Estudio de factibilidad para el aprovechamiento de ACUs en la ciudad de Bogotá

dc.contributor.advisorOrjuela Londoño, Álvarospa
dc.contributor.authorRodríguez Flórez, Juan Sebastiánspa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2020-11-10T17:38:47Zspa
dc.date.available2020-11-10T17:38:47Zspa
dc.date.issued2020-08-03spa
dc.description.abstractEl crecimiento de la población a nivel mundial conlleva varios retos, especialmente los correspondientes a la correcta gestión de residuos, y principalmente en áreas de gran concentración poblacional. Sin las adecuadas prácticas de disposición, los residuos pueden causar un gran número de problemas a nivel ambiental, económico y social. Entre los residuos más problemáticos en términos de manejo y disposición, el Aceite de Cocina Usado (ACU) es un residuo alimenticio que se produce en grandes volúmenes. El manejo inapropiado del ACU genera una gran variedad de inconvenientes tales como daños a la infraestructura, inundaciones, proliferación de pestes, polución en los ecosistemas e incluso problemas de salud pública por recolección y redistribución ilegal del residuo. Particularmente en Bogotá, la ciudad capital de Colombia, con aproximadamente 10 millones de habitantes en su área metropolitana, los ACU representan una gran problemática. En este aspecto, este trabajo se enfoca en el estudio, caracterización y optimización de la cadena de recolección del ACU en la ciudad de Bogotá para su posterior empleo como materia prima oleoquímica. Primero, se realizó la caracterización de la cadena logística del ACU en la ciudad de Bogotá. Esta tarea involucró la ubicación y naturaleza de los generadores, volúmenes disponibles, características del ACU, caracterización de las prácticas de recolección y rutas, y el inventario de consumo de recursos durante el proceso de recolección. Luego, se construyó e implementó un modelo computacional del esquema de recolección en software libre (Python). Para esto se utilizó una aproximación de problema de enrutamiento de vehículos empleando caminos hamiltonianos ponderados. Los pesos fueron definidos de acuerdo con indicadores económicos y ambientales calculados como costos en dinero y emisiones de CO2 equivalente, respectivamente. Empleando un algoritmo genético se logró identificar el conjunto de rutas de recolección que minimizan los costos y las emisiones de CO2, y la localización de un punto de acopio que minimizaría los costos de la cadena de recolección. Finalmente, se hizo una identificación preliminar de los derivados oleoquímicos con potencial para ser obtenidos a partir de los ACUs recolectados.spa
dc.description.abstractGlobal population growth involves a variety of challenges, especially those related to the correct management of waste, mainly in highly populated areas. Without the correct disposal practices, waste can cause a large number of environmental, economic and social problems. Among the most problematic wastes in terms of handling and disposal, Used Cooking Oil (ACU) standouts as a food waste that is produced in large volumes. The inadequate management of the ACU generates a wide variety of problems such as damage to infrastructure, floods, pest proliferation, pollution of ecosystems and even public health problems due to the illegal collection and redistribution of ACU as new edible oil. Particularly in Bogotá, the capital city of Colombia, with approximately 10 million inhabitants in its metropolitan area, the ACU represent a major problem. In this aspect, this work focuses on the study, characterization and optimization of the ACU collection chain in the city of Bogotá for its subsequent use as oleochemical raw material. First, the characterization of the ACU logistics chain in the city of Bogotá was carried out. This task involved the location and identification of ACUs generators, available volumes, characteristics of the ACU, characterization of collection practices and routes, and the inventory of resource consumption during the collection process. Then, a computational model of the supply chain was constructed in an open-source software (Python). For this, a vehicle routing problem approximation was used using weighted Hamiltonian roads. Weights were defined according to economic and environmental indicators calculated as costs and equivalent CO2 emissions, respectively. By the use of a genetic algorithm, it was possible to identify the set of collection routes that minimize costs and CO2 emissions, and the location of a collection point that would minimize the costs of the collection chain. Finally, a preliminary identification of the oleochemical derivatives with potential to be obtained from the collected ACUs was made.spa
dc.description.additionalLínea de Investigación: Biorrefinerías – biocombustiblesspa
dc.description.degreelevelMaestríaspa
dc.description.projectValorization of Urban Used Cooking Oils by transformation into value added oleochemicals. Study case for Bogota, Colombiaspa
dc.format.extent173spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78607
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesARPEL, & IICA. (2009). Manual de biocombustibles.spa
dc.relation.referencesBeyer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies: A comprehensive introduction. Natural Computing, 1, 3–52. https://doi.org/10.2146/130117spa
dc.relation.referencesAlcaldía mayor de Bogotá. (2018). Análisis demográfico y proyecciones poblacionales de Bogotá. http://www.sdp.gov.co/sites/default/files/demografia_proyecciones_2017_0.pdfspa
dc.relation.referencesBioEnergie. (2020). Öli problematik. https://www.bioenergie-aus-der-kueche.eu/sammelsystem/oeli-problematik.htmlspa
dc.relation.referencesBiogras. (2020). Recolección de Aceites Vegetales Usados. https://biogras.com.co/servicios/spa
dc.relation.referencesBloemhof-Ruwaard, J. M., Van Wassenhove, L. N., Gabel, H. L., & Weaver, P. M. (1996). An environmental life cycle optimization model for the European pulp and paper industry. Omega, 24(6), 615–629. https://doi.org/10.1016/S0305-0483(96)00026-6spa
dc.relation.referencesCaldeira, C., Queirós, J., & Freire, F. (2015). Biodiesel from Waste Cooking Oils in Portugal: Alternative Collection Systems. Waste and Biomass Valorization, 6(5), 771–779. https://doi.org/10.1007/s12649-015-9386-zspa
dc.relation.referencesCaldeira, Carla, Queirós, J., Noshadravan, A., & Freire, F. (2016). Incorporating uncertainty in the life cycle assessment of biodiesel from waste cooking oil addressing different collection systems. Resources, Conservation and Recycling, 112, 83–92. https://doi.org/10.1016/j.resconrec.2016.05.005spa
dc.relation.referencesChakrabarty, M. . (2003). Chemistry and Technology of Oils and Fats. Allied Publishers PVT. Limited.spa
dc.relation.referencesChoe, E., & Min, D. B. (2007). Chemistry of deep-fat frying oils. Journal of Food Science, 72(5). https://doi.org/10.1111/j.1750-3841.2007.00352.xspa
dc.relation.referencesChua, C. B. H., Lee, H. M., & Low, J. S. C. (2010). Life cycle emissions and energy study of biodiesel derived from waste cooking oil and diesel in Singapore. International Journal of Life Cycle Assessment, 15(4), 417–423. https://doi.org/10.1007/s11367-010-0166-5spa
dc.relation.referencesCroes, G. A. (1958). A Method for Solving Traveling-Salesman Problems. Operations Research, 6(6), 791–812. https://doi.org/10.1287/opre.6.6.791spa
dc.relation.referencesDANE. (2018). Censo nacional de población y vivienda 2018. https://sitios.dane.gov.co/cnpv/#!/spa
dc.relation.referencesDinero. (2015). El aceite usado puede convertirse en el próximo biocombustible. Dinero.spa
dc.relation.referencesEchavarría Restrepo, J. (2012). El desarrollo sostenible y el reciclaje del aceite usado de cocina a la luz de la jurisprudencia y el ordenamiento jurídico colombiano. Producción + Limpia, 7(1), 109–122.spa
dc.relation.referencesEl Espectador. (2017). Conozca la velocidad a esta hora en las principales vías de Bogotá. El Espectador. https://www.elespectador.com/noticias/bogota/conozca-la-velocidad-a-esta-hora-en-las-principales-vias-de-bogota/spa
dc.relation.referencesEl Tiempo. (2014). Hasta con cloro revuelven aceites para venta ilegal; prenden alarmas. 14 de Mayo de 2014. https://www.eltiempo.com/archivo/documento/CMS-13989999spa
dc.relation.referencesEnweremadu, C. C., & Mbarawa, M. M. (2009). Technical aspects of production and analysis of biodiesel from used cooking oil-A review. Renewable and Sustainable Energy Reviews, 13(9), 2205–2224. https://doi.org/10.1016/j.rser.2009.06.007spa
dc.relation.referencesFedepalma. (2018). Informe de gestión Fedepalma 2018.spa
dc.relation.referencesFengqui, Y., Ling, T., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cullulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. Process Systems Engineering, 58(4), 1157–1180.spa
dc.relation.referencesGoldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning (1st ed.). Addison-Wesley Publishing Company.spa
dc.relation.referencesGomez, J. (2004). Self adaptation of operator rates in evolutionary algorithms. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3102(June 2004), 1162–1173. https://doi.org/10.1007/978-3-540-24854-5_113spa
dc.relation.referencesGreenea. (2019). Waste based market performance. https://www.greenea.com/en/market-analysis/spa
dc.relation.referencesGreenfuel. (2020). Greenfuel. https://www.greenfuel.com.co/spa
dc.relation.referencesGSI, & IISD. (2013). The EU Biofuel Policy and Palm Oil: Cutting subsidies or cutting rainforest? https://www.iisd.org/gsi/sites/default/files/bf_eupalmoil.pdfspa
dc.relation.referencesGunstone, F. D., & Hamilton, R. J. (2001). Oleochemical Manufacture and Applications. CRC Press.spa
dc.relation.referencesHoward, G., & Bartram, J. (2003). La cantidad de agua domiciliaria, el nivel del servicio y la salud. https://www.who.int/water_sanitation_health/diseases/wsh0302/es/spa
dc.relation.referencesHu, Y., Scarborough, M., Aguirre-Villegas, H., Larson, R. A., Noguera, D. R., & Zavala, V. M. (2018). A Supply Chain Framework for the Analysis of the Recovery of Biogas and Fatty Acids from Organic Waste. ACS Sustainable Chemistry and Engineering, 6(5), 6211–6222. https://doi.org/10.1021/acssuschemeng.7b04932spa
dc.relation.referencesIndex Mundi. (2020a). Colombia Palm Oil Domestic Consumption by Year. https://www.indexmundi.com/agriculture/?country=co&commodity=palm-oil&graph=domestic-consumptionspa
dc.relation.referencesIndex Mundi. (2020b). Colombia Soybean Oil Domestic Consumption by Year. https://www.indexmundi.com/agriculture/?country=co&commodity=soybean-oil&graph=domestic-consumptionspa
dc.relation.referencesIndex Mundi. (2020c). Colombia Sunflowerseed Oil Domestic Consumption by Year. https://www.indexmundi.com/agriculture/?country=co&commodity=sunflowerseed-oil&graph=domestic-consumptionspa
dc.relation.referencesJalving, J., & Zavala, V. M. (2018). An Optimization-Based State Estimation Framework for Large-Scale Natural Gas Networks. Industrial and Engineering Chemistry Research, 57(17), 5966–5979. https://doi.org/10.1021/acs.iecr.7b04124spa
dc.relation.referencesKnothe, G., & Steidley, K. R. (2009). A comparison of used cooking oils: A very heterogeneous feedstock for biodiesel. Bioresource Technology, 100(23), 5796–5801. https://doi.org/10.1016/j.biortech.2008.11.064spa
dc.relation.referencesKrikke, H. R. (1998). Recovery strategies and reverse logistic network design. Tilburg University.spa
dc.relation.referencesLammel, G., & Graßl, H. (1995). Greenhouse effect of NOX. Environmental Science and Pollution Research, 2(1), 40–45. https://doi.org/10.1007/BF02987512spa
dc.relation.referencesMamajek, E. E., Prsa, A., Torres, G., Harmanec, P., Asplund, M., Bennett, P. D., Capitaine, N., Christensen-Dalsgaard, J., Depagne, E., Folkner, W. M., Haberreiter, M., Hekker, S., Hilton, J. L., Kostov, V., Kurtz, D. W., Laskar, J., Mason, B. D., Milone, E. F., Montgomery, M. M., … Stewart, S. G. (2015). IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties. 1–6. http://arxiv.org/abs/1510.07674spa
dc.relation.referencesMandolesi De Araújo, C. D., De Andrade, C. C., De Souza E Silva, E., & Dupas, F. A. (2013). Biodiesel production from used cooking oil: A review. Renewable and Sustainable Energy Reviews, 27, 445–452. https://doi.org/10.1016/j.rser.2013.06.014spa
dc.relation.referencesMarkets and Markets. (2019). Oleochemicals market. https://www.marketsandmarkets.com/Market-Reports/oleochemicals-market-235516809.html?gclid=CjwKCAjwte71BRBCEiwAU_V9h6JlNjeXqa1wkC1zdLtkk8D1rQPvi7o6t5_nTYFunoiANEiMogG1BxoC0xkQAvD_BwEspa
dc.relation.referencesMincomercio Industria y Turismo, & Bancoldex. (2017). INTELLIGENT DIVERSIFICATION: Possibilities for the sophistication and diversification of the Oil Palm industry in Colombia. https://www.bancoldex.com/sites/default/files/documentos/intelligent_diversification_palm_oil.pdfspa
dc.relation.referencesMoazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production, 216, 117–128. https://doi.org/10.1016/j.jclepro.2019.01.181spa
dc.relation.referencesMordor Ingelligence. (2020). SURFACTANTS MARKET - GROWTH, TRENDS, AND FORECAST (2020 - 2025).spa
dc.relation.referencesMunguía-López, A. del C., Zavala, V. M., Santibañez-Aguilar, J. E., & Ponce-Ortega, J. M. (2020). Optimization of municipal solid waste management using a coordinated framework. Waste Management, 115, 15–24. https://doi.org/10.1016/j.wasman.2020.07.006spa
dc.relation.referencesNeiro, S. M. S., & Pinto, J. M. (2004). A general modeling framework for the operational planning of petroleum supply chains. Computers and Chemical Engineering, 28(6–7), 871–896. https://doi.org/10.1016/j.compchemeng.2003.09.018spa
dc.relation.referencesOEC. (2020). Palm Oil. https://oec.world/en/profile/hs92/31511#tradespa
dc.relation.referencesOrjuela, Á. (2020). Industrial Oleochemicals from Used Cooking Oils (UCOs) - Sustainability Benefits and Challenges. In S. Sidkar & F. Princiotta (Eds.), Advances in Carbon Management Technologies (pp. 74–96). CRC Press.spa
dc.relation.referencesOrtner, M. E., Müller, W., Schneider, I., & Bockreis, A. (2016). Environmental assessment of three different utilization paths of waste cooking oil from households. Resources, Conservation and Recycling, 106, 59–67. https://doi.org/10.1016/j.resconrec.2015.11.007spa
dc.relation.referencesPapageorgiou, L. G., Rotstein, G. E., & Shah, N. (2001). Strategic supply chain optimization for the pharmaceutical industries. Industrial and Engineering Chemistry Research, 40(1), 275–286. https://doi.org/10.1021/ie990870tspa
dc.relation.referencesRincón, L. A., Cadavid, J. G., & Orjuela, A. (2019). Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia. Waste Management, 88, 200–210. https://doi.org/10.1016/j.wasman.2019.03.042spa
dc.relation.referencesRincón Vija, L. Á. (2018). Reutilización de aceites de cocina usados en la producción de aceites epoxidados. Universidad Nacional de Colombia.spa
dc.relation.referencesSemana. (2017). ¿Cómo y por qué deshacerse del aceite de cocina usado? https://sostenibilidad.semana.com/impacto/articulo/aceite-de-cocina-usado-como-botarlo-y-reciclarlo-en-colombia/38474spa
dc.relation.referencesSigra. (2014). El Cartel del Aceite Pirata. https://www.youtube.com/watch?v=jZ1UUUQnaWIspa
dc.relation.referencesSinghabhandhu, A., & Tezuka, T. (2010). The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics. Energy, 35(6), 2544–2551. https://doi.org/10.1016/j.energy.2010.03.001spa
dc.relation.referencesSipser, M. (2013). Introduction to the theory of computation (3rd ed.). Cengage Learning.spa
dc.relation.referencesSrivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80. https://doi.org/10.1111/j.1468-2370.2007.00202.xspa
dc.relation.referencesSTATISTA. (2019). Consumption of vegetable oils worldwide from 2013/14 to 2018/2019, by oil type (in million metric tons). https://www.statista.com/statistics/263937/vegetable-oils-global-consumption/spa
dc.relation.referencesSTIN UCO. (2019). China exported more than 730000 tons of UCO in 2019,increased 26.7% than previous year. http://www.chinausedcookingoil.com/news/54.htmlspa
dc.relation.referencesSuaterna Hurtado, A. C. (2009). La fritura de los alimentos: el aceite de fritura. Perspectivas En Nutrición Humana, Vol. 11(No. 1).spa
dc.relation.referencesUSDA. (2019). Oilseeds: World Markets and Trade. https://downloads.usda.library.cornell.edu/usda-esmis/files/tx31qh68h/n296xd515/w0892s45d/oilseeds.pdfspa
dc.relation.referencesVandermeersch, T., Alvarenga, R. A. F., Ragaert, P., & Dewulf, J. (2014). Environmental sustainability assessment of food waste valorization options. Resources, Conservation and Recycling, 87, 57–64. https://doi.org/10.1016/j.resconrec.2014.03.008spa
dc.relation.referencesWeisstein, E. W. (2020). Graph. Wolfram Math World. https://mathworld.wolfram.com/Graph.htmlspa
dc.relation.referencesWilkerson, T. (2005). Can one green deliver another? Harvard Business Review.spa
dc.relation.referencesXin-She, Y. (2014). Nature-Inspired Optimization Algorithms. In Studies in Systems, Decision and Control (First Edit, Vol. 118). Elsevier.spa
dc.relation.referencesZhou, Z., Cheng, S., & Hua, B. (2000). Supply chain optimization of continuous process industries with sustainability considerations. Computers and Chemical Engineering, 24(2–7), 1151–1158. https://doi.org/10.1016/S0098-1354(00)00496-8spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.proposalLife cycleeng
dc.subject.proposalCiclo de vidaspa
dc.subject.proposalOptimizaciónspa
dc.subject.proposalOptimizationeng
dc.subject.proposalCadena de suministrospa
dc.subject.proposalSupply chaineng
dc.subject.proposalSustainabilityeng
dc.subject.proposalSostenibilidadspa
dc.subject.proposalUsed Cooking Oileng
dc.subject.proposalAceite de cocina usadospa
dc.subject.proposalBiofueleng
dc.subject.proposalBiocombustiblespa
dc.titleEstudio de factibilidad para el aprovechamiento de ACUs en la ciudad de Bogotáspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020787289.2020.pdf
Tamaño:
3.61 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: