Espectroscopía de reflectancia difusa – NIR para la determinación del contenido de agua en el suelo

dc.contributor.advisorCamacho Tamayo, Jesús Hernánspa
dc.contributor.advisorRubiano Sanabria, Yolandaspa
dc.contributor.authorCarranza Díaz, Andrea Katherínspa
dc.contributor.researchgroupIngeniería de Biosistemasspa
dc.date.accessioned2020-05-13T23:24:05Zspa
dc.date.available2020-05-13T23:24:05Zspa
dc.date.issued2019-12-13spa
dc.description.abstractEl suelo es un recurso no renovable, por esto es importante conocerlo y saber interpretarlo para lograr un manejo eficiente del mismo. Por esto, es necesaria una técnica que permita un adecuado monitoreo del suelo y que pueda ser utilizada como herramienta para tomar decisiones con respecto a su uso y manejo adecuado. El objetivo de este estudio fue estimar el contenido de agua de suelos mediante el análisis de su respuesta espectral, en el infrarrojo cercano (NIR), para la calibración de modelos de predicción. Se trabajó con tres suelos de diferente origen: un suelo proveniente del municipio de Puerto Gaitán (Meta), un suelo de la región del Espinal (Tolima), y un suelo del municipio de Mosquera (Cundinamarca). Cada muestra fue llevada al contenido de agua deseado para posteriormente obtener sus curvas espectrales e igualmente determinar su contenido de agua por un método convencional. Se obtuvieron en total cuatro modelos de predicción, uno para cada suelo y uno de los tres en conjunto, por medio de una regresión de mínimos cuadrados parciales (PLSR) y un análisis de componente principales (PCA). En los cuatro casos, se obtuvieron modelos con buena capacidad predictiva (R2 mayores a 0,85 y RMSE menores de 0,04), tanto individualmente para cada tipo de suelo, como para el modelo en el que fueron analizados los tres suelos en conjunto. A partir de los anteriores resultados, se puede decir que el uso de la espectroscopía de reflectancia difusa en el rango del infrarrojo cercano (NIR) es una buena opción para determinar el contenido de agua en el suelo.spa
dc.description.abstractThe soil is a non-renewable resource, so it is important to know how to interpret it to achieve an efficient management. In order to determine its water content, it is necessary to use methods that can become costly, laborious and with high response times, which can reduce the accuracy of the data. Therefore, a technique is needed to allow an adequate soil monitoring and that can be used as a tool to make decisions regarding its use and proper management. The objective of this study was to estimate the soil water content by analysing its spectral response, in the near infrared (NIR), for the calibration of prediction models. Three soils of different origin were analysed: a soil from the municipality of Puerto Gaitán (Meta), a soil from the region of Espinal (Tolima), and a soil from the municipality of Mosquera (Cundinamarca). Each sample was taken to the desired water content to subsequently obtain its spectral curves and determine its water content by a conventional method. A total of four prediction models were obtained, one for each soil and one for the set of three, through of a partial least square regression (PLSR) and a principal component analysis (PCA). In the four cases, models with good predictive capacity (R2 greater than 0.85 and RMSE smaller than 0.04) were obtained, both individually for each type of soil and for the model of the three types of soil together. According to the previous results, the use of diffuse reflectance spectroscopy in the near infrared range (NIR) is an good option to determinate the water content in the soil.spa
dc.description.additionalMagíster en Ingeniería - Ingeniería Agrícola. Línea de Investigación: Adecuación de Tierras y manejo Sosteniblespa
dc.description.degreelevelMaestríaspa
dc.format.extent74spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77517
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícolaspa
dc.relation.referencesÅngström, A. (1925). The Albedo of Various Surfaces of Ground. 7(1925), 323–342. Retrieved from https://www.jstor.org/stable/519495spa
dc.relation.referencesBach, H., & Mauser, W. (1994). Modelling and model verification of the spectral reflectance of soils under varying moisture conditions. Proceedings of IGARSS ’94 - 1994 IEEE International Geoscience and Remote Sensing Symposium, 4(1 988), 2354–2356. https://doi.org/10.1109/IGARSS.1994.399735spa
dc.relation.referencesBastidas-Obando, E., & Carbonell, J. (2010). Caracterización espectral y mineralógica de los suelos del valle del río Cauca por espectroscopía visible e infrarroja ( 400 - 2 . 500 nm ). Agronomía Colombiana, 28(2), 291–301.spa
dc.relation.referencesBellinaso, H., Demattê, J. A. M., & Romeiro, S. A. (2010). Soil spectral library and its use in soil classification. Revista Brasileira de Ciência Do Solo, 34(3), 861–870. https://doi.org/10.1590/S0100-06832010000300027spa
dc.relation.referencesBen-Dor, E., Heller, D., & Chudnovsky, A. (2008). A Novel Method of Classifying Soil Profiles in the Field using Optical Means. Soil Science Society of America Journal, 72(4), 1113. https://doi.org/10.2136/sssaj2006.0059spa
dc.relation.referencesBishop, J. L. (1994). Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite. Clays and Clay Minerals, 42(6), 702–716. https://doi.org/10.1346/CCMN.1994.0420606spa
dc.relation.referencesBonett, J. P. (2013). Uso de la espectroscopía de reflectancia difusa (MIR) para la determinación de las propiedades químicas en suelos agrícolas de Colombia. 104. Retrieved from http://www.bdigital.unal.edu.co/45658/spa
dc.relation.referencesBryant, R., Thoma, D., Moran, S., Holifield, C., Goodrich, D., Keefer, T., … Skirvin, S. (2003). Evaluation of Hyperspectral, Infrared Temperature and Radar Measurements for Monitoring Surface Soil Moisture. First Interagency Conference in the Watersheds, 528–533. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.533.4720&rep=rep1&type=pdfspa
dc.relation.referencesCamacho-Tamayo, Jesús H., Rubiano S., Y., & Hurtado S., M. del P. (2014). Near-infrared (NIR) diffuse reflectance spectroscopy for the prediction of carbon and nitrogen in an Oxisol. Agronomía Colombiana, 32(1), 86–94. https://doi.org/10.15446/agron.colomb.v32n1.38967spa
dc.relation.referencesCamacho-Tamayo, Jesús H, Forero-Cabrera, N. M., Ramírez-López, L., & Rubiano, Y. (2017). Near-infrared spectroscopic assessment of soil texture in an oxisol of the eastern plains of Colombia. 20(201), 5–185. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a01spa
dc.relation.referencesCamacho-Tamayo, Jesús Hernán. (2013). Uso de la reflectancia difusa -NIR en la determinación de características físicas y químicas de un Oxisol. Carimagüa -Meta. Universidad Nacional de Colombia. Sede Bogotá., 149. https://doi.org/10.1109/TVCG.2014.2346898spa
dc.relation.referencesCarter, W. T. (1931). Color analysis of soils with spectrophotometer. American Soil Survey Association Bulletin, B12, 169–170.spa
dc.relation.referencesChang, C.-W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R. (2001). Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal, 65(2), 480. https://doi.org/10.2136/sssaj2001.652480xspa
dc.relation.referencesChang, C.-W., Laird, D. A., R., C., & Hurburgh, J. (2005). Influence of Soil Moisture on Near-Infrared Reflectance. Soil Science, 170(4), 244–255. https://doi.org/10.1097/01.ss.0000162289.40879.7bspa
dc.relation.referencesChristy, C. D. (2008). Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture, 61(1), 10–19. https://doi.org/10.1016/j.compag.2007.02.010spa
dc.relation.referencesClark, R. N. (1999). Spectroscopy of Rocks and Minerals and Principles of Spectroscopy. Manual of Remote Sensing. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing (Vol. 3).spa
dc.relation.referencesDemattê, J. A. M., Sousa, A. A., Alves, M. C., Nanni, M. R., Fiorio, P. R., & Campos, R. C. (2006). Determining soil water status and other soil characteristics by spectral proximal sensing. Geoderma, 135, 179–195. https://doi.org/10.1016/J.GEODERMA.2005.12.002spa
dc.relation.referencesEsbensen, K. H., Guyot, D., Westad, F., & Houmoller, L. P. (2002). Multivariate Data Analysis: In Practice : an Introduction to Multivariate Data Analysis and Experimental Design. Retrieved from https://books.google.com.co/books?id=Qsn6yjRXOaMCspa
dc.relation.referencesGaskin, G. J., & Miller, J. D. (1996). Measurement of Soil Water Content Using a Simplified Impedance Measuring Technique. Journal of Agricultural Engineering Research, 63(2), 153–159. https://doi.org/10.1006/JAER.1996.0017spa
dc.relation.referencesGe, Y., Morgan, C. L. S., & Ackerson, J. P. (2014). VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact. Geoderma, 221–222, 61–69. https://doi.org/10.1016/j.geoderma.2014.01.011spa
dc.relation.referencesGonzález López, R. A. (2008). Evaluación de algoritmos para estimar la derivada de presión en pruebas de pozos. Ingeniería y Región, 5, 91–98.spa
dc.relation.referencesHerrmann, R., & Onkelinx, C. (1986). Quantities and units in clinical chemistry: Nebulizer and flame properties in flame emission and absorption spectrometry (Recommendations 1986). Pure and Applied Chemistry, Vol. 58, p. 1737. https://doi.org/10.1351/pac198658121737spa
dc.relation.referencesHester, J. B. (1939). The relation of soil texture and color to the organic matter. Soil Science Society of America Proceedings, 112–114.spa
dc.relation.referencesHummel, J. ., Sudduth, K. ., & Hollinger, S. . (2001). Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Computers and Electronics in Agriculture, 32(2), 149–165. https://doi.org/10.1016/S0168-1699(01)00163-6spa
dc.relation.referencesHunt, G. R. (1977). SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED. GEOPHYSICS, 42(3), 501–513. https://doi.org/10.1190/1.1440721spa
dc.relation.referencesIdso, S. B., Jackson, R. D., Reginato, R. J., Kimball, B. A., & Nakayama, F. S. (1975). The Dependence of Bare Soil Albedo on Soil Water Content. Journal of Applied Meteorology, 14(1), 109–113. https://doi.org/10.1175/1520-0450(1975)014<0109:TDOBSA>2.0.CO;2spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi - IGAC. (2004). Estudio general de suelos y zonificación de tierras departamento de Tolima. Bogotá: Instituto Geográfico Agustín Codazzi, Subdireccion de Agrologia.spa
dc.relation.referencesK. A. Sudduth, & J. W. Hummel. (1993). Soil Organic Matter, CEC, and Moisture Sensing with a Portable NIR Spectrophotometer. Transactions of the ASAE, 36(6), 1571–1582. https://doi.org/10.13031/2013.28498spa
dc.relation.referencesLobell, D., & Asner, G. (2002). Moisture effects on soil reflectance. Soil Science Society of America Journal, 66(3), 722–727. https://doi.org/10.2136/sssaj2002.7220spa
dc.relation.referencesMcDowell, M. L., Bruland, G. L., Deenik, J. L., Grunwald, S., & Knox, N. M. (2012). Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma, 189–190, 312–320. https://doi.org/10.1016/j.geoderma.2012.06.009spa
dc.relation.referencesMosquera, C. S., Martínez, M. J., Guerrero, J. A., & Hansen, E. W. (2007). Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia. Revista Colombia de Química, 39, 213–225.spa
dc.relation.referencesMouazen, A. M., Karoui, R., De Baerdemaeker, J., & Ramon, H. (2006). Characterization of Soil Water Content Using Measured Visible and Near Infrared Spectra. Soil Science Society of America Journal, 70(4), 1295. https://doi.org/10.2136/sssaj2005.0297spa
dc.relation.referencesMouazen, Abdul Mounem, De Baerdemaeker, J., & Ramon, H. (2005). Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil and Tillage Research, 80(1–2), 171–183. https://doi.org/10.1016/j.still.2004.03.022spa
dc.relation.referencesMurray, I. (2004). Scattered information: philosophy and practice of near infrared spectroscopy. Near Infrared Spectroscopy: Proceedings of the 11th International Conference, 1–12.spa
dc.relation.referencesNawar, S., Buddenbaum, H., Hill, J., Kozak, J., & Mouazen, A. M. (2016). Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 155, 510–522. https://doi.org/10.1016/J.STILL.2015.07.021spa
dc.relation.referencesNeema, D. L., Shah, A., & Patel, A. N. (1987). A statistical optical model for light reflection and penetration through sand. International Journal of Remote Sensing, 8(8), 1209–1217. https://doi.org/10.1080/01431168708954765spa
dc.relation.referencesNocita, M. (2014). The contribution of diffuse reflectance spectroscopy to soil organic carbon analysis : from laboratory to airborne spectroscopy.spa
dc.relation.referencesNocita, M., Stevens, A., Noon, C., & van Wesemael, B. (2013). Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 199, 37–42. https://doi.org/10.1016/j.geoderma.2012.07.020spa
dc.relation.referencesNocita, M., Stevens, A., & van Wesemael, B. (2011). Improving spectral techniques to determine soil organic carbon by accounting for soil moisture effects. 60(2), 3214–3215.spa
dc.relation.referencesNocita, M., Stevens, A., van Wesemael, B., Brown, D. J., Shepherd, K. D., Towett, E., … Montanarella, L. (2015). Soil spectroscopy: An opportunity to be seized. Global Change Biology, 21(1), 10–11. https://doi.org/10.1111/gcb.12632spa
dc.relation.referencesO’Neal, A. M. (1927). The effect of moisture on the color of certain Iowa soils. Soil Science Society of America Journal, B8, 158–174.spa
dc.relation.referencesOGEN, Y., FAIGENBAUM-GOLOVIN, S., GRANOT, A., SHKOLNISKY, Y., GOLDSHLEGER, N., & BEN-DOR, E. (2019). Removing Moisture Effect on Soil Reflectance Properties: A Case Study of Clay Content Prediction. Pedosphere, 29(4), 421–431. https://doi.org/10.1016/S1002-0160(19)60811-8spa
dc.relation.referencesOMM. (2011). Hidrología-De la medición a la información hidrológica OMM-No 168. Retrieved from www.wmo.intspa
dc.relation.referencesOrdóñez Delgado, N., & Bolívar Gamboa, A. (2014). Levantamiento agrológico del Centro Agropecuario (Universidad Nacional de Colombia & Instituto Geográfico Agustín Codazzi. Subdirección de Agrología, Eds.). Bogotá: Imprenta Nacional de Colombia.spa
dc.relation.referencesPalmer, K. F., & Williams, D. (1974). Optical properties of water in the near infrared. J. Opt. Soc. Am., 64(8), 1107–1110. https://doi.org/10.1364/JOSA.64.001107spa
dc.relation.referencesReich, G. (2005). Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2005.01.020spa
dc.relation.referencesRuiz, A. (2006). Origen, formación, estructura y comportamiento de la arcilla de Bogotá. Universidad de Los Andes.spa
dc.relation.referencesSkoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of Instrumental Analysis. Retrieved from https://books.google.com.co/books?id=GrOsQgAACAAJspa
dc.relation.referencesSlaughter, D. C., Pelletier, M. G., & Upadhyaya, S. K. (2001). Sensing Soil Moisture Using NIR Spectroscopy. 17(2), 241–247.spa
dc.relation.referencesSoil Survey Staff. (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. In Soil Science. https://doi.org/10.1097/00010694-197704000-00011spa
dc.relation.referencesSomers, B., Gysels, V., Verstraeten, W. W., Delalieux, S., & Coppin, P. (2010). Modelling moisture-induced soil reflectance changes in cultivated sandy soils: a case study in citrus orchards. European Journal of Soil Science, 61(6), 1091–1105. https://doi.org/10.1111/j.1365-2389.2010.01305.xspa
dc.relation.referencesStenberg, B, & Viscarra Rossel, R. A. (2010). Proximal Soil Sensing. In R. A. Viscarra Rossel, A. B. McBratney, & B. Minasny (Eds.), Proximal Soil Sensing. https://doi.org/10.1007/978-90-481-8859-8spa
dc.relation.referencesStenberg, Bo, Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Visible and Near Infrared Spectroscopy in Soil Science. In Advances in Agronomy (Vol. 107, pp. 163–215). https://doi.org/10.1016/S0065-2113(10)07005-7spa
dc.relation.referencesTopp, G. C., Reynolds, W. D., Green, R. E., & Dalton, F. N. (1992). Development of Time-Domain Reflectometry for Measuring Soil Water Content and Bulk Soil Electrical Conductivity. In Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice: Vol. sssaspecialpubl (pp. 143–167). https://doi.org/10.2136/sssaspecpub30.c8spa
dc.relation.referencesTwomey, S. A., Bohren, C. F., & Mergenthaler, J. L. (1986). Reflectance and albedo differences between wet and dry surfaces. Applied Optics, 25(3), 431. https://doi.org/10.1364/AO.25.000431spa
dc.relation.referencesWang, H., Peng, J., Xie, C., Bao, Y., & He, Y. (2015). Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors, 15(5), 11889–11927. https://doi.org/10.3390/s150511889spa
dc.relation.referencesWeidong, L., Baret, F., Xingfa, G., Qingxi, T., Lanfen, Z., & Bing, Z. (2002). Relating soil surface moisture to reflectance. Remote Sensing of Environment, 81(2–3), 238–246. https://doi.org/10.1016/S0034-4257(01)00347-9spa
dc.relation.referencesWhalley, W. R., Dean, T. J., & Izzard, P. (1992). Evaluation of the capacitance technique as a method for dynamically measuring soil water content. Journal of Agricultural Engineering Research, 52, 147–155. https://doi.org/10.1016/0021-8634(92)80056-Xspa
dc.relation.referencesWhalley, W. R., Leeds-Harrison, P. B., & Bowman, G. E. (1991). Estimation of soil moisture status using near infrared reflectance. Hydrological Processes, 5(3), 321–327. https://doi.org/10.1002/hyp.3360050312spa
dc.relation.referencesWhalley, W. R., & Stafford, J. V. (1992). Real-time sensing of soil water content from mobile machinery: Options for sensor design. Computers and Electronics in Agriculture, 7(4), 269–284. https://doi.org/10.1016/S0168-1699(05)80010-9spa
dc.relation.referencesWhiting, M. L., Li, L., & Ustin, S. L. (2004). Predicting water content using Gaussian model on soil spectra. Remote Sensing of Environment, 89(4), 535–552. https://doi.org/10.1016/J.RSE.2003.11.009spa
dc.relation.referencesWilson, M. J. (2019). The importance of parent material in soil classification: A review in a historical context. Catena, 182(May), 104131. https://doi.org/10.1016/j.catena.2019.104131spa
dc.relation.referencesWold, H. (1973). Nonlinear Iterative Partial Least Squares (NIPALS) Modelling: Some Current Developments. In Multivariate Analysis–III (pp. 383–407). https://doi.org/10.1016/B978-0-12-426653-7.50032-6spa
dc.relation.referencesZamora, J., & Cristancho, F. (2008). La Humedad en las Propiedades Fisicas del Suelo. 1–20. Retrieved from http://gfnun.unal.edu.co/fileadmin/content/gruposdeinvestigacion/fisicanuclear/Tesis/JCZamoraTG08.pdfspa
dc.relation.referencesZhu, Y. (1984). Study on the rule of soil reflectance varied with different soil moisture. Soil Journal (Chine), 21, 194–202.spa
dc.relation.referencesZossi, S., & Sorol, N. (2010). Espectroscopia por infrarrojo cercano (NIRS): Su aplicación en análisis de jugos de caña de azúcar. Revista Industrial y Agrícola de Tucumán, 87(1), 01–06.spa
dc.relation.referencesAGROSAVIA. (n.d.). Centro de Investigación Carimagua. Retrieved October 21, 2019, from https://www.agrosavia.co/nosotros/sedes/centro-de-investigación-carimaguaspa
dc.relation.referencesAlvarado, P. (1991). Estudio semidetallado de suelos sector Carimagua-Gaviotas (Departamentos del Meta y Vichada). (p. 336). p. 336. Retrieved from http://hdl.handle.net/20.500.12324/18314 Alvarado, P. (1991). Estudio semidetallado de suelos sector Carimagua-Gaviotas (Departamentos del Meta y Vichada). (p. 336). p. 336. Retrieved from http://hdl.handle.net/20.500.12324/18314spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.proposalSpectral responseeng
dc.subject.proposalRespuesta espectralspa
dc.subject.proposalPrecision agricultureeng
dc.subject.proposalAgricultura de precisiónspa
dc.subject.proposalPartial least squares regressioneng
dc.subject.proposalRegresión de mínimos cuadrados parcialesspa
dc.subject.proposalAnálisis de componentes principalesspa
dc.subject.proposalPrincipal component analysiseng
dc.subject.proposalNear infraredeng
dc.subject.proposalInfrarrojo cercanospa
dc.titleEspectroscopía de reflectancia difusa – NIR para la determinación del contenido de agua en el suelospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Carranza-Díaz Espectroscopía de reflectancia difusa – NIR para la determinación del contenido de agua en el suelo.pdf
Tamaño:
13.24 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: