Evaluación de la influencia de las condiciones meteorológicas locales y de emisión de contaminantes en la calidad del agua lluvia en el Valle de Aburrá

dc.contributor.advisorHoyos Ortiz, Carlos David
dc.contributor.advisorHerrera Mejía, Laura
dc.contributor.authorRamírez Arias, Mauricio
dc.coverage.temporalMedellín
dc.date.accessioned2021-03-12T15:18:40Z
dc.date.available2021-03-12T15:18:40Z
dc.date.issued2019-08-31
dc.description.abstractEste trabajo tiene como objetivos, hacer un diagnóstico de la quı́mica de la precipitación en el Valle de Aburrá, caracterizar la variabilidad inter-evento e intra-evento de la quı́mica de la lluvia, y asociar esta variabilidad con la precipitación y las condiciones locales de contaminación. Con este propósito, se llevaron a cabo campañas de muestreo de agua lluvia basadas en muestreos secuenciales con alta resolución temporal. El análisis de la variabilidad intra-evento evidencia la ocurrencia de lluvia ácida en la región; 31 de los eventos muestreados tienen pH promedio inferior a 5.6, considerado el pH natural del agua lluvia. La acidez y las caracterı́sticas quı́micas consideradas en este estudio, varı́an durante toda la evolución de cada evento. La concentración promedio de material particulado PM10 y PM2.5 durante el periodo previo a cada evento de lluvia, ası́ como la precipitación acumulada y la intensidad de lluvia promedio se identificaron como variables que afectan los niveles de pH del agua lluvia.spa
dc.description.abstractThe goals of this work are, in general, to diagnose the precipitation chemistry in the Aburr´a Valley, to characterize the intra-event and the inter-event variability of the chemistry of precipitation, and to associate the mentioned variability to precipitation sources, and local pollution. For this purpose, we carried out high temporal resolution sampling campaigns during the second wet season of 2018. Inter-event variability analysys evidence the ocurrence of acid rain in the region. 31 of the sampled events, which corresponds to 73.8 %, have VWM pH value less than 5.6. The VWM pH value during the study period for all events is 4.9. The analysis of the rainfall chemistry evolution for each sampled event, shows, in general, changes in the precipitation chemical composition during all the stages of each rainfall compared to the initial fractions. The PM2.5 and PM10 mean concentrations during dry period previous, as well as the cumulative precipitation and the mean rain intensity were identified as variables that affect the rainwater pH values.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaMeteorología de la calidad del airespa
dc.format.extent70 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional -Sede Medellínspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79352
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyMinasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAikawa, M., Hiraki, T., and Eiho, J. (2008). Study on the acidification and pollution of precipitation based on a data set collected on a 0.5-mm precipitation basis. Atmospheric Environment, 42(30):7043–7049.spa
dc.relation.referencesAikawa, M., Kajino, M., Hiraki, T., and Mukai, H. (2014). The contribution of site to washout and rainout: Precipitation chemistry based on sample analysis from 0.5mm precipitation increments and numerical simulation. Atmospheric Environment, 95:165–174.spa
dc.relation.referencesAlves, D. D., Backes, E., Rocha-Uriartt, L., Riegel, R. P., de Quevedo, D. M., Schmitt, J. L., da Costa, G. M., and Osório, D. M. M. (2018). Chemical composition of rainwater in the Sinos River Basin, Southern Brazil: a source apportionment study. Environmental Science and Pollution Research, 25(24):24150–24161.spa
dc.relation.referencesAMVA - UNAL (2016). Aunar esfuerzos para operar la Red de Monitoreo de Calidad del Aire, Meteorologı́a y Ruido en el Valle de Aburrá. Convenio CI 326 de 2014. Technical report, Área Metropolitana del Valle de Aburrá - Universidad Nacional de Colombia, Sede Medellı́n.spa
dc.relation.referencesAnil, I., Alagha, O., and Karaca, F. (2017). Effects of transport patterns on chemical composition of sequential rain samples: trajectory clustering and principal component analysis approach. Air Quality, Atmosphere and Health, 10(10):1193–1206.spa
dc.relation.referencesAntolı́nez, A. and Dı́az, C. (2003). Lluvia ácida en la zona norte de Bogotá. Avila, A. and Alarcón, M. (1999). Relationship between precipitation chemistry and meteorological situations at a rural site in NE Spain. Atmospheric Environment, 33(11):1663–1677.spa
dc.relation.referencesBáez, A., Belmont, R., Garcı́a, R., Padilla, H., and Torres, M. C. (2007). Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico. Atmospheric Research, 86(1):61–75.spa
dc.relation.referencesBarco, J., Gunawan, S., and Hogue, T. S. (2013). Seasonal controls on a stream chemical export across diverse coastal watersheds in the USA. Hydrological Processes, 27:1440–1453.spa
dc.relation.referencesBarco, J., Hogue, T. S., Curto, V., and Rademacher, L. (2008). Linking hydrology and stream geochemistry in urban fringe watersheds. Journal of Hydrology, 360(1-4):31–47.spa
dc.relation.referencesBayramoglu Karsi, M. B., Yenisoy-Karakas, S., and Karakas, D. (2018). Investigation of washout and rainout processes in sequential rain samples. Atmospheric Environment, 190(July):53–64.spa
dc.relation.referencesBedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., and Poveda, G. (2019). Seasonal Shift of the Diurnal Cycle of Rainfall Over Medellin’s Valley, Central Andes of Colombia (1998–2005). Frontiers in Earth Science, 7(May).spa
dc.relation.referencesBertrand, G., Celle-Jeanton, H., Laj, P., Rangognio, J., and Chazot, G. (2008). Rainfall chemistry: Long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). Journal of Atmospheric Chemistry, 60(3):253–271.spa
dc.relation.referencesCalvo, A. I., Olmo, F. J., Lyamani, H., Alados-Arboledas, L., Castro, A., Fernández-Raga, M., and Fraile, R. (2010). Chemical composition of wet precipitation at the background EMEP station in Vı́znar (Granada, Spain) (2002-2006). Atmospheric Research, 96(2-3):408–420.spa
dc.relation.referencesCao, Y. Z., Wang, S., Zhang, G., Luo, J., and Lu, S. (2009). Chemical characteristics of wet precipitation at an urban site of Guangzhou, South China. Atmospheric Research, 94(3):462–469.spa
dc.relation.referencesCarnelos, D. A., Portela, S. I., Jobbágy, E. G., Jackson, R. B., Di Bella, C. M., Panario, D., Fagúndez, C., Piñeiro-Guerra, J. M., Grion, L., and Piñeiro, G. (2019). A first record of bulk atmospheric deposition patterns of major ions in southern South America. Biogeochemistry, 144(3):261–271.spa
dc.relation.referencesCarvalho, S. C. P., de Lima, J. L. M. P., and de Lima, M. I. P. (2014). Rainwater sequential sampler: assessing intra-event water composition variability. Journal of Engineering Research and Technology, 1(1):1–7.spa
dc.relation.referencesCelle-Jeanton, H., Travi, Y., Loÿe-Pilot, M. D., Huneau, F., and Bertrand, G. (2009). Rainwater chemistry at a Mediterranean inland station (Avignon, France): Local contribution versus long-range supply. Atmospheric Research, 91(1):118–126.spa
dc.relation.referencesChate, D. M., Rao, P. S., Naik, M. S., Momin, G. A., Safai, P. D., and Ali, K. (2003). Scavenging of aerosols and their chemical species by rain. Atmospheric Environment, 37(18):2477–2484.spa
dc.relation.referencesChatterjee, A., Jayaraman, A., Rao, T. N., and Raha, S. (2010). In-cloud and below-cloud scavenging of aerosol ionic species over a tropical rural atmosphere in India. Journal of Atmospheric Chemistry, 66(1-2):27–40.spa
dc.relation.referencesCiric, D., Stojanovic, M., Drumond, A., Nieto, R., and Gimeno, L. (2016). Tracking the origin of moisture over the danube river basin using a lagrangian approach. Atmosphere, 7(12).spa
dc.relation.referencesConradie, E. H., Van Zyl, P. G., Pienaar, J. J., Beukes, J. P., Galy-Lacaux, C., Venter, A. D., and Mkhatshwa, G. V. (2016). The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmospheric Environment, 146:113–131.spa
dc.relation.referencesCosta, C., Saldarriaga, G. d. J., Lozano, R., and Suárez, R. (2007). Informe anual sobre el estado del medio ambiente y los recursos naturales renovables en Colombia: Calidad del Aire 2007. Instituto de Hidrologı́a, Meteorologı́a y Estudios Ambientales - IDEAM.spa
dc.relation.referencesDirmeyer, P. A. and Brubaker, K. L. (2007). Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. Journal of Hydrometeorology, 8(1):20–37.spa
dc.relation.referencesDrumond, A., Nieto, R., Gimeno, L., and Ambrizzi, T. (2008). A lagrangian identification of major sources of moisture over central brazil and la plata basin. Journal of Geophysical Research: Atmospheres, 113(D14).spa
dc.relation.referencesDuhanyan, N. and Roustan, Y. (2011). Below-cloud scavenging by rain of atmospheric gases and particulates. Atmospheric Environment, 45(39):7201–7217.spa
dc.relation.referencesEcheverri, O. and Vélez, L. (1988). Lluvia ácida en el Valle de Aburrá. Contaminación Ambiental, 19:9–12.spa
dc.relation.referencesElminir, H. K. (2005). Dependence of urban air pollutants on meteorology. Science of the Total Environment, 350(1-3):225–237.spa
dc.relation.referencesFeller, M. C. (2005). Forest Harvesting and Streamwater Inorganic Chemistry in Western North America: a Review. Journal of the American Water Resources Association, 41(4):785–811.spa
dc.relation.referencesFeng, J. (2007). A 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models. Atmospheric Environment, 41:6808–6822.spa
dc.relation.referencesFlues, M., Hama, P., Lemes, M. J. L., Dantas, E. S. K., and Fornaro, A. (2002). Evaluation of the rainwater acidity of a rural region due to a coal-fired power plant in Brazil. Atmospheric Environment, 36(14):2397–2404.spa
dc.relation.referencesGimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L., Drumond, A., Durán-Quesada, A. M., and Nieto, R. (2012). Oceanic and terrestrial sources of continental precipitation. Reviews of Geophysics, 50(4).spa
dc.relation.referencesGonzález, C. M. and Aristizábal, B. H. (2012). Acid rain and particulate matter dynamics in a mid-sized Andean city The effect of rain intensity on ion scavenging. 60:164–171.spa
dc.relation.referencesGrimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., and Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864):756–760.spa
dc.relation.referencesGrömping, A. H. J., Ostapczuk, P., and Emons, H. (1997). Wet deposition in Germany: Long-term trends and the contribution of heavy metals. Chemosphere, 34(9):2227–2236.spa
dc.relation.referencesHernández, D. A. and Pérez, J. S. (2018). Uso de retrotrayectorias (back trajectories) para el estudio del origen de la precipitación en regiones de interés hı́drico. Tesis pregrado. Universidad Nacional de Colombia - Sede Medellín.spa
dc.relation.referencesHerrera-Mejı́a, L. and Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: the Aburrá Valley case-study. Quarterly Journal of the Royal Meteorological Society, (November 2018):2641–2665.spa
dc.relation.referencesHoyos, C. D., Ceballos, L. I., Pérez, J. S., Sepúlveda, J., López, S. M., Zuluaga, M. D., Velásquez, N., Herrera, L., Hernández, O., Guzmán, G., and Zapata, M. (2019). Hydro- meteorological conditions leading to the 2015 salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences Discus- sions, 2019:1–40.spa
dc.relation.referencesHoyos, I., Dominguez, F., Cañón-Barriga, J., Martı́nez, J. A., Nieto, R., Gimeno, L., and Dirmeyer, P. A. (2018). Moisture origin and transport processes in colombia, northern south america. Climate Dynamics, 50(3):971–990.spa
dc.relation.referencesHuang, K., Zhuang, G., Xu, C., Wang, Y., and Tang, A. (2008). The chemistry of the severe acidic precipitation in Shanghai, China. Atmospheric Research, 89(1-2):149–160.spa
dc.relation.referencesHuang, Y. and Cui, X. (2015). Moisture sources of an extreme precipitation event in sichuan, China, based on the lagrangian method. Atmospheric Science Letters, 16(2):177–183.spa
dc.relation.referencesKeene, W. C., Pszenny, A. A. P., Galloway, J. N., and Hawley, M. E. (1986). Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research, 91(D6):6647.spa
dc.relation.referencesKhan, F., Nizam, K., Maulud, A., Talib, M., Xiang, J., Amil, N., Tahir, N., Mastura, S., and Abdullah, S. (2018). Science of the Total Environment Physicochemical factors and their potential sources inferred from long-term rainfall measurements at an urban and a remote rural site in tropical areas. Science of the Total Environment, 613-614(August 2017):1401–1416.spa
dc.relation.referencesKhare, P., Kapoor, S., Kulshrestha, U. C., Saxena, A., Kumar, N., Kumari, K. M., and Srivastava, S. S. (1996). Variation in ionic composition of precipitation collected by sequential sampling. Environmental Technology (United Kingdom), 17(6):637–642.spa
dc.relation.referencesKrupa, S. V. (2002). Sampling and physico-chemical analysis of precipitation: A review. Environmental Pollution, 120(3):565–594.spa
dc.relation.referencesKurzyca, I., Walna, B., and Siepak, J. (2009). Reliability and comparability-crucial aspects of research on atmospheric precipitation. International Journal of Environmental Analytical Chemistry, 89(8-12):901–916.spa
dc.relation.referencesLara, L. B. L. S., LBLS;, A., P;, M., LA, Artaxo, P., Martinelli, L. A., Victoria, R. L., Camargo, P. B., Krusche, A., Ayers, G. P., Ferraz, E. S. B., Ballester, M. V., LBLS;, A., P;, M., LA, Artaxo, P., Martinelli, L. A., Victoria, R. L., Camargo, P. B., Krusche, A., Ayers, G. P., Ferraz, E. S. B., Ballester, M. V., and Ballester, M. V. (2001). Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmospheric Environment, 35(29):4937–4945.spa
dc.relation.referencesLazaridis, M. (2011). First principles of meteorology. In First Principles of Meteorology and Air Pollution, pages 67–118. Springer.spa
dc.relation.referencesLehmann, C. M., Bowersox, V. C., and Larson, S. M. (2005). Spatial and temporal trends of precipitation chemistry in the United States, 1985-2002. Environmental Pollution, 135(3SPEC. ISS.):347–361.spa
dc.relation.referencesLi, H., Guo, B., Han, M., Tian, M., and Zhang, J. (2015). Particulate matters pollution characteristic and the correlation between pm (pm2. 5, pm10) and meteorological factors during the summer in Shijiazhuang. Journal of Environmental Protection, 6(05):457.spa
dc.relation.referencesLi, T.-C., Yuan, C.-S., Hung, C.-H., Lin, H.-Y., Huang, H.-C., and Lee, C.-L. (2016). Chemical Characteristics of Marine Fine Aerosols over Sea and at Offshore Islands during Three Cruise Sampling Campaigns in the Taiwan Strait-Sea Salts and Anthropogenic Particles. Atmospheric Chemistry and Physics Discussions, (July):1–27.spa
dc.relation.referencesMarlier, M. E., Jina, A. S., Kinney, P. L., and DeFries, R. S. (2016). Extreme Air Pollution in Global Megacities. Current Climate Change Reports, 2(1):15–27.spa
dc.relation.referencesMayer, H. (1999). Air pollution in cities. Atmospheric environment, 33(24-25):4029–4037.spa
dc.relation.referencesMeng, Y., Zhao, Y., Li, R., Li, J., Cui, L., Kong, L., and Fu, H. (2019). Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment. Atmospheric Research, 222(January):12–24.spa
dc.relation.referencesMenz, F. C. and Seip, H. M. (2004). Acid rain in Europe and the United States: An update. Environmental Science and Policy, 7(4):253–265.spa
dc.relation.referencesMigliavacca, D., Teixeira, E. C., Wiegand, F., Machado, A. C., and Sanchez, J. (2005). Atmospheric precipitation and chemical composition of an urban site, Guaı́ba hydrographic basin, Brazil. Atmospheric Environment, 39(10):1829–1844.spa
dc.relation.referencesMigliavacca, D. M., Teixeira, E. C., Raya Rodriguez, M. T., Wiegand, F., and Pereira, F. N. (2010). Analysis of the sulfate aerosol scavenging processes in the metropolitan area of Porto Alegre (MAPA), RS, Brazil. Atmospheric Pollution Research, 1(2):82–93.spa
dc.relation.referencesMimura, A. M., Almeida, J. M., Vaz, F. A., de Oliveira, M. A., Ferreira, C. C., and Silva, J. C. (2016). Chemical composition monitoring of tropical rainwater during an atypical dry year. Atmospheric Research, 169:391–399.spa
dc.relation.referencesMonks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E., Frost, G. J., Generoso, S., Ginoux, P., Grewe, V., Guenther, A., Hansson, H. C., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I. S., Jenkin, M. E., Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj, P., Lawrence, M. G., Lee, J. D., Liousse, C., Maione, M., McFiggans, G., Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J. J., O’Dowd, C. D., Palmer, P. I., Parrish, D. D., Petzold, A., Platt, U., Pöschl, U., Prévôt, A. S., Reeves, C. E., Reimann, S., Rudich, Y., Sellegri, K., Steinbrecher, R., Simpson, D., ten Brink, H., Theloke, J., van der Werf, G. R., Vautard, R., Vestreng, V., Vlachokostas, C., and von Glasow, R. (2009). Atmospheric composition change - global and regional air quality. Atmospheric Environment, 43(33):5268–5350.spa
dc.relation.referencesMouli, P. C., Mohan, S. V., and Reddy, S. J. (2005). Rainwater chemistry at a regional representative urban site: Influence of terrestrial sources on ionic composition. Atmospheric Environment, 39(6):999–1008.spa
dc.relation.referencesNDAP (2017). National Trends Network Site Operations Manual. Technical report.spa
dc.relation.referencesNiu, H., He, Y., Lu, X. X., Shen, J., Du, J., Zhang, T., Pu, T., Xin, H., and Chang, L. (2014). Chemical composition of rainwater in the Yulong Snow Mountain region, Southwestern China. Atmospheric Research, 144:195–206.spa
dc.relation.referencesOzeki, T., Tanaka, Y., Fukamizu, M., and Ogawa, N. (1999). Plots of the pH versus electric conductivity of rainwater for evaluating the accuracy of pH measurements. Analytical Sciences, 15(11):1159–1161.spa
dc.relation.referencesPascaud, A., Sauvage, S., Coddeville, P., Nicolas, M., Croisé, L., Mezdour, A., and Probst, A. (2016). Contrasted spatial and long-term trends in precipitation chemistry and deposition fluxes at rural stations in France. Atmospheric Environment, 146:28–43.spa
dc.relation.referencesPolkowska, Ż., Górecki, T., and Namieśnik, J. (2011). Determination of atmospheric pollutants in wet deposition. Environmental Reviews, 19:185–213.spa
dc.relation.referencesPoveda, G., Álvarez, D. M., and Rueda, Ó. A. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics, 36(11-12):2233–2249.spa
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., and Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1):228–240.spa
dc.relation.referencesRao, P. S., Tiwari, S., Matwale, J. L., Pervez, S., Tunved, P., Safai, P. D., Srivastava, A. K., Bisht, D. S., Singh, S., and Hopke, P. K. (2016). Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmospheric Environment, 146:90–99.spa
dc.relation.referencesRoldán, N., Hoyos, C. D., and Herrera, L. (2019). An Investigation of the Precipitation Net Effect on Pollutant Concentration in a Narrow Valley : Role of Lower Troposphere Stability. Journal of Applied Meteorology and Climatology.spa
dc.relation.referencesRoy, A., Chatterjee, A., Ghosh, A., Das, S. K., Ghosh, S. K., and Raha, S. (2019). Below-cloud scavenging of size-segregated aerosols and its effect on rainwater acidity and nutrient deposition: A long-term (2009–2018) and real-time observation over eastern Himalaya. Science of the Total Environment, 674:223–233.spa
dc.relation.referencesRoy, A., Chatterjee, A., Tiwari, S., Sarkar, C., Das, S. K., Ghosh, S. K., and Raha, S. (2016). Precipitation chemistry over urban, rural and high altitude Himalayan stations in eastern India. Atmospheric Research, 181:44–53.spa
dc.relation.referencesSeinfeld, J. H. and Pandis, S. N. (2006). Atmospheric Chemistry From Air Pollution to Climate Change. John Wiley & Sons, Inc., second edition.spa
dc.relation.referencesSeinfeld, J. H. and Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.spa
dc.relation.referencesSepúlveda, J. (2016). Estimación cuantitativa de precipitación a partir de la información de radar meteorológico del área metropolitana del valle de aburrá. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n.spa
dc.relation.referencesSepúlveda, J. and Hoyos, C. D. (2017). Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia. AGU Fall Meeting Abstracts.spa
dc.relation.referencesSeymour, M. D. and Stout, T. (1983). Observations on the chemical composition of rain using short sampling times during a single event. Atmospheric Environment (1967), 17(8):1483–1487.spa
dc.relation.referencesShen, Z., Zhang, L., Cao, J., Tian, J., Liu, L., Wang, G., Zhao, Z., Wang, X., Zhang, R., and Liu, S. (2012). Chemical composition, sources, and deposition fluxes of water-soluble inorganic ions obtained from precipitation chemistry measurements collected at an urban site in northwest China. Journal of Environmental Monitoring, 14(11):3000–3008.spa
dc.relation.referencesStojanovic, M., Drumond, A., Nieto, R., and Gimeno, L. (2017). Moisture transport anomalies over the danube river basin during two drought events: A lagrangian analysis. Atmosphere, 8(10).spa
dc.relation.referencesVélez Upegui, J. J., Valencia Giraldo, M. d. C., Londoño Carvajal, A., González Duque, C. M., and Mariscal Moreno, J. P. (2010). Contaminación del aire y lluvia ácida. Diagnóstico del fenómeno en la ciudad de Manizales. Universidad Nacional de Colombia.spa
dc.relation.referencesVet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., and Reid, N. W. (2014). A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 93:3–100.spa
dc.relation.referencesViste, E. and Sorteberg, A. (2013). Moisture transport into the ethiopian highlands. International Journal of Climatology, 33(1):249–263.spa
dc.relation.referencesVuorenmaa, J., Augustaitis, A., Beudert, B., Bochenek, W., Clarke, N., de Wit, H. A., Dirnböck, T., Frey, J., Hakola, H., Kleemola, S., Kobler, J., Krám, P., Lindroos, A. J., Lundin, L., Löfgren, S., Marchetto, A., Pecka, T., Schulte-Bisping, H., Skotak, K., Srybny, A., Szpikowski, J., Ukonmaanaho, L., Váňa, M., Åkerblom, S., and Forsius, M. (2018). Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Science of the Total Environment, 625:1129–1145.spa
dc.relation.referencesWanqing, L. (2001). The characterization of hydrogen ion concentration in sequential cumulative rainwater. Atmospheric Environment, 35(35):6219–6225.spa
dc.relation.referencesWMO (2004). Manual for the GAW Precipitation Chemistry Programme. Guidelines, Data Quality Objectives and Standard Operating Procedures. Technical report.spa
dc.relation.referencesXu, D., Ge, B., Wang, Z., Sun, Y., Chen, Y., Ji, D., Yang, T., Ma, Z., Cheng, N., Hao, J., and Yao, X. (2017). Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014. Environmental Pollution, 230:963–973.spa
dc.relation.referencesYang, Y., Liu, X., Qu, Y., Wang, J., An, J., Zhang, Y., and Zhang, F. (2015). Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmospheric Research, 155:192–203.spa
dc.relation.referencesZikova, N. and Zdimal, V. (2016). Precipitation scavenging of aerosol particles at a rural site in the Czech republic. Tellus B: Chemical and Physical Meteorology, 68(1):27343.spa
dc.relation.referencesZuluaga, M. D. and Houze, R. A. (2015). Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Monthly Weather Review, 143(1):298–316.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembContaminación del aire - Valle de Aburrá (Antioquia, Colombia)
dc.subject.lembCalidad del aire - Valle de Aburrá (Antioquia, Colombia)
dc.subject.proposalQuı́mica del agua lluvia
dc.subject.proposalVariabilidad inter-evento
dc.subject.proposalVariabilidad intra-evento
dc.subject.proposalCalidad del aire
dc.subject.proposalRainwater chemistry
dc.subject.proposalInter-event variability
dc.subject.proposalAir quality
dc.subject.proposalIntra-event variability
dc.titleEvaluación de la influencia de las condiciones meteorológicas locales y de emisión de contaminantes en la calidad del agua lluvia en el Valle de Aburrá
dc.title.translatedAssessment of the influence of local meteorological and air pollution conditions on the rainfall quality in the Aburra Valley
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1128419672.2019.pdf
Tamaño:
15.36 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: