EEG-based pain detection using gaussian functional connectivity and shallow deep learning with preserved interpretability

dc.contributor.advisorÁlvarez Meza, Andrés Marino
dc.contributor.advisorCastellanos Domínguez, César Germán
dc.contributor.authorBuitrago Osorio, Santiago
dc.contributor.orcidBuitrago Osorio, Santiago [0009000924124570]spa
dc.contributor.researchgroupGrupo de Control y Procesamiento Digital de Señalesspa
dc.date.accessioned2025-04-08T15:52:30Z
dc.date.available2025-04-08T15:52:30Z
dc.date.issued2024
dc.descriptiongraficas, ilustraciones, tablasspa
dc.description.abstractThis thesis presents an innovative approach for EEG-based pain classification, addressing the persistent challenge of intra and inter-subject variability. Leveraging Gaussian Functional Connectivity and shallow deep learning models, the study introduces a kernel-based functional connectivity method for single-trial pain classification. The proposed model optimizes spatio- temporal-frequency patterns through a cross-spectral distribution estimator, utilizing the universal approximation properties of the Gaussian kernel to improve feature extraction. This approach is designed to enhance interpretability, making it particularly suitable for brain-machine interface applications. The research also explores multi-modal analysis, incorporating demographic stratification techniques based on factors such as gender, age, and training performance. These strategies significantly improve the model’s generalization ability, yielding competitive performance metrics such as accuracy and AUC scores, while maintaining a high level of transparency in the decision-making process. By integrating frequency band filtering and advanced techniques like Grad-CAM++, the study provides deeper insights into the neural correlates of pain, bridging the gap between model performance and interpretability. Through extensive validation using EEG databases, the results demonstrate that the proposed methods outperform state-of-the-art models like EEGNet, offering superior classification accuracy across diverse subject groups. The findings of this research contribute to both the development of more effective pain assessment methodologies and the advancement of transparent deep learning models in clinical neurotechnology (Texto tomado de la fuente).eng
dc.description.abstractEsta tesis presenta un enfoque innovador para la clasificación del dolor basado en EEG, abordando el persistente desafío de la variabilidad intra e intersujeto. Aprovechando la Conectividad Funcional Gaussiana y modelos de aprendizaje profundo poco profundos, el estudio introduce un método de conectividad funcional basado en núcleos para la clasificación del dolor en ensayos individuales. El modelo propuesto optimiza los patrones espaciotemporales-frecuenciales a través de un estimador de distribución cruzada espectral, utilizando las propiedades de aproximación universal del núcleo gaussiano para mejorar la extracción de características. Este enfoque está diseñado para mejorar la interpretabilidad, lo que lo hace particularmente adecuado para aplicaciones de interfaz cerebro-máquina. La investigación también explora el análisis multimodal, incorporando técnicas de estratificación demográfica basadas en factores como género, edad y rendimiento en entrenamientos. Estas estrategias mejoran significativamente la capacidad de generalización del modelo, logrando métricas de rendimiento competitivas como la precisión y las puntuaciones AUC, mientras se mantiene un alto nivel de transparencia en el proceso de toma de decisiones. Al integrar el filtrado de bandas de frecuencia y técnicas avanzadas como Grad-CAM++, el estudio proporciona una comprensión más profunda de los correlatos neurales del dolor, cerrando la brecha entre el rendimiento del modelo y la interpretabilidad. A través de una validación extensa utilizando bases de datos de EEG, los resultados demuestran que los métodos propuestos superan a modelos de última generación como EEGNet, ofreciendo una precisión de clasificación superior en diversos grupos de sujetos. Los hallazgosde esta investigación contribuyen tanto al desarrollo de metodologías de evaluación del dolor más efectivas como al avance de modelos de aprendizaje profundo transparentes en neurotecnología clínica.spa
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaInteligencia Artificialspa
dc.format.extentxiii, 81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87892
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAbiri, R.; Borhani, S.; Sellers, E. W.; Jiang, Y. & Zhao, X.:, 2019; A comprehensive review of eeg-based brain–computer interface paradigms; Journal of neural engineering; 16 (1): 011001spa
dc.relation.referencesAfrasiabi, S.; Boostani, R.; Masnadi-Shirazi, M. A. & Nezam,T.: , 2021; An eeg based hierarchical classification strategy to differentiate fiveintensities of pain; Expert Systems with Applications; 180: 115010; doi:https://doi.org/10.1016/j.eswa.2021.115010; URL https://www.sciencedirect.com/science/article/pii/S0957417421004516.spa
dc.relation.referencesAl-Fahoum, A. S. & Al-Fraihat, A. A.: , 2014; Methods of eeg signal features extraction using linear analysis in frequency and time-frequency domains; International Scholarly Research Notices; 2014 (1): 730218; doi:https://doi.org/10.1155/2014/730218; URL https://onlinelibrary.wiley.com/doi/abs/10.1155/2014/730218.spa
dc.relation.referencesAlazrai, R.; Momani, M.; Khudair, H. A. & Daoud, M. I.: ,2017; Eeg-based tonic cold pain recognition system using wavelet transform; Neural Computing and Applications; 31: 3187 – 3200; URL https://api.semanticscholar.org/CorpusID:254025217.spa
dc.relation.referencesAlstadhaug KB, Ofte HK, K. E.: , 2017; Preventing and treating medication overuse headache; Pain Rep; doi:10.1097/PR9.0000000000000612spa
dc.relation.referencesAmin, S. U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M. A. & Hossain, M. S.: , 2019; Deep learning for eeg motor imagery classification based on multi-layer cnns feature fusion; Future Generation computer systems; 101: 542–554.spa
dc.relation.referencesAng, K. K.; Chin, Z. Y.; Zhang, H. & Guan, C.: , 2008; Filter bank common spatial pattern (fbcsp) in brain-computer interface; en 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence); págs. 2390–2397; doi:10.1109/IJCNN.2008.4634130.spa
dc.relation.referencesBabiloni F, A. L.: , 2014; Social neuroscience and hyperscanning techniques: past, present and future; Neurosci Biobehav Rev ; doi:10.1016/j.neubiorev.2012.07.006spa
dc.relation.referencesBai Y, Huang G, T. Y. T. A. H. Y. Z. Z.: , 2016; Normalization of pain-evoked neural responses using spontaneous eeg improves the performance of eeg-based cross-individual pain prediction; Front Comput Neurosci; doi:10.3389/fncom.2016.00031.spa
dc.relation.referencesBaliki, M. N. & Apkarian, A. V.: , 2015; Nociception, pain, negative moods, and behavior selection; Neuron; 87 (3): 474–491.spa
dc.relation.referencesBang, J.-S. & Lee, S.-W.: , 2022; Interpretable convolutional neural networks for subject-independent motor imagery classification; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5.spa
dc.relation.referencesBaroni, A.; Severini, G.; Straudi, S.; Buja, S.; Borsato, S. & Basaglia, N.: , 2020; Hyperalgesia and central sensitization in subjects with chronic orofacial pain: Analysis of pain thresholds and eeg biomarkers; Frontiers in Neuroscience; 14; doi:10.3389/fnins.2020.552650; URL https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.552650.spa
dc.relation.referencesBastos, A. M. & Schoffelen, J.-M.: , 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls; Frontiers in Systems Neuroscience; 9; doi:10.3389/fnsys.2015.00175; URL https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2015.00175.spa
dc.relation.referencesBejani, M. M. & Ghatee, M.: , 2021; A systematic review on overfitting control in shallow and deep neural networks; Artificial Intelligence Review ;54 (8): 6391–6438spa
dc.relation.referencesBhardwaj, H.; Tomar, P.; Sakalle, A. & Ibrahim, W.: , 2021; Eeg-based personality prediction using fast fourier transform and deeplstm model; Computational Intelligence and Neuroscience; 2021 (1): 6524858.spa
dc.relation.referencesBishop, C. M.: , 2006; Pattern recognition and machine learning; springerspa
dc.relation.referencesBlankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M. & Muller, K.-r.: , 2008; Optimizing spatial filters for robust eeg single-trial analysis; IEEE Signal Processing Magazine; 25 (1): 41–56; doi:10.1109/MSP.2008.4408441.spa
dc.relation.referencesBochner, S.: , 2020; Harmonic analysis and the theory of probability; University of California press.spa
dc.relation.referencesBoonyakitanont, P.; Lek-uthai, A.; Chomtho, K. & Songsiri, J.: , 2020; A review of feature extraction and performance evaluation in epileptic seizure detection using eeg; Biomedical Signal Processing and Control; 57: 101702; doi:https://doi.org/10.1016/j.bspc.2019.101702; URL https://www.sciencedirect.com/science/article/pii/S1746809419302836spa
dc.relation.referencesBrunner, C.; Billinger, M.; Seeber, M.; Mullen, T. R. & Makeig, S.: , 2016; Volume conduction influences scalp-based connectivity estimates; Frontiers in Computational Neuroscience; 10; doi:10.3389/fncom.2016.00121; URL https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2016.00121spa
dc.relation.referencesCai, Q.; Gong, W.; Deng, Y. & Wang, H.: , 2021; Single-trial EEG classification via common spatial patterns with mixed lp-and lq-norms; Mathematical Problems in Engineering; 2021spa
dc.relation.referencesCalati, R.; Bakhiyi, C. L.; Artero, S.; Ilgen, M. & Courtet, P.: , 2015; The impact of physical pain on suicidal thoughts and behaviors: Meta-analyses; Journal of psychiatric research; 71: 16–32spa
dc.relation.referencesCao, J.; Zhao, Y.; Shan, X.; Wei, H.-l.; Guo, Y.; Chen, L.; Erkoyuncu, J. A. & Sarrigiannis, P. G.: , 2022; Brain functional and effective connectivity based on electroencephalography recordings: A review; Human Brain Mapping; 43 (2): 860–879; doi:https://doi.org/10.1002/hbm.25683; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25683spa
dc.relation.referencesCárdenas-Peña, D.; Collazos-Huertas, D. & Castellanos-Dominguez, G.: , 2017; Enhanced data representation by kernel metric learning for dementia diagnosis; Frontiers in neuroscience; 11: 413spa
dc.relation.referencesCascella, M.; Schiavo, D.; Cuomo, A.; Ottaiano, A.; Perri, F.; Patrone, R.; Migliarelli, S.; Bignami, E. G.; Vittori, A. & Cutugno, F.:, 2023; Artificial intelligence for automatic pain assessment: research methods and perspectives; Pain Research and Management; 2023 (1): 6018736spa
dc.relation.referencesChae, Y.; Park, H.-J. & Lee, I.-S.: , 2022; Pain modalities in the body and brain: Current knowledge and future perspectives; Neuroscience Biobehavioral Reviews; 139: 104744; doi:https://doi.org/10.1016/j.neubiorev.2022.104744; URL https://www.sciencedirect.com/science/article/pii/S0149763422002330spa
dc.relation.referencesChakravarthi, B.; Ng, S.-C.; Ezilarasan, M. R. & Leung, M.-F.: , 2022; Eeg-based emotion recognition using hybrid cnn and lstm classification; Frontiers in Computational Neuroscience; 16; doi:10.3389/fncom.2022.1019776; URL https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2022.1019776spa
dc.relation.referencesChao, H. & Liu, Y.: , 2020; Emotion recognition from multi-channel eeg signals by exploiting the deep belief-conditional random field framework; IEEE Access; 8: 33002–33012; doi:10.1109/ACCESS.2020.2974009.spa
dc.relation.referencesChattopadhay, A.; Sarkar, A.; Howlader, P. & Bala-subramanian, V. N.: , 2018; Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks; en 2018 IEEE Winter Conference on Applications of Computer Vision (WACV); IEEE; doi:10.1109/wacv.2018.00097; URL http://dx.doi.org/10.1109/WACV.2018.00097spa
dc.relation.referencesChiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L. & Mesin, L.: , 2023; Connectivity analysis in eeg data: A tutorial review of the state of the art and emerging trends; Bioengineering; 10 (3); doi:10.3390/bioengineering10030372; URL https://www.mdpi.com/2306-5354/10/3/372.spa
dc.relation.referencesChowdary, M. K.; Anitha, J. & Hemanth, D. J.: , 2022; Emotion recognition from eeg signals using recurrent neural networks; Electronics; 11 (15): 2387spa
dc.relation.referencesChristoph, M.: , 2020; Interpretable machine learning: A guide for making black box models explainable; Leanpubspa
dc.relation.referencesCohen, J.: , 1960; A coefficient of agreement for nominal scales; Educational and Psychological Measurement; 20 (1): 37–46; doi:10.1177/001316446002000104; URL https://doi.org/10.1177/001316446002000104spa
dc.relation.referencesCohen, L.: , 1998; The generalization of the wiener-khinchin theorem; en Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), tomo 3; IEEE; págs. 1577–1580.spa
dc.relation.referencesCollazos-Huertas, D.; Cárdenas-Peña, D. & Castellanos-Dominguez, G.: , 2019; Instance-based representation using multiple kernel learning for predicting conversion to alzheimer disease; International journal of neural systems; 29 (02): 1850042spa
dc.relation.referencesDeepa, B. & Ramesh, K.: , 2022; Epileptic seizure detection using deep learning through min max scaler normalization; International journal of health sciences; 6 (S1): 10981–10996; doi:10.53730/ijhs.v6nS1.7801; URL https://sciencescholar.us/journal/index.php/ijhs/article/view/7801spa
dc.relation.referencesDemir, A.; Koike-Akino, T.; Wang, Y. & Erdoğmuş, D.: , 2022; Eeg-gat: graph attention networks for classification of electroencephalogram (eeg) signals; en 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–35spa
dc.relation.referencesDeng, Y.; Li, Z.; Wang, H.; Lu, X. & Fan, H.: , 2020; Local temporal joint recurrence common spatial patterns for MI-based BCI; en 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), tomo 1; IEEE; págs. 813–816spa
dc.relation.referencesDydyk, A. M. & Grandhe, S.: , 2024; Pain Assessment; StatPearls Publishing, Treasure Island, FL; URL https://www.ncbi.nlm.nih.gov/books/NBK556098/; pMID: 32310558spa
dc.relation.referencesElsayed, M.; Sim, K. S. & Tan, S. C.: , 2020; A novel approach to objectively quantify the subjective perception of pain through electroencephalogram signal analysis; IEEE Access; 8: 199920–199930; doi:10.1109/ACCESS.2020.3032153spa
dc.relation.referencesFauzi, H.; Azzam, M. A.; Shapiai, M. I.; Kyoso, M.; Khairuddin, U. & Komura, T.: , 2019; Energy extraction method for EEG channel selection; Telkomnika; 17 (5): 2561–2571spa
dc.relation.referencesFawcett, T.: , 2006; An introduction to roc analysis; Pattern Recognition Letters; 27 (8): 861–874; doi:https://doi.org/10.1016/j.patrec.2005.10.010; URL https://www.sciencedirect.com/science/article/pii/S016786550500303X; rOC Analysis in Pattern Recognitionspa
dc.relation.referencesFillingim, R.: , 2016; Individual differences in pain: Understanding the mosaic that makes pain personal; PAIN ; 158: 1; doi:10.1097/j.pain.0000000000000775spa
dc.relation.referencesFillingim, R. B.; King, C. D.; Ribeiro-Dasilva, M. C.; Rahim-Williams, B. & Riley, J. L.: , 2009; Sex, gender, and pain: A review of recent clinical and experimental findings; The Journal of Pain; 10 (5): 447–485; doi:https://doi.org/10.1016/j.jpain.2008.12.001; URL https://www.sciencedirect.com/science/article/pii/S1526590008009097spa
dc.relation.referencesGao, H.; Wang, X.; Chen, Z.; Wu, M.; Cai, Z.; Zhao, L.; Li, J. & Liu, C.: , 2024; Graph convolutional network with connectivity uncertainty for eeg-based emotion recognition; IEEE Journal of Biomedical and Health Informaticsspa
dc.relation.referencesGarcía-Murillo, D. G.; Álvarez Meza, A. M. & Castellanos-Dominguez, C. G.: , 2023; Kcs-fcnet: Kernel cross-spectral functional connectivity network for eeg-based motor imagery classification; Diagnostics; 13 (6); doi:10.3390/diagnostics13061122; URL https://www.mdpi.com/2075-4418/13/6/1122spa
dc.relation.referencesGaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. B. & Wang, H.: , 2021; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9spa
dc.relation.referencesGéron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow ; " O’Reilly Media, Inc."spa
dc.relation.referencesGirard-Tremblay, L.; Auclair, V.; Daigle, K.; Léonard, G.; Whittingstall, K. & Goffaux, P.: , 2014; Sex differences in the neural representation of pain unpleasantness; The Journal of Pain; 15 (8): 867–877; doi:https://doi.org/10.1016/j.jpain.2014.05.004; URL https://www.sciencedirect.com/science/article/pii/S1526590014007378spa
dc.relation.referencesGoadsby PJ, Holland PR, M.-O. M. H. J. S. C. A. S.: , 2017; Pathophysiology of migraine: A disorder of sensory processing; Physiol Rev ; doi:10.1152/physrev.00034.2015.spa
dc.relation.referencesGu, X.; Cao, Z.; Jolfaei, A.; Xu, P.; Wu, D.; Jung, T.-P. & Lin, C.-T.: , 2021; Eeg-based brain-computer interfaces (bcis): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications; IEEE/ACM transactions on computational biology and bioinformatics;18 (5): 1645–1666spa
dc.relation.referencesGuggisberg, A.; Dalal, S.; Findlay, A. & Nagarajan, S.: , 2008; High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making; Frontiers in Human Neuroscience; 2; doi:10.3389/neuro.09.014.2007; URL https://www.frontiersin.org/articles/10.3389/neuro.09.014.2007spa
dc.relation.referencesGunawardena, R.; Sarrigiannis, P. G.; Blackburn, D. J. & He, F.: , 2023; Kernel-based nonlinear manifold learning for eeg-based functional connectivity analysis and channel selection with application to alzheimer’s disease; Neurosciencespa
dc.relation.referencesHassan, F.; Hussain, S. F. & Qaisar, S. M.: , 2023; Fusion of multivariate eeg signals for schizophrenia detection using cnn and machine learning techniques; Information Fusion; 92: 466–478; doi:https://doi.org/10.1016/j.inffus.2022.12.019; URL https://www.sciencedirect.com/science/article/pii/S1566253522002676spa
dc.relation.referencesHata, M.; Kazui, H.; Tanaka, T.; Ishii, R.; Canuet, L.; Pascual-Marqui, R. D.; Aoki, Y.; Ikeda, S.; Kanemoto, H.; Yoshiyama, K.; Iwase, M. & Takeda, M.: , 2016; Functional connectivity assessed by resting state eeg correlates with cognitive decline of alzheimer’s disease – an eloreta study; Clinical Neurophysiology;127 (2): 1269–1278; doi:https://doi.org/10.1016/j.clinph.2015.10.030; URL https://www.sciencedirect.com/science/article/pii/S1388245715009839spa
dc.relation.referencesHong, Q.; Wang, Y.; Li, H.; Zhao, Y.; Guo, W. & Wang, X.: , 2021; Probing filters to interpret cnn semantic configurations by occlusion; en Data Science: 7th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2021, Taiyuan, China, September 17–20, 2021, Proceedings,Part II 7 ; Springer; págs. 103–115spa
dc.relation.referencesHu, L. & Zhang, Z.: , 2019; EEG Signal Processing and Feature Extraction; ISBN 978-981-13-9112-5; doi:10.1007/978-981-13-9113-2spa
dc.relation.referencesHuang, G.; Zhao, Z.; Zhang, S.; Hu, Z.; Fan, J.; Fu, M.; Chen, J.; Xiao, Y.; Wang, J. & Dan, G.: , 2023; Discrepancy between inter- and intra-subject variability in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectives; Frontiers in Neuroscience; 17; doi:10.3389/fnins.2023.1122661; URL https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1122661spa
dc.relation.referencesHutchison, R. M.; Womelsdorf, T.; Allen, E. A.; Bandettini, P. A.; Calhoun, V. D.; Corbetta, M.; Della Penna, S.; Duyn, J. H.; Glover, G. H.; Gonzalez-Castillo, J.; Handwerker, D. A.; Keilholz, S.; Kiviniemi, V.; Leopold, D. A.; de Pasquale, F.; Sporns, O.; Walter, M. & Chang, C.: , 2013; Dynamic functional connectivity: Promise, issues, and interpretations; NeuroImage;80: 360–378; doi:https://doi.org/10.1016/j.neuroimage.2013.05.079; URL https://www.sciencedirect.com/science/article/pii/S105381191300579X; mapping the Connectomespa
dc.relation.referencesIslam MK, Rastegarnia A, Y. Z.: , 2016; Methods for artifact detection and removal from scalp eeg: A review; Neurophysiol Clin; doi:10.1016/j.neucli.2016.07.002.spa
dc.relation.referencesIyer, A.; Das, S. S.; Teotia, R.; Maheshwari, S. & Sharma, R.: , 2022; Cnn and lstm based ensemble learning for human emotion recognition using eeg recordings; Multimedia Tools and Applications; doi:10.1007/s11042-022-12310-7spa
dc.relation.referencesJiang, P.-T.; Zhang, C.-B.; Hou, Q.; Cheng, M.-M. & Wei, Y.: , 2021; Layercam: Exploring hierarchical class activation maps for localization; IEEE Transactions on Image Processing; 30: 5875–5888spa
dc.relation.referencesJu, C. & Guan, C.: , 2023; Graph neural networks on spd manifolds for motor imagery classification: A perspective from the time–frequency analysis; IEEE Transactions on Neural Networks and Learning Systemsspa
dc.relation.referencesKhare, S. K.; Bajaj, V. & Acharya, U. R.: , 2021; Spwvd-cnn for automated detection of schizophrenia patients using eeg signals; IEEE Transactions on Instrumentation and Measurement; 70: 1–9; doi:10.1109/TIM.2021.3070608spa
dc.relation.referencesKimura A, Mitsukura Y, O. A. M. M. N. M. K. A. M. T.: , 2021; Objective characterization of hip pain levels during walking by combining quantitative electroencephalography with machine learning; Scientific Reportsspa
dc.relation.referencesKoenig, T.; Smailovic, U. & Jelic, V.: , 2020; Past, present and future eeg in the clinical workup of dementias; Psychiatry Research: Neuroimaging; 306: 111182; doi:https://doi.org/10.1016/j.pscychresns.2020.111182; URL https://www.sciencedirect.com/science/article/pii/S0925492720301542; sI: Imaging in neurodegenerationspa
dc.relation.referencesKohoutová, L.; Atlas, L.; Büchel, C.; Buhle, J.; Geuter, S.; Jepma, M.; Koban, L.; Krishnan, A.; Lee, D.; Lee, S.; Roy, M.; Schafer, S.; Schmidt, L.; Wager, T. & Woo, C.-W.: , 2022; Individual variability in brain representations of pain; Nature Neuroscience; 25; doi:10.1038/s41593-022-01081-xspa
dc.relation.referencesKristoffersen ES, L. C.: , 2014; Medication-overuse headache: a review; J Pain Res; doi:10.2147/JPR.S46071spa
dc.relation.referencesKumar, S.; Sharma, A. & Tsunoda, T.: , 2019; Brain wave classification using long short-term memory network based OPTICAL predictor; Scientific reports; 9 (1): 1–13spa
dc.relation.referencesLamba, K. & Rani, S.: , 2024; A novel approach of brain-computer interfacing (bci) and grad-cam based explainable artificial intelligence: Use case scenario for smart healthcare; Journal of Neuroscience Methods; 408: 110159; doi:https://doi.org/10.1016/j.jneumeth.2024.110159; URL https://www.sciencedirect.com/science/article/pii/S0165027024001043spa
dc.relation.referencesLawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces; Journal of Neural Engineering;15 (5): 056013; doi:10.1088/1741-2552/aace8c; URL https://dx.doi.org/10.1088/1741-2552/aace8cspa
dc.relation.referencesLi, F.; He, F.; Wang, F.; Zhang, D.; Xia, Y. & Li, X.: , 2020; A novel simplified convolutional neural network classification algorithm of motor imagery eeg signals based on deep learning; Applied Sciences; 10 (5): 1605.spa
dc.relation.referencesLi, X.; Xiong, H.; Li, X.; Wu, X.; Zhang, X.; Liu, J.; Bian, J. & Dou, D.: , 2022; Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond; Knowledge and Information Systems; 64 (12): 3197–3234spa
dc.relation.referencesLi, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G. & Guo, Y.-Z.: , 2019; A channel-projection mixed-scale convolutional neural network for motor imagery eeg decoding; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (6): 1170–1180; doi:10.1109/TNSRE.2019.2915621spa
dc.relation.referencesLi L, Huang G, L. Q. L. J. Z. S. Z. Z.: , 2018; Magnitude and temporal variability of inter-stimulus eeg modulate the linear relationship between laser-evoked potentials and fast-pain perception; Front Neurosci; doi:10.3389/fnins.2018.00340spa
dc.relation.referencesLindsay, N. M.; Chen, C.; Gilam, G.; Mackey, S. & Scherrer, G.: , 2021; Brain circuits for pain and its treatment; Science Translational Medicine; 13 (619): eabj7360; doi:10.1126/scitranslmed.abj7360; URL https://www.science.org/doi/abs/10.1126/scitranslmed.abj7360spa
dc.relation.referencesLiu, J.; Wu, G.; Luo, Y.; Qiu, S.; Yang, S.; Li, W. & Bi, Y.: , 2020; Eeg-based emotion classification using a deep neural network and sparse autoencoder; Frontiers in Systems Neuroscience; 14: 43spa
dc.relation.referencesLopes, M.; Cassani, R. & Falk, T. H.: , 2023; Using cnn saliency maps and eeg modulation spectra for improved and more interpretable machine learning-based alzheimer’s disease diagnosis; Computational Intelligence and Neuroscience; 2023 (1): 3198066spa
dc.relation.referencesLuo, J.; Wang, Y.; Xia, S.; Lu, N.; Ren, X.; Shi, Z. & Hei, X.:, 2023; A shallow mirror transformer for subject-independent motor imagery bci; Computers in Biology and Medicine; 164: 107254.spa
dc.relation.referencesLuo, T.-j.; Zhou, C.-l. & Chao, F.: , 2018; Exploring spatial-frequency sequential relationships for motor imagery classification with recurrent neural network;BMC bioinformatics; 19 (1): 1–18spa
dc.relation.referencesMa, Y.; Song, Y. & Gao, F.: , 2022; A novel hybrid cnn-transformer model for eeg motor imagery classification; en 2022 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8spa
dc.relation.referencesMadanu, R.; Abbod, M. F.; Hsiao, F.-J.; Chen, W.-T. & Shieh, J.-S.: , 2022; Explainable ai (xai) applied in machine learning for pain modeling: A review; Technologies; 10 (3); doi:10.3390/technologies10030074; URL https://www.mdpi.com/2227-7080/10/3/74spa
dc.relation.referencesMaimaiti, B.; Meng, H.; Lv, Y.; Qiu, J.; Zhu, Z.; Xie, Y.; Li, Y.; Yu-Cheng; Zhao, W.; Liu, J. & Li, M.: , 2022; An overview of eeg-based machine learning methods in seizure prediction and opportunities for neurologists in this field; Neuroscience; 481: 197–218; doi:https://doi.org/10.1016/j.neuroscience.2021.11.017; URL https://www.sciencedirect.com/science/article/pii/S0306452221005765spa
dc.relation.referencesManiruzzaman, M.; Shin, J.; Al Mehedi Hasan, M. & Yasumura, A.: , 2022; Efficient feature selection and machine learning based adhd detection using eeg signal; Computers, Materials and Continua; 72 (3): 5179–5195;doi:https://doi.org/10.32604/cmc.2022.028339; URL https://www.sciencedirect.com/science/article/pii/S1546221822010037spa
dc.relation.referencesManpreet Kaur, Neelam Rup Prakash, P. K. & Puri, G. D.: , 2022; Electroencephalogram-based pain classification using artificial neural networks; IETE Journal of Research; 68 (3): 2312–2325; doi:10.1080/03772063.2019.1702903; URL https://doi.org/10.1080/03772063.2019.1702903spa
dc.relation.referencesMari, T.; Henderson, J.; Maden, M.; Nevitt, S.; Duarte, R. & Fallon, N.: , 2021; Systematic review of the effectiveness of machine learning algorithms for classifying pain intensity, phenotype or treatment outcomes using electroencephalogram data; The Journal of Pain; 23; doi:10.1016/j.jpain.2021.07.011.spa
dc.relation.referencesMayor Torres, J. M.; Medina-DeVilliers, S.; Clarkson, T.; Lerner, M. D. & Riccardi, G.: , 2023; Evaluation of interpretability for deep learning algorithms in eeg emotion recognition: A case study in autism; Artificial Intelligence in Medicine; 143: 102545; doi:https://doi.org/10.1016/j.artmed.2023.102545; URL https://www.sciencedirect.com/science/article/pii/S0933365723000593spa
dc.relation.referencesMelzack, R.; Casey, K. L. et al.: , 1968; Sensory, motivational, and central control determinants of pain: a new conceptual model; The skin senses; 1: 423–43spa
dc.relation.referencesMeng, J.; Zhao, Y.; Wang, K.; Sun, J.; Yi, W.; Xu, F.; Xu, M. & Ming, D.: , 2023; Rhythmic temporal prediction enhances neural representations of movement intention for brain–computer interface; Journal of Neural Engineering; 20 (6): 066004spa
dc.relation.referencesMiao, M.; Hu, W.; Yin, H. & Zhang, K.: , 2020; Spatial-frequency feature learning and classification of motor imagery eeg based on deep convolution neural network; Computational and mathematical methods in medicine; 2020spa
dc.relation.referencesMiotto, R.; Wang, F.; Wang, S.; Jiang, X. & Dudley, J. T.: , 2018; Deep learning for healthcare: review, opportunities and challenges; Briefings in bioinformatics; 19 (6): 1236–1246spa
dc.relation.referencesModares-Haghighi, P.; Boostani, R.; Nami, M. & Sanei, S.: , 2021; Quantification of pain severity using eeg-based functional connectivity; Biomedical Signal Processing and Control; 69: 102840; doi:https://doi.org/10.1016/j.bspc.2021.102840; URL https://www.sciencedirect.com/science/article/pii/S1746809421004377spa
dc.relation.referencesMumtaz, W.; Rasheed, S. & Irfan, A.: , 2021; Review of challenges associated with the eeg artifact removal methods; Biomedical Signal Processing and Control; 68: 102741; doi:https://doi.org/10.1016/j.bspc.2021.102741; URL https://www.sciencedirect.com/science/article/pii/S1746809421003384spa
dc.relation.referencesMungoven, T. J.; Henderson, L. A. & Meylakh, N.: , 2021; Chronic migraine pathophysiology and treatment: A review of current perspectives; Frontiers in Pain Research; 2; doi:10.3389/fpain.2021.705276; URL https://www.frontiersin.org/journals/pain-research/articles/10.3389/fpain.2021.705276spa
dc.relation.referencesMusallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin, S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri, M.: , 2021; Electroencephalography-based motor imagery classification using temporal convolutional network fusion; Biomedical Signal Processing and Control ; 69: 102826;doi:https://doi.org/10.1016/j.bspc.2021.102826; URL https://www.sciencedirect.com/science/article/pii/S1746809421004237spa
dc.relation.referencesNezam, T.; Boostani, R.; Abootalebi, V. & Rastegar, K.: , 2021; A novel classification strategy to distinguish five levels of pain using the eeg signal features; IEEE Transactions on Affective Computing; 12 (1): 131–140; doi:10.1109/TAFFC.2018.2851236spa
dc.relation.referencesNicolas-Alonso, L. F. & Gomez-Gil, J.: , 2012; Brain computer interfaces, a review; sensors; 12 (2): 1211–1279spa
dc.relation.referencesNunez, P. L. & Srinivasan, R.: , 2006; Electric Fields of the Brain: The Neurophysics of EEG; Oxford University Press; doi:10.1093/acprof:oso/9780195050387.001.0001spa
dc.relation.referencesOkolo C, O. A.: , 2018; Use of dry electroencephalogram and support vector for objective pain assessment; Biomed Instrum Technol ; doi:10.2345/0899-8205-52.5.372spa
dc.relation.referencesOnishi, S.; Nishimura, M.; Fujimura, R. & Hayashi, Y.: , 2024; Why do tree ensemble approximators not outperform the recursive-rule extraction algorithm?; Machine Learning and Knowledge Extraction; 6 (1): 658–678; doi:10.3390/make6010031; URL https://www.mdpi.com/2504-4990/6/1/31spa
dc.relation.referencesPark, S.-H.; Lee, D. & Lee, S.-G.: , 2017; Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 498–505spa
dc.relation.referencesPark, S. M.; Jeong, B.; Oh, D. Y.; Choi, C.-H.; Jung, H. Y.; Lee, J.-Y.; Lee, D. & Choi, J.-S.: , 2021; Identification of major psychiatric disorders from resting-state electroencephalography using a machine learning approach; Frontiers in Psychiatry; 12; doi:10.3389/fpsyt.2021.707581; URL https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2021.707581spa
dc.relation.referencesPaschali, M.; Lazaridou, A. & Edwards, R. R.: , 2020; Clinical and Research Tools for Pain Assessment; Springer International Publishing, Cham; ISBN 978-3-030-27447-4; págs. 55–65; doi:10.1007/978-3-030-27447-4_6; URL https://doi.org/10.1007/978-3-030-27447-4_6spa
dc.relation.referencesPawan & Dhiman, R.: , 2023; Machine learning techniques for electroencephalogram based brain-computer interface: A systematic literature review; Measurement: Sensors; 28: 100823; doi:https://doi.org/10.1016/j.measen.2023.100823; URL https://www.sciencedirect.com/science/article/pii/S2665917423001599spa
dc.relation.referencesPloner M, Sorg C, G. J.: , 2017; Brain rhythms of pain; Trends Cogn Scispa
dc.relation.referencesPulgarin-Giraldo, J. D.; Ruales-Torres, A.; Álvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2017; Relevant kinematic feature selection to support human action recognition in mocap data; en Biomedical Applications Based on Natural and Artificial Computing: International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, June 19-23, 2017, Proceedings, Part II ; Springer; págs. 501–509spa
dc.relation.referencesPérez-Velasco, S.; Santamaría-Vázquez, E.; Martínez-Cagigal, V.; Marcos-Martínez, D. & Hornero, R.: , 2022; Eegsym: Overcoming inter-subject variability in motor imagery based bcis with deep learning; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 1766–1775; doi:10.1109/TNSRE.2022.3186442spa
dc.relation.referencesRaeisi, K.; Khazaei, M.; Croce, P.; Tamburro, G.; Comani, S. & Zappasodi, F.: , 2022; A graph convolutional neural network for the automated detection of seizures in the neonatal eeg; Computer methods and programs in biomedicine; 222: 106950.spa
dc.relation.referencesRahman, A. A.; Faisal, F.; Nishat, M. M.; Siraji, M. I.; Khalid, L. I.; Khan, M. R. H. & Reza, M. T.: , 2021; Detection of epileptic seizure from eeg signal data by employing machine learning algorithms with hyperparameter optimization; en 2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART); págs. 1–4; doi:10.1109/BioSMART54244.2021.9677770spa
dc.relation.referencesRakhmatulin, I.; Dao, M.-S.; Nassibi, A. & Mandic, D.: , 2024; Exploring convolutional neural network architectures for eeg feature extraction; Sensors; 24 (3); doi:10.3390/s24030877; URL https://www.mdpi.com/1424-8220/24/3/877spa
dc.relation.referencesRockholt, M. M.; Kenefati, G.; Doan, L. V.; Chen, Z. S. & Wang, J.: , 2023; In search of a composite biomarker for chronic pain by way of eeg and machine learning: where do we currently stand?; Frontiers in Neuroscience;17; doi:10.3389/fnins.2023.1186418; URL https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1186418spa
dc.relation.referencesRodrigues, P.; Neto, A.; Sato, J.; Soriano, D. & Nasuto, S.:, 2022; Single-Trial Functional Connectivity Dynamics of Event-Related Desynchronization for Motor Imagery EEG-Based Brain-Computer Interfaces; ISBN 978-3-030-70600-5; págs. 1887–1893; doi:10.1007/978-3-030-70601-2_275spa
dc.relation.referencesRuiz-Gómez, S. J.; Hornero, R.; Poza, J.; Maturana-Candelas, A.; Pinto, N. & Gómez, C.: , 2019; Computational modeling of the effects of eeg volume conduction on functional connectivity metrics. application to alzheimer’s disease continuum; Journal of Neural Engineering; 16 (6): 066019; doi:10.1088/1741-2552/ab4024; URL https://dx.doi.org/10.1088/1741-2552/ab4024spa
dc.relation.referencesSaengjaroentham, C.; Strother, L. C.; Dripps, I.; Sultan Jabir, M. R.; Pradhan, A.; Goadsby, P. J. & Holland, P. R.: , 2020; Differential medication overuse risk of novel anti-migraine therapeutics; Brain; 143 (9): 2681–2688; doi:10.1093/brain/awaa211; URL https://doi.org/10.1093/brain/awaa211spa
dc.relation.referencesSaha, S. & Baumert, M.: , 2020; Intra- and inter-subject variability in eeg-based sensorimotor brain computer interface: A review; Frontiers in Computational Neuroscience; 13; doi:10.3389/fncom.2019.00087; URL https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2019.00087spa
dc.relation.referencesSazgar, M. & Young, M. G.: , 2019; EEG Artifacts; Springer International Publishing, Cham; ISBN 978-3-030-03511-2; págs. 149–162; doi:10.1007/978-3-030-03511-2_8; URL https://doi.org/10.1007/978-3-030-03511-2_8spa
dc.relation.referencesSchirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networks for eeg decoding and visualization; Human Brain Mapping; 38 (11): 5391–5420; doi:https://doi.org/10.1002/hbm.23730; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730spa
dc.relation.referencesSchulz E, Zherdin A, T. L. P. C. P. M.: , 2012; Decoding an individual’s sensitivity to pain from the multivariate analysis of eeg data; Cereb Cortex ; doi:10.1093/cercor/bhr186spa
dc.relation.referencesSelvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D. & Batra, D.: , 2019; Grad-cam: Visual explanations from deep networks via gradient-based localization; International Journal of Computer Vision;128 (2): 336–359; doi:10.1007/s11263-019-01228-7; URL http://dx.doi.org/10.1007/s11263-019-01228-7spa
dc.relation.referencesSen, D.; Mishra, B. B. & Pattnaik, P. K.: , 2023; A review of the filtering techniques used in eeg signal processing; en 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI); págs. 270–277; doi:10.1109/ICOEI56765.2023.10125857spa
dc.relation.referencesShoeibi, A.; Sadeghi, D.; Moridian, P.; Ghassemi, N.; Heras, J.; Alizadehsani, R.; Khadem, A.; Kong, Y.; Nahavandi, S.; Zhang, Y.- D. & Gorriz, J. M.: , 2021; Automatic diagnosis of schizophrenia in eeg signals using cnn-lstm models; Frontiers in Neuroinformatics; 15; doi:10.3389/fninf.2021.777977; URL https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2021.777977spa
dc.relation.referencesSi, Y.; Li, F.; Duan, K.; Tao, Q.; Li, C.; Cao, Z.; Zhang, Y.;Biswal, B.; Li, P.; Yao, D. & Xu, P.: , 2020; Predicting individual decision-making responses based on single-trial eeg; NeuroImage; 206: 116333; doi:https://doi.org/10.1016/j.neuroimage.2019.116333; URL https://www.sciencedirect.com/science/article/pii/S1053811919309243spa
dc.relation.referencesStˇastný, J.; Sovka, P. & Kostilek, M.: , 2014; Overcoming inter-subject variability in bci using eeg-based identification; Radioengineering; 23: 266–273spa
dc.relation.referencesSubasi, A.; Ahmed, A.; Alickovic, E. & Hassan, A. R.: , 2019; Effect of photic stimulation for migraine detection using random forest and discrete wavelet transform; Biomedical Signal Processing and Control; 49: 231–239; doi:10.1016/j.bspc.2018.12.011spa
dc.relation.referencesTeel, E. F.; Ocay, D. D.; Blain-Moraes, S. & Ferland, C. E.: , 2022; Accurate classification of pain experiences using wearable electroencephalography in adolescents with and without chronic musculoskeletal pain; Frontiers in Pain Research;3; doi:10.3389/fpain.2022.991793; URL https://www.frontiersin.org/journals/pain-research/articles/10.3389/fpain.2022.991793spa
dc.relation.referencesTibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Clas- sification of motor imagery eeg using deep learning increases performance in ineffi- cient bci users; PLOS ONE ; 17 (7): 1–18; doi:10.1371/journal.pone.0268880; URL https://doi.org/10.1371/journal.pone.0268880spa
dc.relation.referencesTiemann, L.; Hohn, V. & Ploner, M.: , 2024; Brain mediators of pain; URL osf.io/bsv86spa
dc.relation.referencesTobón-Henao, M.; Álvarez Meza, A. M. & Castellanos- Dominguez, C. G.: , 2023; Kernel-based regularized eegnet using centered alignment and gaussian connectivity for motor imagery discrimination; Computers; 12 (7); doi: 10.3390/computers12070145; URL https://www.mdpi.com/2073-431X/12/7/145spa
dc.relation.referencesTu Y, Tan A, B. Y. H. Y. Z. Z.: , 2016; Decoding subjective intensity of nociceptive pain from pre-stimulus and post-stimulus brain activities; Front Comput Neurosci; doi:10.3389/fncom.2016.00032spa
dc.relation.referencesvan der Miesen, M.; Lindquist, M. & Wager, T.: , 2019; Neuroimaging-based biomarkers for pain: State of the field and current directions; PAIN Reports; 4: e751; doi:10.1097/PR9.0000000000000751spa
dc.relation.referencesVivaldi, N.; Caiola, M.; Solarana, K. & Ye, M.: , 2021; Evaluating performance of eeg data-driven machine learning for traumatic brain injury classification; IEEE Transactions on Biomedical Engineering; 68 (11): 3205–3216; doi:10.1109/ TBME.2021.3062502spa
dc.relation.referencesVoytek, B. & Knight, R. T.: , 2015; Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease; Biological Psychiatry; 77 (12): 1089–1097; doi:https://doi.org/10.1016/ j.biopsych.2015.04.016; URL https://www.sciencedirect.com/science/article/ pii/S0006322315003546; cortical Oscillations for Cognitive/Circuit Dysfunction in Psychiatric Disordersspa
dc.relation.referencesWagemakers SH, van der Velden JM, G. A. H.-K. A. v. D. J. V. J.: , 2019; A systematic review of devices and techniques that objectively measure patients’ pain; Pain Physicianspa
dc.relation.referencesWu, F.; Mai, W.; Tang, Y.; Liu, Q.; Chen, J. & Guo, Z.: , 2022; Learning spatial-spectral-temporal eeg representations with deep attentive- recurrent-convolutional neural networks for pain intensity assessment; Neuroscience; 481: 144–155; doi:https://doi.org/10.1016/j.neuroscience.2021.11.034; URL https: //www.sciencedirect.com/science/article/pii/S0306452221006011spa
dc.relation.referencesYasoda, K.; Ponmagal, R. S.; Bhuvaneshwari, K. S. & Venkat- achalam, K.: , 2020; Automatic detection and classification of eeg artifacts using fuzzy kernel svm and wavelet ica (wica); Soft Comput.; 24 (21): 16011–16019; doi:10. 1007/s00500-020-04920-w; URL https://doi.org/10.1007/s00500-020-04920-wspa
dc.relation.referencesYu, M.; Sun, Y.; Zhu, B.; Zhu, L.; Lin, Y.; Tang, X.; Guo, Y.; Sun, G. & Dong, M.: , 2020; Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using eeg; Neurocomputing; 378: 270–282; doi: https://doi.org/10.1016/j.neucom.2019.10.023; URL https://www.sciencedirect. com/science/article/pii/S0925231219313980spa
dc.relation.referencesZhang, A.; Lipton, Z. C.; Li, M. & Smola, A. J.: , 2021a; Dive into deep learning; arXiv preprint arXiv:2106.11342spa
dc.relation.referencesZhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021b; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10spa
dc.relation.referencesZhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021b; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10spa
dc.relation.referencesZhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021b; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10spa
dc.relation.referencesZhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021b; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10spa
dc.relation.referencesZhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A. & Torralba, A.: , 2016; Learning deep features for discriminative localization; en 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); págs. 2921–2929; doi:10.1109/CVPR.2016.319spa
dc.relation.referencesZhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A. & Torralba, A.: , 2016; Learning deep features for discriminative localization; en 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); págs. 2921–2929; doi:10.1109/CVPR.2016.319spa
dc.relation.referencesZis P, Liampas A, A. A. T. G. N. P. U. Z. K. V. H. G. V. G. Z. Y. S. P.: , 2022; Eeg recordings as biomarkers of pain perception: Where do we stand and where to go?; Pain Ther ; doi:10.1007/s40122-022-00372-2.spa
dc.relation.referencesZoumpourlis, G. & Patras, I.: , 2022; Covmix: Covariance mixing regularization for motor imagery decoding; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–7spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalDolorspa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalConectividad funcionalspa
dc.subject.proposalVariabilidad inter sujetospa
dc.subject.proposalInterpretabilidadspa
dc.subject.proposalPaineng
dc.subject.proposalNeural networkseng
dc.subject.proposalFunctional connectivityeng
dc.subject.proposalInter-subject variabilityeng
dc.subject.proposalInterpretabilityeng
dc.subject.unescoNeurobiologíaspa
dc.subject.unescoNeurobiologyeng
dc.subject.unescoInteligencia artificialspa
dc.subject.unescoArtificial intelligenceeng
dc.subject.unescoNeurotecnologíaspa
dc.subject.unescoNeurotechnologyeng
dc.titleEEG-based pain detection using gaussian functional connectivity and shallow deep learning with preserved interpretabilityeng
dc.title.translatedDetección del dolor basada en EEG utilizando conectividad funcional gaussiana y aprendizaje profundo superficial con interpretabilidad preservadaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1007286825.2025.pdf
Tamaño:
10.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: