En 6 día(s), 16 hora(s) y 17 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Supraharmonics in low voltage networks

dc.contributor.advisorPavas, Andrésspa
dc.contributor.advisorBlanco Castañeda, Ana Maríaspa
dc.contributor.authorAgudelo Martínez, Danielspa
dc.contributor.researchgroupPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UNspa
dc.date.accessioned2020-06-09T16:14:27Zspa
dc.date.available2020-06-09T16:14:27Zspa
dc.date.issued2020-01-02spa
dc.description.abstractThis document presents a methodology for the identification of supraharmonic emissions (current and voltage conducted emissions between 2-150 kHz) at the end-user side of the distribution grid, using low power LED lamps as Equipment Under Test (EUT). First chapter presents a brief classification of power quality disturbances and describes those related to waveform distortion. Second chapter describes the measurement and experimental setups used to assess the supraharmonic emissions from selected EUT. Third chapter explains the methodology for the identification of supraharmonic emissions when EUT perform in single operation, and fourth chapter shows the interaction of such emissions for EUT in simultaneous operation. Along with a set of experimental combinations, supraharmonic emissions and their more relevant metrology aspects are discussed through the text. Results show how voltage and current supraharmonic emissions are (or not) affected by different variations in voltage source, equivalent network impedance, measurement setup and circuit topology of selected EUT. This research is aimed to contribute to the understanding and systematic assessment of supraharmonic emissions, with a special emphasis on metrological aspects and statistical methods for their identification.spa
dc.description.abstractEste documento presenta una metodología para la identificación de emisiones supraarmónicas (emisiones conducidas de tensión y corriente entre 2-150 kHz) en el lado del usuario final de la red de distribución, utilizando lámparas LED de baja potencia como Equipo Bajo Prueba (EBP). El primer capítulo presenta una breve clasificación de las perturbaciones de la calidad de potencia y describe aquellas relacionadas con la distorsión de la forma de onda. El segundo capítulo describe la configuración experimental y de medición utilizada para evaluar las emisiones supraarmónicas de los EBP seleccionados. El tercer capítulo explica la metodología usada para la identificación de las emisiones supraarmónicas cuando los EBP funcionan de manera individual, y el cuarto capítulo muestra la interacción de dichas emisiones en la operación simultánea de los EBP. Junto con un conjunto de combinaciones experimentales, las emisiones supraarmónicas y sus aspectos metrológicos más relevantes se analizan a través del texto. Los resultados muestran cómo las emisiones supraarmónicas de tensión y corriente se ven (o no) afectadas por diferentes variaciones en la fuente de tensión, la impedancia de red equivalente, el sistema de medición y la topología del circuito del EBP seleccionado. El objetivo de esta investigación es contribuir a la comprensión y el estudio sistemático de las emisiones supraarmónicas, con especial énfasis en los aspectos metrológicos y los métodos estadísticos para su identificación.spa
dc.description.degreelevelMaestríaspa
dc.format.extent150spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77627
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesIEC, “International Electrotechnical Vocabulary (IEV) - Part 161: Electromagnetic compatibility," standard, International Electrotechnical Commission, Geneva, CH, 2017.spa
dc.relation.referencesM. H. J. Bollen and I. Y. H. Gu, Signal Processing of Power Quality Disturbances. Wiley-IEEE Press, 2006.spa
dc.relation.referencesIEC. Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods. Standard, International Electrotechnical Commission, Geneva, CH, 2003.spa
dc.relation.referencesM.H.J. Bollen. What is power quality? Electric Power Systems Research, 66(1):5 -14, 2003. ISSN 0378-7796. doi: https://doi.org/10.1016/S0378-7796(03)00067-1. Power Qualityspa
dc.relation.referencesIEC. Electromagnetic compatibility (EMC) Part 1: General Section 1: Application and interpretation of fundamental definitions and terms. Standard, International Electrotechnical Commission, Geneva, CH, 2017.spa
dc.relation.referencesMath H. J. Bollen and Irene Y. H. Gu. Signal Processing of Power Quality Disturbances. Wiley-IEEE Press, 2006. ISBN 9780471731689.spa
dc.relation.referencesAnders Larsson. On High-Frequency Distortion in Low-Voltage Power Systems. Luleä University of Technology, 2011spa
dc.relation.referencesSarah Rönnberg. Emission and interaction from domestic installations in the low voltage electricity network, up to 150 kHz. Luleä University of Technology, Lulea, 2013. ISBN 978-91-7439-800-7.spa
dc.relation.referencesClayton Paul. Introduction to electromagnetic compatibility. Wiley-Interscience, Hoboken, N.J, 2006. ISBN 978-0-471-75500-5.spa
dc.relation.referencesNTC. NTC 5001: Calidad de la Potencia Eléctrica. Límites y metodología de evaluación en Punto de Conexión Común. Norma Técnica Colombiana, 2008.spa
dc.relation.referencesIEC. Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto. Standard, International Electrotechnical Commission, Geneva, CH, 2002spa
dc.relation.referencesE. O. Anders Larsson, Math H. J. Bollen, Mats G. Wahlberg, C. Martin Lundmark, and Sarah K. Ronnberg. Measurements of high-frequency (2-150 kHz) distortion in low voltage networks. IEEE Transactions on Power Delivery, 25(3):1749-1757, jul 2010. doi: 10.1109/tpwrd.2010.2041371.spa
dc.relation.referencesSarah Karolina Ronnberg, Math H. J. Bollen, and Mats Wahlberg. Interaction between narrowband power-line communication and end-user equipment. IEEE Transactions on Power Delivery, 26(3):2034-2039, jul 2011. doi: 10.1109/tpwrd.2011.2130543.spa
dc.relation.referencesMath Bollen, Magnus Olofsson, Anders Larsson, Sarah Ronnberg, and Martin Lundmark. Standards for supraharmonics (2 to 150 kHz). IEEE Electromagnetic Compatibility Magazine, 3(1):114-119, 2014. doi: 10.1109/memc.2014.6798813.spa
dc.relation.referencesMath Bollen, Jan Meyer, Hortensia Amaris, Ana Maria Blanco, Aurora Gil de Castro, Jan Desmet, Matthias Klatt, Lukasz Kocewiak, Sarah Ronnberg, and Kai Yang. Future work on harmonics - some expert opinions part i - wind and solar power. In 2014 16th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, may 2014. doi: 10.1109/ichqp.2014.6842870.spa
dc.relation.referencesD. A. Martinez and A. Pavas. Current supraharmonics identification in commonly used low voltage devices. In 2015 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pages 1-5, June 2015. doi: http://10.1109/PEPQA. 2015.7168230.spa
dc.relation.referencesL. Paulsson, B. Ekehov, S. Halen, T. Larsson, L. Palmqvist, A. Edris, D. Kidd, A.J.F. Keri, and B. Mehraban. High-frequency impacts in a converter-based back-to-back tie, the eagle pass installation. IEEE Transactions on Power Delivery, 18(4):1410-1415, oct 2003. doi: 10.1109/tpwrd.2003.817724.spa
dc.relation.referencesHani Vahedi, Abdolreza Sheikholeslami, Mohammad Tavakoli Bina, and Mahmood Vahedi. Review and simulation of fixed and adaptive hysteresis current control considering switching losses and high-frequency harmonics. Advances in Power Electronics, 2011: 1-6, 2011. doi: 10.1155/2011/397872.spa
dc.relation.referencesSarah K. Ronnberg, Math H.J. Bollen, Hortensia Amaris, Gary W. Chang, Irene Y.H. Gu, Lukasz H. Kocewiak, Jan Meyer, Magnus Olofsson, Paulo F. Ribeiro, and Jan Desmet. On waveform distortion in the frequency range of 2 kHz-150 kHz - review and research challenges. Electric Power Systems Research, 150:1-10, sep 2017. doi: 10.1016/j.epsr.2017.04.032spa
dc.relation.referencesSarah Ronnberg, Math Bollen, and Aurora Gil de Castro. Harmonic Distortion from Energy-Efficient Equipment and Production in the Low-Voltage Network. Luleä University of Technology, 2014.spa
dc.relation.referencesEnrique Jácome. Análisis de Compatibilidad Electromagnética y Calidad de Potencia entre dos tecnologías de lámparas de descarga que presentan bajo factor de potencia y coexisten en una instalación eléctrica. Universidad Nacional de Colombia, 2014.spa
dc.relation.referencesDaniel Agudelo-Martínez. Identificación de emisión de supraarmónicos asociada con algunos dispositivos de baja tensión. Universidad Nacional de Colombia, 2015.spa
dc.relation.referencesD. Agudelo-Martínez, M. Limas, A. Pavas, and J. Bacca. Supraharmonic bands detection for low voltage devices. In 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), pages 1003-1009, Oct 2016. doi: 10.1109/ICHQP.2016.7783327.spa
dc.relation.referencesSarah Ronnberg, Math Bollen. Propagation of Supraharmonics in the Low Voltage Grid. Report, Energiforsk, Stockholm, Sweden, 2017.spa
dc.relation.referencesSarah Ronnberg, Anders Larsson, Math Bollen, and Jean-Luc Schanen. A simple model for interaction between equipment at a frequency of some tens of khz. In International Conference on Electricity Distribution: 06/06/2011-09/06/2011, 2011.spa
dc.relation.referencesMatthias Klatt, Jan Meyer, and Peter Schegner. Comparison of measurement methods for the frequency range of 2 kHz to 150 kHz. In 2014 16th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, may 2014. doi: 10.1109/ichqp.2014.6842791spa
dc.relation.referencesChristian Waniek, Thomas Wohlfahrt, Johanna M.A. Myrzik, Jan Meyer, Matthias Klatt, and Peter Schegner. Supraharmonics: Root causes and interactions between multiple devices and the low voltage grid. In 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, sep 2017. doi:10.1109/isgteurope.2017.8260267spa
dc.relation.referencesGrevener Anne, Meyer Jan, and Ronnberg Sarah. Comparison of measurement methods for the frequency range 2 -150 kHz supraharmonics). In 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems (AMPS). IEEE, sep 2018. doi: 10.1109/amps.2018.8494879.spa
dc.relation.referencesI. Angulo, A. Arrinda, I. Fernandez, N. Uribe-Perez, I. Arechalde, and L. Hernandez. A review on measurement techniques for non-intentional emissions above 2 kHz. In 2016 IEEE International Energy Conference (ENERGYCON). IEEE, apr 2016. doi: 10.1109/energycon.2016.7513893.spa
dc.relation.referencesS. Subhani, V. Cuk, and J.F.G. Cobben. A literature survey on power quality disturbances in the frequency range of 2-150 kHz. Renewable Energy and Power Quality Journal, 1(15):405-410, apr 2017. doi: 10.24084/repqj15.333.spa
dc.relation.referencesI. Urdea-Marcus, A. Nestor, and P. Clarkson. The influence of the network impedance on the non-sinusoidal (harmonic) network current and flicker measurements. In CPEM 2010. IEEE, jun 2010. doi:10.1109/cpem.2010.5543785.spa
dc.relation.referencesDaniel Agudelo-Martinez, Camilo Garzon, and Andres Pavas. Interaction of power quality disturbances within 2-150 kHz (supraharmonics): Analytical framework. In 2018 18th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, may 2018. doi: 10.1109/ichqp.2018.8378859spa
dc.relation.referencesDaniel Agudelo-Martinez, Fabian Rios, and Andres Pavas. Interaction of some low power led lamps within 2-150 khz (supraharmonics). In 2018 18th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, may 2018. doi: 10.1109/ichqp.2018.8378815.spa
dc.relation.referencesD. Zhao and G. Rietveld. The influence of source impedance in electrical characterization of solid state lighting sources. In 2012 Conference on Precision electromagnetic Measurements. IEEE, jul 2012. doi: 10.1109/cpem.2012.6250921.spa
dc.relation.referencesS. Ronnberg and M. Bollen. Measurements of primary and secondary emission in the supraharmonic frequency range 2-150 khz. In -. CIRED, jun 2015.spa
dc.relation.referencesR Stiegler, J Meyer, J Drapela, T Hanzlik, M Hockel, K Scheida, and S Schory. Survey of network impedance in the frequency range 2-9 khz in public low voltage networks in at/ch/cz/ge. In (CIRED) 2019, Madrid. CIRED, jun 2019.spa
dc.relation.referencesHameg Instruments Germany. Line Impedance Stabilization Network, Technical Data. Rohde & Schwarz Germany, 2019.spa
dc.relation.referencesMatthias Klatt, Jan Meyer, Peter Schegner, Robert Wolf, and Bernhard Wittenberg. Filter for the measurement of supraharmonics in public low voltage networks. In 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC). IEEE, August 2015. doi: 10.1109/isemc.2015.7256141.spa
dc.relation.referencesDewetron Inc. DEWE-3040 Data Acquisition System, Owner's Guide. Dewetron Inc,2019.spa
dc.relation.referencesAna-Maria Blanco, Ronny Gelleschus, Jan Meyer, and Peter Schegner. Impact of measurement setup and test load on the accuracy of harmonic current emission measurements. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. IEEE, may 2015. doi: 10.1109/i2mtc.2015.7151245spa
dc.relation.referencesDaniel Agudelo-Martinez and Andres Pavas. Simulation of supraharmonics: A compact fluorescent lamp (CFL) in single operation. In 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA). IEEE, may 2017. doi: 10.1109/pepqa.2017.7981682.spa
dc.relation.referencesAna Maria Blanco, Manish Gupta, Aurora Gil de Castro, Sarah Ronnberg, and Jan Meyer. Impact of at-top voltage waveform distortion on harmonic current emission and summation of electronic household appliances. Renewable Energy and Power Quality Journal, 1:698-703, apr 2018. doi: 10.24084/repqj16.437spa
dc.relation.referencesAnne Grevener, Jan Meyer, Sarah R onnberg, Math Bollen, and Johanna Myrzik. Survey of supraharmonic emission of household appliances. CIRED - Open Access Proceedings Journal, 2017(1):870-874, oct 2017. doi: 10.1049/oap-cired.2017.0458.spa
dc.relation.referencesBIPM. Evaluation of measurement data | Guide to the expression of uncertainty in measurement. Standard, Bureau International des Poids et Mesures - BIPM, 2008.spa
dc.relation.referencesPearson Electornics Inc. Pearson current monitor model 411, datasheet. Pearson Electronics Inc, 2019.spa
dc.relation.referencesSemyon G. Rabinovich. Evaluating Measurement Accuracy. Springer International Publishing, 2017. doi: 10.1007/978-3-319-60125-0spa
dc.relation.referencesICONTEC. Requisitos generales para la competencia de los laboratorios de ensayo y calibración. Standard, ICONTEC, 2005.spa
dc.relation.referencesD. Agudelo-Martinez, A.M. Blanco, R. Stiegler, F. Pavas, and J. Meyer. In uence of measurement setup on the emission of devices in the frequency range 2-150 khz. Power Tech 2019, 2019(1):to appear, 2019.spa
dc.relation.referencesS. K. Ronnberg, A. G. Castro, M. H. J. Bollen, A. Moreno-Munoz, and E. Romero-Cadaval. Supraharmonics from power electronics converters. In 2015 9th International Conference on Compatibility and Power Electronics (CPE), pages 539-544, June 2015. doi: 10.1109/CPE.2015.7231133.spa
dc.relation.referencesA. Moreno-Munoz, A. Gil-de-Castro, E. Romero-Cavadal, S. R onnberg, and M. Bollen. Supraharmonics (2 to 150 khz) and multi-level converters. In 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), pages 37-41, May 2015. doi:10.1109/PowerEng.2015.7266293spa
dc.relation.referencesAlan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing (2nd Edition) (Prentice-hall Signal Processing Series). Prentice Hall, 1999. ISBN 0137549202.spa
dc.relation.referencesMatlab. stft: Short-time fourier transform, 2019. Accessed in December 8, 2019.spa
dc.relation.referencesAna Maria Blanco, Sergey Yanchenko, Jan Meyer, and Peter Schegner. Impact of supply voltage distortion on the current harmonic emission of non-linear loads. DYNA, 82(192): 150-159, August 2015. doi:10.15446/dyna.v82n192.48591.spa
dc.relation.referencesA. M. Blanco, R. Stiegler, J. Meyer, and M. Schwenke. Implementation of harmonic phase angle measurement for power quality instruments. In 2016 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), pages 1-6, Sep. 2016. doi: 10.1109/AMPS.2016.7602811.spa
dc.relation.referencesP. M. Korner, R. Stiegler, J. Meyer, T. Wohlfahrt, C. Waniek, and J. M. A. Myrzik. Acoustic noise of mass-market equipment caused by supraharmonics in the frequency range 2 to 20 khz. In 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), pages 1-6, May 2018. doi: 10.1109/ICHQP.2018.8378856.spa
dc.relation.referencesV. Khokhlov, J. Meyer, P. Schegner, D. AgudeloMartinez, A. Pavas: “Immunity assessment of hosehold appliances in the frequency range from 2 to 150 kHz”, 25th International Conference on Electricity Distribution, CIRED, Madrid, 2019spa
dc.relation.referencesRoy D. Yates and David J. Goodman. Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers. Wiley, 2004. ISBN 0471272140.spa
dc.relation.referencesNed Mohan, Tore M. Undeland, and William P. Robbins. Power Electronics: Converters, Applications, and Design. Wiley, 2002. ISBN 9780471226932.spa
dc.relation.referencesSarah K. Ronnberg, Aurora Gil de Castro, Antonio Moreno-Munoz, Math H.J. Bollen, and Joaquin Garrido. Solar PV inverter supraharmonics reduction with random PWM. In 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2017. doi: 10.1109/cpe.2017.7915248.spa
dc.relation.referencesDilini Darmawardana, Sarath Perera, Duane Robinson, Philip Ciufo, Jan Meyer, Matthias Klatt, and Upuli Jayatunga. Investigation of high frequency emissions (supraharmonics) from small, grid-tied, photovoltaic inverters of di erent topologies. In 2018 18th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, May 2018. doi:10.1109/ichqp.2018.8378926.spa
dc.relation.referencesAndreas Mohos and Jozsef Ladanyi. Emission measurement of a solar park in the frequency range of 2 to 150 kHz. In 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). IEEE, August 2018. doi: 10.1109/emceurope.2018. 8485049.spa
dc.relation.referencesSimon Haykin and Michael Moher. Communication Systems. Wiley, 2009. ISBN 9780471697909.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalPower Qualityeng
dc.subject.proposalCalidad de Potenciaspa
dc.subject.proposalSupraharmonicseng
dc.subject.proposalSupraarmónicosspa
dc.subject.proposalUncertaintyeng
dc.subject.proposalIncertidumbrespa
dc.subject.proposalDistortioneng
dc.subject.proposalDistorsiónspa
dc.subject.proposalLEDeng
dc.subject.proposalLEDspa
dc.subject.proposalCompatibilidad Electromagnéticaspa
dc.subject.proposalElectromagnetic Compatibilityeng
dc.subject.proposalMeasurement Systemeng
dc.subject.proposalSistema de Mediciónspa
dc.subject.proposalEmissioneng
dc.subject.proposalEmisionesspa
dc.subject.proposalEmissionseng
dc.subject.proposalElectrónica de Potenciaspa
dc.subject.proposalPower Electronicseng
dc.subject.proposalArmónicosspa
dc.subject.proposalHarmonicseng
dc.titleSupraharmonics in low voltage networksspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ThesisMSc_DAM_final.pdf
Tamaño:
6.27 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: