-121.spa
dc.relation.referencesBrody, H., Regenerative medicine. Nature, 2016. 540: p. S49.spa
dc.relation.referencesLanger, R. and J. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-926.spa
dc.relation.referencesBallet, F., Hepatotoxicity in drug development: detection, significance and solutions. Journal of Hepatology, 1997. 26: p. 26-36.spa
dc.relation.referencesCaponigro, G. and W.R. Sellers, Advances in the preclinical testing of cancer therapeutic hypotheses. Nature Reviews Drug Discovery, 2011. 10(3): p. 179-187.spa
dc.relation.referencesSchutgens, F. and H. Clevers, Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu Rev Pathol, 2020. 15: p. 211-234.spa
dc.relation.referencesClevers, H., Modeling Development and Disease with Organoids. Cell, 2016. 165(7): p. 1586- 1597.spa
dc.relation.referencesDzobo, K., Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic. OMICS: A Journal of Integrative Biology, 2020. 24(4): p. 175-179.spa
dc.relation.referencesDzobo, K., et al., Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. Omics, 2018. 22(12): p. 733-748.spa
dc.relation.referencesKaushik, G., M.P. Ponnusamy, and S.K. Batra, Concise Review: Current Status of Three- Dimensional Organoids as Preclinical Models. STEM CELLS, 2018. 36(9): p. 1329-1340.spa
dc.relation.referencesDrost, J. and H. Clevers, Organoids in cancer research. Nature Reviews Cancer, 2018. 18(7): p. 407-418.spa
dc.relation.referencesCellink. Bioconvergence is the future of healthcare. 2021; Available from: https://www.cellink.com/bioconvergence/.spa
dc.relation.referencesAuthority, I.I. Bio-Convergence. The Future of Medicine. 2019; Available from: https://innovationisrael.org.il/en/reportchapter/bio-convergence.spa
dc.relation.referencesSenthebane, D.A., et al., The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. International Journal of Molecular Sciences, 2017. 18(7). Bibliografía 217spa
dc.relation.referencesKhademhosseini, A. and R. Langer, Microengineered hydrogels for tissue engineering. Biomaterials, 2007. 28(34): p. 5087-92.spa
dc.relation.referencesKim, J.D., et al., Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer, 2010. 51(10): p. 2147-2154.spa
dc.relation.referencesMège, R.-M., Les molécules d'adhérence cellulaire: molécules morphogénétiques. médecine/sciences, 1991. 7: p. 544.spa
dc.relation.referencesGlazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1993. 47(3): p. 2128-2154.spa
dc.relation.referencesSavill, N.J. and P. Hogeweg, Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.spa
dc.relation.referencesWalker, D.C., et al., Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Transactions on NanoBioscience, 2004. 3(3): p. 153-163.spa
dc.relation.referencesGalle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. The American journal of pathology, 2006. 169(5): p. 1802-11.spa
dc.relation.referencesTakeichi, M., Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 1991. 251(5000): p. 1451-5.spa
dc.relation.referencesPepper, M., et al., Post-Bioprinting Processing Methods to Improve Cell Viability and Pattern Fidelity in Heterogeneous Tissue Test Systems. Vol. 2010. 2010. 259-62.spa
dc.relation.referencesMurphy, S.V., A. Skardal, and A. Atala, Evaluation of hydrogels for bio-printing applications. Journal of biomedical materials research. Part A, 2013. 101(1): p. 272-84.spa
dc.relation.referencesJakab, K., et al., Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Vol. 14. 2007.spa
dc.relation.referencesJakab, K., et al., Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010. 2(2): p. 022001-022001.spa
dc.relation.referencesNogueira, J.A., et al., Simulation of a 3D Bioprinted Human Vascular Segment. Computer Aided Chemical Engineering, 2015: p. 684-688spa
dc.relation.referencesGjorevski, N., et al., Designer matrices for intestinal stem cell and organoid culture. Nature, 2016. 539(7630): p. 560-564.spa
dc.relation.referencesWest, J.L. and J.A. Hubbell, Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules, 1999. 32(1): p. 241-244.spa
dc.relation.referencesSchiller, M., D. Javelaud, and A. Mauviel, TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of dermatological science, 2004. 35(2): p. 83-92.spa
dc.relation.referencesTamamura, Y., et al., Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. The Journal of biological chemistry, 2005. 280(19): p. 19185-95.spa
dc.relation.referencesIngber, D.E., et al., Tissue engineering and developmental biology: going biomimetic. Tissue engineering, 2006. 12(12): p. 3265-83.spa
dc.relation.referencesBehonick, D.J. and Z. Werb, A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mechanisms of development, 2003. 120(11): p. 1327-36.spa
dc.relation.referencesHersel, U., C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003. 24(24): p. 4385-415. 218 Título de la tesis o trabajo de investigaciónspa
dc.relation.referencesPrice, R.L., K.M. Haberstroh, and T.J. Webster, Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Medical and Biological Engineering and Computing, 2003. 41(3): p. 372-375.spa
dc.relation.referencesTeixeira, A.I., P.F. Nealey, and C.J. Murphy, Responses of human keratocytes to micro- and nanostructured substrates. Journal of biomedical materials research. Part A, 2004. 71(3): p. 369- 76.spa
dc.relation.referencesDischer, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43.spa
dc.relation.referencesHopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue engineering, 2005. 11(11-12): p. 1817-23.spa
dc.relation.referencesStevens, M.M. and J.H. George, Exploring and engineering the cell surface interface. Science, 2005. 310(5751): p. 1135-8.spa
dc.relation.referencesWu, Z., et al., Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Scientific Reports, 2016. 6: p. 24474.spa
dc.relation.referencesSchon, B.S., G.J. Hooper, and T.B.F. Woodfield, Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Annals of Biomedical Engineering, 2017. 45(1): p. 100- 114.spa
dc.relation.referencesMurphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): p. 773-85.spa
dc.relation.referencesChang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue engineering. Part C, Methods, 2008. 14(2): p. 157-66.spa
dc.relation.referencesNair, K., et al., Characterization of cell viability during bioprinting processes. Biotechnology journal, 2009. 4(8): p. 1168-77.spa
dc.relation.referencesCui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent patents on drug delivery & formulation, 2012. 6(2): p. 149-55.spa
dc.relation.referencesRobu, A., et al., Computer simulations of in vitro morphogenesis. Biosystems, 2012. 109(3): p. 430-43.spa
dc.relation.referencesZhou, B., et al., Simulation of the gelation process of hydrogel droplets in 3D bioprinting. Vol. 16. 2016. 117-118.spa
dc.relation.referencesFristrom, D., The cellular basis of epithelial morphogenesis. A review. Tissue and Cell, 1988. 20(5): p. 645 - 690.spa
dc.relation.referencesRadisic, M., et al., Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(52): p. 18129-34.spa
dc.relation.referencesXu, T., et al., Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 2006. 27(19): p. 3580 - 3588.spa
dc.relation.referencesSteinberg, M.S., Adhesion in development: an historical overview. Developmental biology, 1996. 180(2): p. 377-88.spa
dc.relation.referencesWang, Y., et al., Spheroid formation of hepatocarcinoma cells in microwells: Experiments and Monte Carlo simulations. PLoS ONE, 2016. 11(8).spa
dc.relation.referencesMironov, V., et al., Organ printing: tissue spheroids as building blocks. Biomaterials, 2009. 30(12): p. 2164-74.spa
dc.relation.referencesKelm, J.M., et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. Journal of biotechnology, 2010. 148(1): p. 46-55.spa
dc.relation.referencesTejavibulya, N., et al., Directed self-assembly of large scaffold-free multi-cellular honeycomb structures. Biofabrication, 2011. 3(3): p. 034110.spa
dc.relation.referencesDerby, B., Printing and prototyping of tissues and scaffolds. Science, 2012. 338(6109): p. 921-6. Bibliografía 219spa
dc.relation.referencesJakab, K., et al., Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(9): p. 2864-2869.spa
dc.relation.referencesJakab, K., et al., Relating cell and tissue mechanics: implications and applications. Developmental dynamics, 2008. 237(9): p. 2438-49.spa
dc.relation.referencesSteinberg, M.S., Reconstruction of Tissues by Dissociated Cells. Science, 1963. 141(3579): p. 401-408.spa
dc.relation.referencesNakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue engineering, 2005. 11(11-12): p. 1658-66.spa
dc.relation.referencesFreutel, M., et al., Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech (Bristol, Avon), 2014. 29(4): p. 363-72.spa
dc.relation.referencesTimpl, R., et al., Laminin--a glycoprotein from basement membranes. J Biol Chem, 1979. 254(19): p. 9933-7.spa
dc.relation.referencesPankov, R. and K.M. Yamada, Fibronectin at a glance. J Cell Sci, 2002. 115(Pt 20): p. 3861-3.spa
dc.relation.referencesVazin, T. and D.V. Schaffer, Engineering strategies to emulate the stem cell niche. Trends Biotechnol, 2010. 28(3): p. 117-24.spa
dc.relation.referencesGleghorn, J.P., et al., Inhibitory morphogens and monopodial branching of the embryonic chicken lung. Developmental dynamics, 2012. 241(5): p. 852-62.spa
dc.relation.referencesIber, D. and D. Menshykau, The control of branching morphogenesis. Open biology, 2013. 3(9): p. 130088-130088.spa
dc.relation.referencesMarga, F., et al., Developmental biology and tissue engineering. Birth Defects Research Part C: Embryo Today: Reviews, 2007. 81(4): p. 320-8.spa
dc.relation.referencesBetsch, M., et al., Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues. Advanced Healthcare Materials, 2018. 7(21): p. e1800894.spa
dc.relation.referencesHeinrich, M.A., et al., Bioprinting: 3D Bioprinting: from Benches to Translational Applications (Small 23/2019). Small, 2019. 15(23): p. 1970126.spa
dc.relation.referencesHoshiba, T. and M. Tanaka, Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2016. 1863(11): p. 2749-2757.spa
dc.relation.referencesKasza, K.E., et al., The cell as a material. Current opinion in cell biology, 2007. 19(1): p. 101-7.spa
dc.relation.referencesMironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Current opinion in biotechnology, 2011. 22(5): p. 667-73.spa
dc.relation.referencesMarga, F., et al., Toward engineering functional organ modules by additive manufacturing. Biofabrication, 2012. 4(2): p. 022001.spa
dc.relation.referencesA., N., et al., Simulation of a 3D Bioprinted Human Vascular, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688spa
dc.relation.referencesKhoo, Z.X., et al., 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015. 10(3): p. 103-122.spa
dc.relation.referencesAn, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting, 2016. 220 Título de la tesis o trabajo de investigaciónspa
dc.relation.referencesKamei, M., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453-6.spa
dc.relation.referencesAlajati, A., et al., Spheroid-based engineering of a human vasculature in mice. Nature methods, 2008. 5(5): p. 439-45.spa
dc.relation.referencesChang, R., J. Nam, and W. Sun, Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue engineering. Part A, 2008. 14(1): p. 41-8.spa
dc.relation.referencesGunther, A., et al., A microfluidic platform for probing small artery structure and function. Lab on a chip, 2010. 10(18): p. 2341-9.spa
dc.relation.referencesHuh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-8.spa
dc.relation.referencesXu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnology journal, 2011. 6(2): p. 204-212.spa
dc.relation.referencesGhaemmaghami, A.M., et al., Biomimetic tissues on a chip for drug discovery. Drug discovery today, 2012. 17(3-4): p. 173-81.spa
dc.relation.referencesKnowlton, S., et al., Bioprinting for cancer research. Trends in biotechnology, 2015. 33(9): p. 504-13.spa
dc.relation.referencesVillasante, A. and G. Vunjak-Novakovic, Tissue-engineered models of human tumors for cancer research. Expert opinion on drug discovery, 2015. 10(3): p. 257-68.spa
dc.relation.referencesLancaster, M.A., et al., Cerebral organoids model human brain development and microcephaly. Nature, 2013. 501(7467): p. 373-379.spa
dc.relation.referencesWong, A.P., et al., Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 2012. 30(9): p. 876-882.spa
dc.relation.referencesClevers, H., STEM CELLS. What is an adult stem cell? Science, 2015. 350(6266): p. 1319-20.spa
dc.relation.referencesEiraku, M. and Y. Sasai, Self-formation of layered neural structures in three-dimensional culture of ES cells. Current opinion in neurobiology, 2012. 22(5): p. 768-777.spa
dc.relation.referencesLancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194): p. 1247125.spa
dc.relation.referencesDekkers, J.F., et al., A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature Medicine, 2013. 19(7): p. 939-945.spa
dc.relation.referencesCiancanelli, M.J., et al., Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science, 2015. 348(6233): p. 448.spa
dc.relation.referencesFirth, A.L., et al., Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep, 2015. 12(9): p. 1385-90.spa
dc.relation.referencesBenam, K.H., et al., Human Lung Small Airway-on-a-Chip Protocol, in 3D Cell Culture: Methods and Protocols, Z. Koledova, Editor. 2017, Springer New York: New York, NY. p. 345- 365.spa
dc.relation.referencesBhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology, 2014. 32(8): p. 760-772.spa
dc.relation.referencesKimura, H., Y. Sakai, and T. Fujii, Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metabolism and Pharmacokinetics, 2018. 33(1): p. 43-48.spa
dc.relation.referencesDomansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab on a chip, 2010. 10(1): p. 51-8.spa
dc.relation.referencesFaulkner-Jones, A., et al., Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication, 2015. 7(4): p. 044102. Bibliografía 221spa
dc.relation.referencesMa, X., et al., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(8): p. 2206-11.spa
dc.relation.referencesDinh, N.-D., et al., Effective Light Directed Assembly of Building Blocks with Microscale Control. Small, 2017. 13.spa
dc.relation.referencesKizawa, H., et al., Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochemistry and Biophysics Reports, 2017. 10: p. 186-191.spa
dc.relation.referencesStichler, S., et al., Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis. Biofabrication, 2017. 9(4).spa
dc.relation.referencesKang, K., et al., Three-Dimensional Bioprinting of Hepatic Structures with Directly Converted Hepatocyte-Like Cells. Tissue engineering. Part A, 2018. 24(7-8): p. 576-583.spa
dc.relation.referencesTakebe, T., et al., Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013. 499(7459): p. 481-484.spa
dc.relation.referencesBhise, N.S., et al., A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016. 8(1): p. 014101.spa
dc.relation.referencesHirt, M.N., A. Hansen, and T. Eschenhagen, Cardiac Tissue Engineering. Circulation Research, 2014. 114(2): p. 354-367.spa
dc.relation.referencesLind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. Nature Materials, 2017. 16(3): p. 303-308.spa
dc.relation.referencesZhang, Y.S., et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016. 110: p. 45-59.spa
dc.relation.referencesMa, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Advanced drug delivery reviews, 2018. 132: p. 235-251.spa
dc.relation.referencesJang, J., H.-G. Yi, and D.-W. Cho, 3D Printed Tissue Models: Present and Future. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1722-1731.spa
dc.relation.referencesKoch, L., et al., Skin tissue generation by laser cell printing. Biotechnology and bioengineering, 2012. 109(7): p. 1855-63.spa
dc.relation.referencesLee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue engineering. Part C, Methods, 2014. 20(6): p. 473-84.spa
dc.relation.referencesRandall, M.J., et al., Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Frontiers in Bioengineering and Biotechnology, 2018. 6(154).spa
dc.relation.referencesLindberg, K., et al., In vitro propagation of human ocular surface epithelial cells for transplantation. Investigative Ophthalmology & Visual Science, 1993. 34(9): p. 2672-2679.spa
dc.relation.referencesPellegrini, G., et al., Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet, 1997. 349(9057): p. 990-993.spa
dc.relation.referencesRama, P., et al., Limbal stem-cell therapy and long-term corneal regeneration. New England journal of medicine, 2010. 363(2): p. 147-155.spa
dc.relation.referencesLancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194).spa
dc.relation.referencesLongmire, T.A., et al., Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell stem cell, 2012. 10(4): p. 398-411.spa
dc.relation.referencesSteinberg, M.S., Differential adhesion in morphogenesis: a modern view. Current Opinion in Genetics and Development 2007. 17(4): p. 281-6.spa
dc.relation.referencesHorning, J.L., et al., 3-D Tumor Model for In Vitro Evaluation of Anticancer Drugs. Molecular Pharmaceutics, 2008. 5(5): p. 849-862. 222 Título de la tesis o trabajo de investigaciónspa
dc.relation.referencesFlenner, E., et al., Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems. Vol. 85. 2012. 031907.spa
dc.relation.referencesShin, C.S., et al., 3D cancer tumor models for evaluating chemotherapeutic efficacy, in Biomaterials for Cancer Therapeutics, K. Park, Editor. 2013, Woodhead Publishing. p. 445-460.spa
dc.relation.referencesHubert, C.G., et al., A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res, 2016. 76(8): p. 2465-77.spa
dc.relation.referencesFujii, M., et al., A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell, 2016. 18(6): p. 827-838.spa
dc.relation.referencesLiverani, C., et al., A biomimetic 3D model of hypoxia-driven cancer progression. Scientific Reports, 2019. 9(1): p. 12263.spa
dc.relation.referencesTanner, K. and M.M. Gottesman, Beyond 3D culture models of cancer. Science Translational Medicine, 2015. 7(283): p. 283ps9-283ps9.spa
dc.relation.referencesRoberts, S., S. Peyman, and V. Speirs, Current and Emerging 3D Models to Study Breast Cancer, in Breast Cancer Metastasis and Drug Resistance. 2019. p. 413-427.spa
dc.relation.referencesRingeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue engineering, 2004. 10(3-4): p. 483-91.spa
dc.relation.referencesMatsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Advanced Healthcare Materials, 2013. 2(4): p. 534-9.spa
dc.relation.referencesZhao, Y., et al., Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, 2014. 6(3): p. 035001.spa
dc.relation.referencesYamada, K.M. and E. Cukierman, Modeling Tissue Morphogenesis and Cancer in 3D. Cell, 2007. 130(4): p. 601-610.spa
dc.relation.referencesNantasanti, S., et al., Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem cell reports, 2015. 5(5): p. 895-907.spa
dc.relation.referencesChaturvedi, R., et al., A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb, in International Conference on Cellular Automata. 2004. p. 543-552.spa
dc.relation.referencesHespel, A.M., R. Wilhite, and J. Hudson, Invited review-applications for 3D printers in veterinary medicine. Veterinary Radiology & Ultrasound, 2014. 55(4): p. 347-358.spa
dc.relation.referencesKamb, A., What's wrong with our cancer models? Nat Rev Drug Discov, 2005. 4(2): p. 161-5.spa
dc.relation.referencesGuillotin, B., et al., Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010. 31(28): p. 7250-6.spa
dc.relation.referencesCampbell, P.G., et al., Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials, 2005. 26(33): p. 6762-70.spa
dc.relation.referencesPhillippi, J.A., et al., Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells, 2008. 26(1): p. 127-34.spa
dc.relation.referencesNorotte, C., et al., Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 2009. 30(30): p. 5910-7.spa
dc.relation.referencesChrisey, D.B., Materials Processing: The Power of Direct Writing. Science, 2000. 289(5481): p. 879-81.spa
dc.relation.referencesKattamis, N.T., et al., Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Applied Physics Letters, 2007. 91(17): p. 171120.spa
dc.relation.referencesKoch, L., et al., Laser printing of skin cells and human stem cells. Tissue engineering. Part C, Methods, 2010. 16(5): p. 847-54.spa
dc.relation.referencesGruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue engineering. Part C, Methods, 2011. 17(1): p. 79-87.spa
dc.relation.referencesDuocastella, M., et al., Novel laser printing technique for miniaturized biosensors preparation. Sensors and Actuators B: Chemical, 2010. 145(1): p. 596-600. Bibliografía 223spa
dc.relation.referencesTekin, E., P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.spa
dc.relation.referencesKlebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Experimental cell research, 1988. 179(2): p. 362-73.spa
dc.relation.referencesOkamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nature biotechnology, 2000. 18(4): p. 438-41.spa
dc.relation.referencesXu, T., et al., High-throughput production of single-cell microparticles using an inkjet printing technology. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008. 130(2): p. 0210171-0210175.spa
dc.relation.referencesCohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue engineering, 2006. 12(5): p. 1325-35.spa
dc.relation.referencesVisser, J., et al., Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 2013. 5(3): p. 035007.spa
dc.relation.referencesKhalil, S. and W. Sun, Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Materials Science & Engineering C, 2007. 27(3): p. 469-478.spa
dc.relation.referencesGuvendiren, M., H.D. Lu, and J.A. Burdick, Shear-thinning hydrogels for biomedical applications. Soft Matter, 2012. 8(2): p. 260-272.spa
dc.relation.referencesHribar, K.C., et al., Light-assisted direct-write of 3D functional biomaterials. Lab on a Chip, 2014. 14(2): p. 268-275.spa
dc.relation.referencesMorris, V.B., et al., Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Annals of Biomedical Engineering, 2017. 45(1): p. 286-296.spa
dc.relation.referencesAbdel Fattah, A.R., et al., In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomaterials Science & Engineering, 2016. 2(12): p. 2133-2138.spa
dc.relation.referencesTseng, H., et al., A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomaterialia, 2014. 10(1): p. 173-182.spa
dc.relation.referencesHennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Advanced drug delivery reviews, 2002. 54(1): p. 13-36.spa
dc.relation.referencesShin, S.R., et al., A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016. 28(17): p. 3280-3289.spa
dc.relation.referencesLind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. Nature Materials, 2017. 16(3): p. 303-308.spa
dc.relation.referencesLi, L., et al., In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Scientific reports, 2017. 7(1): p. 9416.spa
dc.relation.referencesHakimi, N., et al., Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab on a chip, 2018. 18(10): p. 1440-1451.spa
dc.relation.referencesSilva, C., et al., Rational Design of a Triple-Layered Coaxial Extruder System: in silico and in vitro Evaluations Directed Toward Optimizing Cell Viability. International journal of bioprinting, 2020. 6(4): p. 282-282.spa
dc.relation.referencesHufnagel, L., et al., On the mechanism of wing size determination in fly development. Proceedings of the National Academy of Sciences, 2007. 104(10): p. 3835-3840.spa
dc.relation.referencesVincent, J.-P., A.G. Fletcher, and L.A. Baena-Lopez, Mechanisms and mechanics of cell competition in epithelia. Nature Reviews Molecular Cell Biology, 2013. 14(9): p. 581-591.spa
dc.relation.referencesFletcher, A.G., F. Cooper, and R.E. Baker, Mechanocellular models of epithelial morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1720): p. 20150519.spa
dc.relation.referencesKolesky, D.B., et al., 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs. Advanced Materials, 2014. 26(19): p. 3124-3130.spa
dc.relation.referencesKolesky, D.B., et al., Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 2016. 113(12): p. 3179-3184.spa
dc.relation.referencesKang, H.-W., et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 2016. 34(3): p. 312-319.spa
dc.relation.referencesNeagu, A., et al., Role of physical mechanisms in biological self-organization. Physical review letters, 2005. 95(17): p. 178104.spa
dc.relation.referencesFleming, P.A., et al., Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Developmental dynamics, 2010. 239(2): p. 398-406.spa
dc.relation.referencesCarter, S.B., Haptotaxis and the Mechanism of Cell Motility. Nature, 1967. 213(5073): p. 256- 260.spa
dc.relation.referencesHarris, A., Behavior of cultured cells on substrata of variable adhesiveness. Experimental cell research, 1973. 77(1): p. 285-97.spa
dc.relation.referencesGalle, J., M. Loeffler, and D. Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophysical journal, 2005. 88(1): p. 62-75.spa
dc.relation.referencesMerks, R.M.H., et al., Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth. PLOS Computational Biology, 2008. 4(9): p. e1000163.spa
dc.relation.referencesSengers, B.G., et al., Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials, 2007. 28(10): p. 1926-40.spa
dc.relation.referencesHynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673- 87.spa
dc.relation.referencesGumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996. 84(3): p. 345-57.spa
dc.relation.referencesBeysens, D.A., G. Forgacs, and J.A. Glazier, Cell sorting is analogous to phase ordering in fluids. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(17): p. 9467-9471.spa
dc.relation.referencesFoty, R.A. and M.S. Steinberg, The differential adhesion hypothesis: a direct evaluation. Developmental Biology, 2005. 278(1): p. 255-263.spa
dc.relation.referencesSteinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proceedings of the National Academy of Sciences of the United States of America, 1962. 48(10): p. 1769-76.spa
dc.relation.referencesGierer, A., et al., Regeneration of hydra from reaggregated cells. Nature: New biology, 1972. 239(91): p. 98-101.spa
dc.relation.referencesYamanaka, H., Y. Tanaka-Ohmura, and M. Dan-Sohkawa, What do dissociated embryonic cells of the starfish, Asterina pectinifera, do to reconstruct bipinnaria larvae? Journal of embryology and experimental morphology, 1986. 94: p. 61-71.spa
dc.relation.referencesKipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophysical journal, 2007. 93(5): p. 1797- 808.spa
dc.relation.referencesSteinberg, M.S., Adhesion-guided multicellular assembly: a commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting. Journal of Theoretical Biology, 1975. 55(2): p. 431 - 443.spa
dc.relation.referencesFoty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Physical review letters, 1994. 72(14): p. 2298-2301.spa
dc.relation.referencesFoty, R.A., et al., Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 1996. 122(5): p. 1611-20. Bibliografía 225spa
dc.relation.referencesMarmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(41): p. 17271-17275.spa
dc.relation.referencesPajic-Lijakovic, I. and M. Milivojevic, Long-time viscoelasticity of multicellular surfaces caused by collective cell migration – Multi-scale modeling considerations. Seminars in Cell & Developmental Biology, 2019. 93: p. 87-96.spa
dc.relation.referencesGriffith, L.G. and G. Naughton, Tissue Engineering-Current Challenges and Expanding Opportunities. Science, 2002. 295(5557): p. 1009-1014.spa
dc.relation.referencesNorotte, C., et al., Experimental evaluation of apparent tissue surface tension based on the exact solution of the Laplace equation. Europhysics Letters, 2008. 81(46003).spa
dc.relation.referencesMgharbel, A., H. Delanoe-Ayari, and J.P. Rieu, Measuring accurately liquid and tissue surface tension with a compression plate tensiometer. HFSP journal, 2009. 3(3): p. 213-21.spa
dc.relation.referencesKorff, T. and H.G. Augustin, Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. Journal of cell science, 1999. 112 ( Pt 19): p. 3249-58.spa
dc.relation.referencesFriedl, P. and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology 2009. 10(7): p. 445-57.spa
dc.relation.referencesLo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophysical journal, 2000. 79(1): p. 144-152.spa
dc.relation.referencesMayor, R. and C. Carmona-Fontaine, Keeping in touch with contact inhibition of locomotion. Trends in cell biology, 2010. 20(6): p. 319-28.spa
dc.relation.referencesGoel, N.S. and G. Rogers, Computer simulation of engulfment and other movements of embryonic tissues. Journal of Theoretical Biology, 1978. 71(1): p. 103-140.spa
dc.relation.referencesGlazier, J.A., S.P. Gross, and J. Stavans, Dynamics of two-dimensional soap froths. Physical Review A, 1987. 36(1): p. 306-312.spa
dc.relation.referencesStavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Physical review letters, 1989. 62(11): p. 1318-1321.spa
dc.relation.referencesTuring, A.M., The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1952. 237(641): p. 37-72.spa
dc.relation.referencesWittwer, L.C., Roberto; Aland, Sebastian; Iber, Dagmar, Simulating Organogenesis in COMSOL: Phase-Field Based Simulations of Embryonic Lung Branching Morphogenesis. 2016.spa
dc.relation.referencesWittwer, L.D., Phase-Field Based Simulations of Embryonic Branching Morphogenesis. 2017, ETH Zurich.spa
dc.relation.referencesMetzger, R.J., et al., The branching programme of mouse lung development. Nature, 2008. 453(7196): p. 745-50.spa
dc.relation.referencesWalker, D.C. and J. Southgate, The virtual cell--a candidate co-ordinator for 'middle-out' modelling of biological systems. Briefings in bioinformatics, 2009. 10(4): p. 450-61.spa
dc.relation.referencesAndasari, V., et al., Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion. PLOS ONE, 2012. 7(3): p. e33726.spa
dc.relation.referencesIngber, D.E. and M. Levin, What lies at the interface of regenerative medicine and developmental biology? Development, 2007. 134(14): p. 2541-2547.spa
dc.relation.referencesAndreea Robu, L.S.-T., SIMMMC – An Informatic Application for Mmodelling and Simulating the Evolution of Multicellular Systems in the Vicinity of Biomaterials. Romaninan Journal of Biophysics, 2016. 26(3).spa
dc.relation.referencesAmar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engineering, 2006. 8: p. 9-19.spa
dc.relation.referencesFichthorn, K.A. and W.H. Weinberg, Theoretical foundations of dynamical Monte Carlo simulations. The Journal of Chemical Physics, 1991. 95(2): p. 1090-1096.spa
dc.relation.referencesVineyard, G.H., Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957. 3(1): p. 121-127.spa
dc.relation.referencesSun, Y. and Q. Wang, Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo methods. Soft Matter, 2013. 9(7): p. 2172-2186.spa
dc.relation.referencesBortz, A.B., M.H. Kalos, and J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics, 1975. 17(1): p. 10-18.spa
dc.relation.referencesNEAGU, A., et al., COMPUTATIONAL MODELING OF TISSUE SELF-ASSEMBLY. Modern Physics Letters B, 2006. 20(20): p. 1217-1231.spa
dc.relation.referencesSchienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1994. 49(6): p. 5462-5471.spa
dc.relation.referencesMombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Physical review letters, 1996. 76(16): p. 3032-3035.spa
dc.relation.referencesGraner, F. and J.A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical review letters, 1992. 69(13): p. 2013-2016.spa
dc.relation.referencesGlazier, J.A., A. Balter, and N.J. Poplawski, Magnetization to Morphogenesis: A Brief History of the Glazier-Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.spa
dc.relation.referencesCickovski, T., et al., A Framework for Three-Dimensional Simulation of Morphogenesis. IEEE/ACM transactions on computational biology and bioinformatics, 2005. 2: p. 273-88.spa
dc.relation.referencesMerks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Mathematical Modelling of Natural Phenomena, 2009. 4(4): p. 149-171spa
dc.relation.referencesHester, S.D., et al., A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS computational biology, 2011. 7(10): p. e1002155.spa
dc.relation.referencesRowlinson, J.S., Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, 1979. 20(2): p. 197-200.spa
dc.relation.referencesYang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. Journal of theoretical biology, 2012. 303: p. 110-8.spa
dc.relation.referencesYang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. Journal of biomechanical engineering, 2013. 135(7): p. 71005.spa
dc.relation.referencesFlory, P.J., Principles of Polymer Chemistry. 1953, Ithaca, N.Y.: Cornell University Press.spa
dc.relation.referencesDoi, M., Introduction to Polymer Physics, ed. H. See. 1996: Clarendon Pressspa
dc.relation.referencesQin, R.S. and H.K. Bhadeshia, Phase field method. Materials Science and Technology, 2010. 26(7): p. 803-811.spa
dc.relation.referencesAland, S., Modelling of two-phase flow with surface active particles, in Der Fakultät Mathematik und Naturwissenschaften. 2012, Technischen Universität Dresden. p. 127.spa
dc.relation.referencesChen, L.-Q., Phase-Field Models for Microstructure Evolution. Annual Review of Materials Research, 2002. 32(1): p. 113-140.spa
dc.relation.referencesFolch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999. 60(2 Pt B): p. 1724-33.spa
dc.relation.referencesCahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 1958. 28(2): p. 258-267. Bibliografía 227spa
dc.relation.referencesCahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. III. Nucleation in a Two‐ Component Incompressible Fluid. The Journal of Chemical Physics, 1959. 31(3): p. 688-699.spa
dc.relation.referencesLervåg, K.Y. and J. Lowengrub, Analysis of the diffuse-domain method for solving PDEs in complex geometries. Communications in mathematical sciences, 2015. 13: p. 1473.spa
dc.relation.referencesIbrahimi, O.A., et al., Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Molecular and cellular biology, 2005. 25(2): p. 671-84.spa
dc.relation.referencesFrancavilla, C., et al., Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs. Molecular Cell, 2013. 51(6): p. 707-722.spa
dc.relation.referencesDonea, J., et al., Arbitrary Lagrangian–Eulerian Methods, in Encyclopedia of Computational Mechanics. 2004.spa
dc.relation.referencesIber, D., et al., Simulating tissue morphogenesis and signaling. Methods in molecular biology, 2015. 1189: p. 323-38.spa
dc.relation.referencesKockelkoren, J., H. Levine, and W.-J. Rappel, Computational approach for modeling intra- and extracellular dynamics. Physical Review E, 2003. 68(3): p. 037702.spa
dc.relation.referencesKurics, T., D. Menshykau, and D. Iber, Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models. Physical Review E, 2014. 90(2): p. 022716.spa
dc.relation.referencesPalsson, E. and H.G. Othmer, A model for individual and collective cell movement in Dictyostelium-discoideum. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(19): p. 10448-10453.spa
dc.relation.referencesDallon, J.C. and H.G. Othmer, How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. Journal of theoretical biology, 2004. 231(2): p. 203-22.spa
dc.relation.referencesWalker, D.C., et al., The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems, 2004. 76(1-3): p. 89-100.spa
dc.relation.referencesDrasdo, D. and S. Hoehme, A single-cell-based model of tumor growth in vitro: Monolayers and spheroids. Physical biology, 2005. 2: p. 133-47.spa
dc.relation.referencesChu, Y.S., et al., Johnson-Kendall-Roberts theory applied to living cells. Physical review letters, 2005. 94(2): p. 028102.spa
dc.relation.referencesHoehme, S. and D. Drasdo, A cell-based simulation software for multi-cellular systems. Bioinformatics, 2010. 26(20): p. 2641-2.spa
dc.relation.referencesHoehme, S., et al., Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(23): p. 10371-6.spa
dc.relation.referencesHoffmann, M., et al., Spatial Organization of Mesenchymal Stem Cells In Vitro—Results from a New Individual Cell-Based Model with Podia. PLOS ONE, 2011. 6(7): p. e21960.spa
dc.relation.referencesNewman, T.J., Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences & Engineering, 2005. 2(3): p. 613-624.spa
dc.relation.referencesZaman, M.H., et al., Computational model for cell migration in three-dimensional matrices. Biophysical journal, 2005. 89(2): p. 1389-97.spa
dc.relation.referencesFlenner, E., et al., Relating biophysical properties across scales, in Current Topics in Developmental Biology. 2008. p. 461-83.spa
dc.relation.referencesSandersius, S.A. and T.J. Newman, Modeling cell rheology with the Subcellular Element Model. Physical biology, 2008. 5(1): p. 015002.spa
dc.relation.referencesKosztin, I., G. Vunjak-Novakovic, and G. Forgacs, Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 2012. 84(4): p. 1791-1805.spa
dc.relation.references259. Chaikin, P.M., Principles of Condensed Matter Physics. 2000: Cambridge University Press.spa
dc.relation.referencesAlberts, B., et al., Molecular Biology of the Cell. 2002, New York: Garland Science.spa
dc.relation.referencesPathmanathan, P., et al., A computational study of discrete mechanical tissue models. Physical Biology, 2009. 6(3): p. 036001.spa
dc.relation.referencesPhillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-802.spa
dc.relation.referencesShafiee, A., et al., Post-deposition bioink self-assembly: a quantitative study. Biofabrication, 2015. 7(4): p. 045005.spa
dc.relation.referencesCristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Computers in biology and medicine, 2016. 70: p. 80-87.spa
dc.relation.referencesSilva, H.S. and M.L. Martins, A cellular automata model for cell differentiation. Physica A: Statistical Mechanics and its Applications, 2003. 322: p. 555-566.spa
dc.relation.referencesGarijo, N., et al., Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells. Journal of Theoretical Biology, 2012. 314: p. 1-9.spa
dc.relation.referencesVan Scoy, G.K., et al., A cellular automata model of bone formation. Mathematical Biosciences, 2017. 286: p. 58-64.spa
dc.relation.referencesBen Youssef, B., Simulating Cell-Cell Interactions Using a Multicellular Three-Dimensional Computational Model of Tissue Growth. 2018. p. 215-228.spa
dc.relation.referencesSipahi, R. and G.K.H. Zupanc, Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. Journal of Theoretical Biology, 2018. 445: p. 151-165.spa
dc.relation.referencesZupanc, G.K.H., F.B. Zupanc, and R. Sipahi, Stochastic cellular automata model of tumorous neurosphere growth: Roles of developmental maturity and cell death. Journal of Theoretical Biology, 2019. 467: p. 100-110.spa
dc.relation.referencesBeros, A., M. Chyba, and K. Noe, Co-evolving cellular automata for morphogenesis. Discrete & Continuous Dynamical Systems - B, 2019. 24(5): p. 2053-2071.spa
dc.relation.referencesBrodland, G.W. and J.H. Veldhuis, Assessing the mechanical energy costs of various tissue reshaping mechanisms. Biomech Model Mechanobiol, 2012. 11(8): p. 1137-47.spa
dc.relation.referencesSteinberg, M.S., Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science, 1963. 141(3579): p. 401-8.spa
dc.relation.referencesBrodland, G.W. and H.H. Chen, The mechanics of heterotypic cell aggregates: insights from computer simulations. J Biomech Eng, 2000. 122(4): p. 402-7.spa
dc.relation.referencesHwang, M., et al., Rule-Based Simulation of Multi-Cellular Biological Systems-A Review of Modeling Techniques. Cellular and molecular bioengineering, 2009. 2(3): p. 285-294.spa
dc.relation.referencesRezende, R.A., et al., Organ Printing as an Information Technology. Procedia Engineering, 2015. 110: p. 151-158.spa
dc.relation.referencesCohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng, 2006. 12(5): p. 1325-35.spa
dc.relation.referencesChang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods, 2008. 14(2): p. 157-66.spa
dc.relation.referencesHopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng, 2005. 11(11-12): p. 1817-23. Bibliografía 229spa
dc.relation.referencesMironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol, 2011. 22(5): p. 667-73.spa
dc.relation.referencesXu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnol J, 2011. 6(2): p. 204-212.spa
dc.relation.referencesJiang, T., et al., Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels. Scientific Reports, 2017. 7(1): p. 4575.spa
dc.relation.referencesLind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. 2017. 16(3): p. 303-308.spa
dc.relation.referencesKoti, P., et al., Use of GelMA for 3D printing of cardiac myocytes and fibroblasts. Journal of 3D printing in medicine, 2019. 3(1): p. 11-22.spa
dc.relation.referencesKlebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res, 1988. 179(2): p. 362-73.spa
dc.relation.referencesNakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng, 2005. 11(11-12): p. 1658-66.spa
dc.relation.referencesCui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul, 2012. 6(2): p. 149-55.spa
dc.relation.referencesOkamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol, 2000. 18(4): p. 438-41.spa
dc.relation.referencesMatsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater, 2013. 2(4): p. 534-9.spa
dc.relation.referencesLee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods, 2014. 20(6): p. 473-84.spa
dc.relation.referencesRingeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng, 2004. 10(3-4): p. 483-91.spa
dc.relation.referencesGruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods, 2011. 17(1): p. 79-87.spa
dc.relation.referencesGuillemot, F., et al., High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomaterialia, 2010. 6(7): p. 2494-2500.spa
dc.relation.referencesAli, M., et al., Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication, 2014. 6(4): p. 045001.spa
dc.relation.referencesStavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Phys Rev Lett, 1989. 62(11): p. 1318-1321.spa
dc.relation.referencesGlazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1993. 47(3): p. 2128-2154.spa
dc.relation.referencesAmar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engg., 2006. 8(2): p. 9–19.spa
dc.relation.referencesSteinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proc Natl Acad Sci U S A, 1962. 48(10): p. 1769-76.spa
dc.relation.referencesSteinberg, M.S., Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev, 2007. 17(4): p. 281-6.spa
dc.relation.referencesDomansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab Chip, 2010. 10(1): p. 51-8. 230 Título de la tesis o trabajo de investigaciónspa
dc.relation.referencesCickovski, T.M., et al., A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005. 2(4): p. 273-288.spa
dc.relation.referencesMerks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Math. Model. Nat. Phenom., 2009. 4(4): p. 149- 171.spa
dc.relation.referencesR. Chaturvedi, C.H., J. A. Izaguirre, S. A. Newman, J. A. Glazier, M. Alber, A Hybrid Discrete- Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb. International Conference on Cellular Automata, 2004: p. 543-552.spa
dc.relation.referencesNicholas J.Savill, P., Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.spa
dc.relation.referencesGalle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. Am J Pathol, 2006. 169(5): p. 1802-11.spa
dc.relation.referencesJakab, K., et al., Relating cell and tissue mechanics: implications and applications. Dev Dyn, 2008. 237(9): p. 2438-49.spa
dc.relation.referencesJakab, K., et al., Organ printing: fiction or science. Biorheology, 2004. 41(3-4): p. 371-5.spa
dc.relation.referencesYang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. J Theor Biol, 2012. 303: p. 110-8.spa
dc.relation.referencesVoter, A.F. INTRODUCTION TO THE KINETIC MONTE CARLO METHOD. 2007. Dordrecht: Springer Netherlands.spa
dc.relation.referencesGlazier James A, A.B.a.N.J.P., Magnetization to Morphogenesis: A Brief History of the Glazier- Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.spa
dc.relation.referencesSteinberg, M.S., Adhesion in development: an historical overview. Dev Biol, 1996. 180(2): p. 377-88.spa
dc.relation.referencesChatterjee, A. and D.G. Vlachos, An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. Journal of Computer-Aided Materials Design, 2007. 14(2): p. 253-308.spa
dc.relation.referencesFolch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1999. 60(2 Pt B): p. 1724-33.spa
dc.relation.referencesYang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. J Biomech Eng, 2013. 135(7): p. 71005.spa
dc.relation.referencesCristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Comput Biol Med, 2016. 70: p. 80-87.spa
dc.relation.referencesNorris, J.R., Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. 1997, Cambridge: Cambridge University Press.spa
dc.relation.referencesFeller, W., An Introduction to Probability Theory and Its Applications. Vol. 1. 1966.spa
dc.relation.referencesBlue, J.L., I. Beichl, and F. Sullivan, Faster Monte Carlo simulations. Physical Review E, 1995. 51(2): p. R867-R868.spa
dc.relation.referencesRahman, T., et al., Atomistic studies of thin film growth. Optical Science and Technology, the SPIE 49th Annual Meeting. Vol. 5509. 2004: SPIE.spa
dc.relation.referencesTrushin, O., et al., Self-learning kinetic Monte Carlo method: Application to Cu(111). Physical Review B, 2005. 72(11): p. 115401.spa
dc.relation.referencesFoty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Phys Rev Lett, 1994. 72(14): p. 2298-2301.spa
dc.relation.referencesFreutel, M., et al., Finite element modeling of soft tissues: Material models, tissue interaction and challenges. Clinical Biomechanics, 2014. 29(4): p. 363-372. Bibliografía 231spa
dc.relation.referencesMarmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences, 2009. 106(41): p. 17271-17275.spa
dc.relation.referencesSchienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1994. 49(6): p. 5462-5471.spa
dc.relation.referencesKipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophys J, 2007. 93(5): p. 1797-808.spa
dc.relation.referencesMombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Phys Rev Lett, 1996. 76(16): p. 3032-3035.spa
dc.relation.referencesFlenner, E., et al., Relating biophysical properties across scales. Curr Top Dev Biol, 2008. 81: p. 461-83.spa
dc.relation.referencesThomas, W.A. and J. Yancey, Can retinal adhesion mechanisms determine cell-sorting patterns: a test of the differential adhesion hypothesis. Development, 1988. 103(1): p. 37-48.spa
dc.relation.referencesFrenkel, J., Viscous flow of crystalline bodies under the action of surface tension. The Journal of Physics, USSR, 1945. 9: p. 385-391.spa
dc.relation.referencesJ, D., Eshelby, Trans. AIME, 1949(185).spa
dc.relation.referencesMa, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev, 2018. 132: p. 235-251.spa
dc.relation.referencesAn, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting; Vol 2, No 1 (2016), 2016.spa
dc.relation.referencesNogueira JA., L.a., Marques TS., Oliveira DS., Mironov V., da Silva and R.R. JV., Simulation of a 3D Bioprinted Human Vascular Segment, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688spa
dc.relation.referencesIber, D., et al., Simulating tissue morphogenesis and signaling. Methods Mol Biol, 2015. 1189: p. 323-38.spa
dc.relation.referencesDouglas Brown, R.H., and Wolfgang Christian, Tracker Video Analysis and Modeling Tool. October, 2020.spa
dc.relation.referencesInc., T.M., Matlab. 2017.spa
dc.relation.referencesHan, Y., et al., Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels. J Biosci Bioeng, 2006. 102(5): p. 430-5.spa
dc.relation.referencesPan, X., et al., Metabolic characterization of a CHO cell size increase phase in fed-batch cultures. Applied microbiology and biotechnology, 2017. 101(22): p. 8101-8113.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesspa
dc.subject.proposalCell aggregateseng
dc.subject.proposalMorphogenesis modeleng
dc.subject.proposalTissue engineeringeng
dc.subject.proposalCell aggregateseng
dc.subject.proposalCell rearrangementeng
dc.subject.proposalSelf-learning KMCeng
dc.subject.proposalMorphogenesiseng
dc.subject.proposalBioprinting simulationeng
dc.subject.proposalBioconvergenceeng
dc.subject.proposalAgregados celularesspa
dc.subject.proposalModelo de morfogenesisspa
dc.subject.proposalIngenieria de tejidosspa
dc.subject.proposalMorfogenesisspa
dc.subject.proposalBioconvergenciaspa
dc.titleSimulación de la evolución de la estructura espacial y organización celular de agregados celulares en diversas geometrías sencillas, mediante un método monte carlo cinético aplicado a un modelo reticulareng
dc.title.translatedSimulation of the spatial structure and cellular organization evolution of cell aggregates arranged in various simple geometries, using a kinetic monte carlo method applied to a lattice modelspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentImagespa
dc.type.contentModelspa
dc.type.contentSoftwarespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013662187.2022.pdf
Tamaño:
6.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: