EEG-based pain detection using gaussian functional connectivity and shallow deep learning with preserved interpretability
dc.contributor.advisor | Álvarez Meza, Andrés Marino | |
dc.contributor.advisor | Castellanos Domínguez, César Germán | |
dc.contributor.author | Buitrago Osorio, Santiago | |
dc.contributor.orcid | Buitrago Osorio, Santiago [0009000924124570] | spa |
dc.contributor.researchgroup | Grupo de Control y Procesamiento Digital de Señales | spa |
dc.date.accessioned | 2025-04-08T15:52:30Z | |
dc.date.available | 2025-04-08T15:52:30Z | |
dc.date.issued | 2024 | |
dc.description | graficas, ilustraciones, tablas | spa |
dc.description.abstract | This thesis presents an innovative approach for EEG-based pain classification, addressing the persistent challenge of intra and inter-subject variability. Leveraging Gaussian Functional Connectivity and shallow deep learning models, the study introduces a kernel-based functional connectivity method for single-trial pain classification. The proposed model optimizes spatio- temporal-frequency patterns through a cross-spectral distribution estimator, utilizing the universal approximation properties of the Gaussian kernel to improve feature extraction. This approach is designed to enhance interpretability, making it particularly suitable for brain-machine interface applications. The research also explores multi-modal analysis, incorporating demographic stratification techniques based on factors such as gender, age, and training performance. These strategies significantly improve the model’s generalization ability, yielding competitive performance metrics such as accuracy and AUC scores, while maintaining a high level of transparency in the decision-making process. By integrating frequency band filtering and advanced techniques like Grad-CAM++, the study provides deeper insights into the neural correlates of pain, bridging the gap between model performance and interpretability. Through extensive validation using EEG databases, the results demonstrate that the proposed methods outperform state-of-the-art models like EEGNet, offering superior classification accuracy across diverse subject groups. The findings of this research contribute to both the development of more effective pain assessment methodologies and the advancement of transparent deep learning models in clinical neurotechnology (Texto tomado de la fuente). | eng |
dc.description.abstract | Esta tesis presenta un enfoque innovador para la clasificación del dolor basado en EEG, abordando el persistente desafío de la variabilidad intra e intersujeto. Aprovechando la Conectividad Funcional Gaussiana y modelos de aprendizaje profundo poco profundos, el estudio introduce un método de conectividad funcional basado en núcleos para la clasificación del dolor en ensayos individuales. El modelo propuesto optimiza los patrones espaciotemporales-frecuenciales a través de un estimador de distribución cruzada espectral, utilizando las propiedades de aproximación universal del núcleo gaussiano para mejorar la extracción de características. Este enfoque está diseñado para mejorar la interpretabilidad, lo que lo hace particularmente adecuado para aplicaciones de interfaz cerebro-máquina. La investigación también explora el análisis multimodal, incorporando técnicas de estratificación demográfica basadas en factores como género, edad y rendimiento en entrenamientos. Estas estrategias mejoran significativamente la capacidad de generalización del modelo, logrando métricas de rendimiento competitivas como la precisión y las puntuaciones AUC, mientras se mantiene un alto nivel de transparencia en el proceso de toma de decisiones. Al integrar el filtrado de bandas de frecuencia y técnicas avanzadas como Grad-CAM++, el estudio proporciona una comprensión más profunda de los correlatos neurales del dolor, cerrando la brecha entre el rendimiento del modelo y la interpretabilidad. A través de una validación extensa utilizando bases de datos de EEG, los resultados demuestran que los métodos propuestos superan a modelos de última generación como EEGNet, ofreciendo una precisión de clasificación superior en diversos grupos de sujetos. Los hallazgosde esta investigación contribuyen tanto al desarrollo de metodologías de evaluación del dolor más efectivas como al avance de modelos de aprendizaje profundo transparentes en neurotecnología clínica. | spa |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.description.researcharea | Inteligencia Artificial | spa |
dc.format.extent | xiii, 81 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87892 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | Abiri, R.; Borhani, S.; Sellers, E. W.; Jiang, Y. & Zhao, X.:, 2019; A comprehensive review of eeg-based brain–computer interface paradigms; Journal of neural engineering; 16 (1): 011001 | spa |
dc.relation.references | Afrasiabi, S.; Boostani, R.; Masnadi-Shirazi, M. A. & Nezam,T.: , 2021; An eeg based hierarchical classification strategy to differentiate fiveintensities of pain; Expert Systems with Applications; 180: 115010; doi:https://doi.org/10.1016/j.eswa.2021.115010; URL https://www.sciencedirect.com/science/article/pii/S0957417421004516. | spa |
dc.relation.references | Al-Fahoum, A. S. & Al-Fraihat, A. A.: , 2014; Methods of eeg signal features extraction using linear analysis in frequency and time-frequency domains; International Scholarly Research Notices; 2014 (1): 730218; doi:https://doi.org/10.1155/2014/730218; URL https://onlinelibrary.wiley.com/doi/abs/10.1155/2014/730218. | spa |
dc.relation.references | Alazrai, R.; Momani, M.; Khudair, H. A. & Daoud, M. I.: ,2017; Eeg-based tonic cold pain recognition system using wavelet transform; Neural Computing and Applications; 31: 3187 – 3200; URL https://api.semanticscholar.org/CorpusID:254025217. | spa |
dc.relation.references | Alstadhaug KB, Ofte HK, K. E.: , 2017; Preventing and treating medication overuse headache; Pain Rep; doi:10.1097/PR9.0000000000000612 | spa |
dc.relation.references | Amin, S. U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M. A. & Hossain, M. S.: , 2019; Deep learning for eeg motor imagery classification based on multi-layer cnns feature fusion; Future Generation computer systems; 101: 542–554. | spa |
dc.relation.references | Ang, K. K.; Chin, Z. Y.; Zhang, H. & Guan, C.: , 2008; Filter bank common spatial pattern (fbcsp) in brain-computer interface; en 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence); págs. 2390–2397; doi:10.1109/IJCNN.2008.4634130. | spa |
dc.relation.references | Babiloni F, A. L.: , 2014; Social neuroscience and hyperscanning techniques: past, present and future; Neurosci Biobehav Rev ; doi:10.1016/j.neubiorev.2012.07.006 | spa |
dc.relation.references | Bai Y, Huang G, T. Y. T. A. H. Y. Z. Z.: , 2016; Normalization of pain-evoked neural responses using spontaneous eeg improves the performance of eeg-based cross-individual pain prediction; Front Comput Neurosci; doi:10.3389/fncom.2016.00031. | spa |
dc.relation.references | Baliki, M. N. & Apkarian, A. V.: , 2015; Nociception, pain, negative moods, and behavior selection; Neuron; 87 (3): 474–491. | spa |
dc.relation.references | Bang, J.-S. & Lee, S.-W.: , 2022; Interpretable convolutional neural networks for subject-independent motor imagery classification; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5. | spa |
dc.relation.references | Baroni, A.; Severini, G.; Straudi, S.; Buja, S.; Borsato, S. & Basaglia, N.: , 2020; Hyperalgesia and central sensitization in subjects with chronic orofacial pain: Analysis of pain thresholds and eeg biomarkers; Frontiers in Neuroscience; 14; doi:10.3389/fnins.2020.552650; URL https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.552650. | spa |
dc.relation.references | Bastos, A. M. & Schoffelen, J.-M.: , 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls; Frontiers in Systems Neuroscience; 9; doi:10.3389/fnsys.2015.00175; URL https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2015.00175. | spa |
dc.relation.references | Bejani, M. M. & Ghatee, M.: , 2021; A systematic review on overfitting control in shallow and deep neural networks; Artificial Intelligence Review ;54 (8): 6391–6438 | spa |
dc.relation.references | Bhardwaj, H.; Tomar, P.; Sakalle, A. & Ibrahim, W.: , 2021; Eeg-based personality prediction using fast fourier transform and deeplstm model; Computational Intelligence and Neuroscience; 2021 (1): 6524858. | spa |
dc.relation.references | Bishop, C. M.: , 2006; Pattern recognition and machine learning; springer | spa |
dc.relation.references | Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M. & Muller, K.-r.: , 2008; Optimizing spatial filters for robust eeg single-trial analysis; IEEE Signal Processing Magazine; 25 (1): 41–56; doi:10.1109/MSP.2008.4408441. | spa |
dc.relation.references | Bochner, S.: , 2020; Harmonic analysis and the theory of probability; University of California press. | spa |
dc.relation.references | Boonyakitanont, P.; Lek-uthai, A.; Chomtho, K. & Songsiri, J.: , 2020; A review of feature extraction and performance evaluation in epileptic seizure detection using eeg; Biomedical Signal Processing and Control; 57: 101702; doi:https://doi.org/10.1016/j.bspc.2019.101702; URL https://www.sciencedirect.com/science/article/pii/S1746809419302836 | spa |
dc.relation.references | Brunner, C.; Billinger, M.; Seeber, M.; Mullen, T. R. & Makeig, S.: , 2016; Volume conduction influences scalp-based connectivity estimates; Frontiers in Computational Neuroscience; 10; doi:10.3389/fncom.2016.00121; URL https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2016.00121 | spa |
dc.relation.references | Cai, Q.; Gong, W.; Deng, Y. & Wang, H.: , 2021; Single-trial EEG classification via common spatial patterns with mixed lp-and lq-norms; Mathematical Problems in Engineering; 2021 | spa |
dc.relation.references | Calati, R.; Bakhiyi, C. L.; Artero, S.; Ilgen, M. & Courtet, P.: , 2015; The impact of physical pain on suicidal thoughts and behaviors: Meta-analyses; Journal of psychiatric research; 71: 16–32 | spa |
dc.relation.references | Cao, J.; Zhao, Y.; Shan, X.; Wei, H.-l.; Guo, Y.; Chen, L.; Erkoyuncu, J. A. & Sarrigiannis, P. G.: , 2022; Brain functional and effective connectivity based on electroencephalography recordings: A review; Human Brain Mapping; 43 (2): 860–879; doi:https://doi.org/10.1002/hbm.25683; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25683 | spa |
dc.relation.references | Cárdenas-Peña, D.; Collazos-Huertas, D. & Castellanos-Dominguez, G.: , 2017; Enhanced data representation by kernel metric learning for dementia diagnosis; Frontiers in neuroscience; 11: 413 | spa |
dc.relation.references | Cascella, M.; Schiavo, D.; Cuomo, A.; Ottaiano, A.; Perri, F.; Patrone, R.; Migliarelli, S.; Bignami, E. G.; Vittori, A. & Cutugno, F.:, 2023; Artificial intelligence for automatic pain assessment: research methods and perspectives; Pain Research and Management; 2023 (1): 6018736 | spa |
dc.relation.references | Chae, Y.; Park, H.-J. & Lee, I.-S.: , 2022; Pain modalities in the body and brain: Current knowledge and future perspectives; Neuroscience Biobehavioral Reviews; 139: 104744; doi:https://doi.org/10.1016/j.neubiorev.2022.104744; URL https://www.sciencedirect.com/science/article/pii/S0149763422002330 | spa |
dc.relation.references | Chakravarthi, B.; Ng, S.-C.; Ezilarasan, M. R. & Leung, M.-F.: , 2022; Eeg-based emotion recognition using hybrid cnn and lstm classification; Frontiers in Computational Neuroscience; 16; doi:10.3389/fncom.2022.1019776; URL https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2022.1019776 | spa |
dc.relation.references | Chao, H. & Liu, Y.: , 2020; Emotion recognition from multi-channel eeg signals by exploiting the deep belief-conditional random field framework; IEEE Access; 8: 33002–33012; doi:10.1109/ACCESS.2020.2974009. | spa |
dc.relation.references | Chattopadhay, A.; Sarkar, A.; Howlader, P. & Bala-subramanian, V. N.: , 2018; Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks; en 2018 IEEE Winter Conference on Applications of Computer Vision (WACV); IEEE; doi:10.1109/wacv.2018.00097; URL http://dx.doi.org/10.1109/WACV.2018.00097 | spa |
dc.relation.references | Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L. & Mesin, L.: , 2023; Connectivity analysis in eeg data: A tutorial review of the state of the art and emerging trends; Bioengineering; 10 (3); doi:10.3390/bioengineering10030372; URL https://www.mdpi.com/2306-5354/10/3/372. | spa |
dc.relation.references | Chowdary, M. K.; Anitha, J. & Hemanth, D. J.: , 2022; Emotion recognition from eeg signals using recurrent neural networks; Electronics; 11 (15): 2387 | spa |
dc.relation.references | Christoph, M.: , 2020; Interpretable machine learning: A guide for making black box models explainable; Leanpub | spa |
dc.relation.references | Cohen, J.: , 1960; A coefficient of agreement for nominal scales; Educational and Psychological Measurement; 20 (1): 37–46; doi:10.1177/001316446002000104; URL https://doi.org/10.1177/001316446002000104 | spa |
dc.relation.references | Cohen, L.: , 1998; The generalization of the wiener-khinchin theorem; en Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), tomo 3; IEEE; págs. 1577–1580. | spa |
dc.relation.references | Collazos-Huertas, D.; Cárdenas-Peña, D. & Castellanos-Dominguez, G.: , 2019; Instance-based representation using multiple kernel learning for predicting conversion to alzheimer disease; International journal of neural systems; 29 (02): 1850042 | spa |
dc.relation.references | Deepa, B. & Ramesh, K.: , 2022; Epileptic seizure detection using deep learning through min max scaler normalization; International journal of health sciences; 6 (S1): 10981–10996; doi:10.53730/ijhs.v6nS1.7801; URL https://sciencescholar.us/journal/index.php/ijhs/article/view/7801 | spa |
dc.relation.references | Demir, A.; Koike-Akino, T.; Wang, Y. & Erdoğmuş, D.: , 2022; Eeg-gat: graph attention networks for classification of electroencephalogram (eeg) signals; en 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–35 | spa |
dc.relation.references | Deng, Y.; Li, Z.; Wang, H.; Lu, X. & Fan, H.: , 2020; Local temporal joint recurrence common spatial patterns for MI-based BCI; en 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), tomo 1; IEEE; págs. 813–816 | spa |
dc.relation.references | Dydyk, A. M. & Grandhe, S.: , 2024; Pain Assessment; StatPearls Publishing, Treasure Island, FL; URL https://www.ncbi.nlm.nih.gov/books/NBK556098/; pMID: 32310558 | spa |
dc.relation.references | Elsayed, M.; Sim, K. S. & Tan, S. C.: , 2020; A novel approach to objectively quantify the subjective perception of pain through electroencephalogram signal analysis; IEEE Access; 8: 199920–199930; doi:10.1109/ACCESS.2020.3032153 | spa |
dc.relation.references | Fauzi, H.; Azzam, M. A.; Shapiai, M. I.; Kyoso, M.; Khairuddin, U. & Komura, T.: , 2019; Energy extraction method for EEG channel selection; Telkomnika; 17 (5): 2561–2571 | spa |
dc.relation.references | Fawcett, T.: , 2006; An introduction to roc analysis; Pattern Recognition Letters; 27 (8): 861–874; doi:https://doi.org/10.1016/j.patrec.2005.10.010; URL https://www.sciencedirect.com/science/article/pii/S016786550500303X; rOC Analysis in Pattern Recognition | spa |
dc.relation.references | Fillingim, R.: , 2016; Individual differences in pain: Understanding the mosaic that makes pain personal; PAIN ; 158: 1; doi:10.1097/j.pain.0000000000000775 | spa |
dc.relation.references | Fillingim, R. B.; King, C. D.; Ribeiro-Dasilva, M. C.; Rahim-Williams, B. & Riley, J. L.: , 2009; Sex, gender, and pain: A review of recent clinical and experimental findings; The Journal of Pain; 10 (5): 447–485; doi:https://doi.org/10.1016/j.jpain.2008.12.001; URL https://www.sciencedirect.com/science/article/pii/S1526590008009097 | spa |
dc.relation.references | Gao, H.; Wang, X.; Chen, Z.; Wu, M.; Cai, Z.; Zhao, L.; Li, J. & Liu, C.: , 2024; Graph convolutional network with connectivity uncertainty for eeg-based emotion recognition; IEEE Journal of Biomedical and Health Informatics | spa |
dc.relation.references | García-Murillo, D. G.; Álvarez Meza, A. M. & Castellanos-Dominguez, C. G.: , 2023; Kcs-fcnet: Kernel cross-spectral functional connectivity network for eeg-based motor imagery classification; Diagnostics; 13 (6); doi:10.3390/diagnostics13061122; URL https://www.mdpi.com/2075-4418/13/6/1122 | spa |
dc.relation.references | Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. B. & Wang, H.: , 2021; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9 | spa |
dc.relation.references | Géron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow ; " O’Reilly Media, Inc." | spa |
dc.relation.references | Girard-Tremblay, L.; Auclair, V.; Daigle, K.; Léonard, G.; Whittingstall, K. & Goffaux, P.: , 2014; Sex differences in the neural representation of pain unpleasantness; The Journal of Pain; 15 (8): 867–877; doi:https://doi.org/10.1016/j.jpain.2014.05.004; URL https://www.sciencedirect.com/science/article/pii/S1526590014007378 | spa |
dc.relation.references | Goadsby PJ, Holland PR, M.-O. M. H. J. S. C. A. S.: , 2017; Pathophysiology of migraine: A disorder of sensory processing; Physiol Rev ; doi:10.1152/physrev.00034.2015. | spa |
dc.relation.references | Gu, X.; Cao, Z.; Jolfaei, A.; Xu, P.; Wu, D.; Jung, T.-P. & Lin, C.-T.: , 2021; Eeg-based brain-computer interfaces (bcis): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications; IEEE/ACM transactions on computational biology and bioinformatics;18 (5): 1645–1666 | spa |
dc.relation.references | Guggisberg, A.; Dalal, S.; Findlay, A. & Nagarajan, S.: , 2008; High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making; Frontiers in Human Neuroscience; 2; doi:10.3389/neuro.09.014.2007; URL https://www.frontiersin.org/articles/10.3389/neuro.09.014.2007 | spa |
dc.relation.references | Gunawardena, R.; Sarrigiannis, P. G.; Blackburn, D. J. & He, F.: , 2023; Kernel-based nonlinear manifold learning for eeg-based functional connectivity analysis and channel selection with application to alzheimer’s disease; Neuroscience | spa |
dc.relation.references | Hassan, F.; Hussain, S. F. & Qaisar, S. M.: , 2023; Fusion of multivariate eeg signals for schizophrenia detection using cnn and machine learning techniques; Information Fusion; 92: 466–478; doi:https://doi.org/10.1016/j.inffus.2022.12.019; URL https://www.sciencedirect.com/science/article/pii/S1566253522002676 | spa |
dc.relation.references | Hata, M.; Kazui, H.; Tanaka, T.; Ishii, R.; Canuet, L.; Pascual-Marqui, R. D.; Aoki, Y.; Ikeda, S.; Kanemoto, H.; Yoshiyama, K.; Iwase, M. & Takeda, M.: , 2016; Functional connectivity assessed by resting state eeg correlates with cognitive decline of alzheimer’s disease – an eloreta study; Clinical Neurophysiology;127 (2): 1269–1278; doi:https://doi.org/10.1016/j.clinph.2015.10.030; URL https://www.sciencedirect.com/science/article/pii/S1388245715009839 | spa |
dc.relation.references | Hong, Q.; Wang, Y.; Li, H.; Zhao, Y.; Guo, W. & Wang, X.: , 2021; Probing filters to interpret cnn semantic configurations by occlusion; en Data Science: 7th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2021, Taiyuan, China, September 17–20, 2021, Proceedings,Part II 7 ; Springer; págs. 103–115 | spa |
dc.relation.references | Hu, L. & Zhang, Z.: , 2019; EEG Signal Processing and Feature Extraction; ISBN 978-981-13-9112-5; doi:10.1007/978-981-13-9113-2 | spa |
dc.relation.references | Huang, G.; Zhao, Z.; Zhang, S.; Hu, Z.; Fan, J.; Fu, M.; Chen, J.; Xiao, Y.; Wang, J. & Dan, G.: , 2023; Discrepancy between inter- and intra-subject variability in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectives; Frontiers in Neuroscience; 17; doi:10.3389/fnins.2023.1122661; URL https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1122661 | spa |
dc.relation.references | Hutchison, R. M.; Womelsdorf, T.; Allen, E. A.; Bandettini, P. A.; Calhoun, V. D.; Corbetta, M.; Della Penna, S.; Duyn, J. H.; Glover, G. H.; Gonzalez-Castillo, J.; Handwerker, D. A.; Keilholz, S.; Kiviniemi, V.; Leopold, D. A.; de Pasquale, F.; Sporns, O.; Walter, M. & Chang, C.: , 2013; Dynamic functional connectivity: Promise, issues, and interpretations; NeuroImage;80: 360–378; doi:https://doi.org/10.1016/j.neuroimage.2013.05.079; URL https://www.sciencedirect.com/science/article/pii/S105381191300579X; mapping the Connectome | spa |
dc.relation.references | Islam MK, Rastegarnia A, Y. Z.: , 2016; Methods for artifact detection and removal from scalp eeg: A review; Neurophysiol Clin; doi:10.1016/j.neucli.2016.07.002. | spa |
dc.relation.references | Iyer, A.; Das, S. S.; Teotia, R.; Maheshwari, S. & Sharma, R.: , 2022; Cnn and lstm based ensemble learning for human emotion recognition using eeg recordings; Multimedia Tools and Applications; doi:10.1007/s11042-022-12310-7 | spa |
dc.relation.references | Jiang, P.-T.; Zhang, C.-B.; Hou, Q.; Cheng, M.-M. & Wei, Y.: , 2021; Layercam: Exploring hierarchical class activation maps for localization; IEEE Transactions on Image Processing; 30: 5875–5888 | spa |
dc.relation.references | Ju, C. & Guan, C.: , 2023; Graph neural networks on spd manifolds for motor imagery classification: A perspective from the time–frequency analysis; IEEE Transactions on Neural Networks and Learning Systems | spa |
dc.relation.references | Khare, S. K.; Bajaj, V. & Acharya, U. R.: , 2021; Spwvd-cnn for automated detection of schizophrenia patients using eeg signals; IEEE Transactions on Instrumentation and Measurement; 70: 1–9; doi:10.1109/TIM.2021.3070608 | spa |
dc.relation.references | Kimura A, Mitsukura Y, O. A. M. M. N. M. K. A. M. T.: , 2021; Objective characterization of hip pain levels during walking by combining quantitative electroencephalography with machine learning; Scientific Reports | spa |
dc.relation.references | Koenig, T.; Smailovic, U. & Jelic, V.: , 2020; Past, present and future eeg in the clinical workup of dementias; Psychiatry Research: Neuroimaging; 306: 111182; doi:https://doi.org/10.1016/j.pscychresns.2020.111182; URL https://www.sciencedirect.com/science/article/pii/S0925492720301542; sI: Imaging in neurodegeneration | spa |
dc.relation.references | Kohoutová, L.; Atlas, L.; Büchel, C.; Buhle, J.; Geuter, S.; Jepma, M.; Koban, L.; Krishnan, A.; Lee, D.; Lee, S.; Roy, M.; Schafer, S.; Schmidt, L.; Wager, T. & Woo, C.-W.: , 2022; Individual variability in brain representations of pain; Nature Neuroscience; 25; doi:10.1038/s41593-022-01081-x | spa |
dc.relation.references | Kristoffersen ES, L. C.: , 2014; Medication-overuse headache: a review; J Pain Res; doi:10.2147/JPR.S46071 | spa |
dc.relation.references | Kumar, S.; Sharma, A. & Tsunoda, T.: , 2019; Brain wave classification using long short-term memory network based OPTICAL predictor; Scientific reports; 9 (1): 1–13 | spa |
dc.relation.references | Lamba, K. & Rani, S.: , 2024; A novel approach of brain-computer interfacing (bci) and grad-cam based explainable artificial intelligence: Use case scenario for smart healthcare; Journal of Neuroscience Methods; 408: 110159; doi:https://doi.org/10.1016/j.jneumeth.2024.110159; URL https://www.sciencedirect.com/science/article/pii/S0165027024001043 | spa |
dc.relation.references | Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces; Journal of Neural Engineering;15 (5): 056013; doi:10.1088/1741-2552/aace8c; URL https://dx.doi.org/10.1088/1741-2552/aace8c | spa |
dc.relation.references | Li, F.; He, F.; Wang, F.; Zhang, D.; Xia, Y. & Li, X.: , 2020; A novel simplified convolutional neural network classification algorithm of motor imagery eeg signals based on deep learning; Applied Sciences; 10 (5): 1605. | spa |
dc.relation.references | Li, X.; Xiong, H.; Li, X.; Wu, X.; Zhang, X.; Liu, J.; Bian, J. & Dou, D.: , 2022; Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond; Knowledge and Information Systems; 64 (12): 3197–3234 | spa |
dc.relation.references | Li, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G. & Guo, Y.-Z.: , 2019; A channel-projection mixed-scale convolutional neural network for motor imagery eeg decoding; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (6): 1170–1180; doi:10.1109/TNSRE.2019.2915621 | spa |
dc.relation.references | Li L, Huang G, L. Q. L. J. Z. S. Z. Z.: , 2018; Magnitude and temporal variability of inter-stimulus eeg modulate the linear relationship between laser-evoked potentials and fast-pain perception; Front Neurosci; doi:10.3389/fnins.2018.00340 | spa |
dc.relation.references | Lindsay, N. M.; Chen, C.; Gilam, G.; Mackey, S. & Scherrer, G.: , 2021; Brain circuits for pain and its treatment; Science Translational Medicine; 13 (619): eabj7360; doi:10.1126/scitranslmed.abj7360; URL https://www.science.org/doi/abs/10.1126/scitranslmed.abj7360 | spa |
dc.relation.references | Liu, J.; Wu, G.; Luo, Y.; Qiu, S.; Yang, S.; Li, W. & Bi, Y.: , 2020; Eeg-based emotion classification using a deep neural network and sparse autoencoder; Frontiers in Systems Neuroscience; 14: 43 | spa |
dc.relation.references | Lopes, M.; Cassani, R. & Falk, T. H.: , 2023; Using cnn saliency maps and eeg modulation spectra for improved and more interpretable machine learning-based alzheimer’s disease diagnosis; Computational Intelligence and Neuroscience; 2023 (1): 3198066 | spa |
dc.relation.references | Luo, J.; Wang, Y.; Xia, S.; Lu, N.; Ren, X.; Shi, Z. & Hei, X.:, 2023; A shallow mirror transformer for subject-independent motor imagery bci; Computers in Biology and Medicine; 164: 107254. | spa |
dc.relation.references | Luo, T.-j.; Zhou, C.-l. & Chao, F.: , 2018; Exploring spatial-frequency sequential relationships for motor imagery classification with recurrent neural network;BMC bioinformatics; 19 (1): 1–18 | spa |
dc.relation.references | Ma, Y.; Song, Y. & Gao, F.: , 2022; A novel hybrid cnn-transformer model for eeg motor imagery classification; en 2022 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8 | spa |
dc.relation.references | Madanu, R.; Abbod, M. F.; Hsiao, F.-J.; Chen, W.-T. & Shieh, J.-S.: , 2022; Explainable ai (xai) applied in machine learning for pain modeling: A review; Technologies; 10 (3); doi:10.3390/technologies10030074; URL https://www.mdpi.com/2227-7080/10/3/74 | spa |
dc.relation.references | Maimaiti, B.; Meng, H.; Lv, Y.; Qiu, J.; Zhu, Z.; Xie, Y.; Li, Y.; Yu-Cheng; Zhao, W.; Liu, J. & Li, M.: , 2022; An overview of eeg-based machine learning methods in seizure prediction and opportunities for neurologists in this field; Neuroscience; 481: 197–218; doi:https://doi.org/10.1016/j.neuroscience.2021.11.017; URL https://www.sciencedirect.com/science/article/pii/S0306452221005765 | spa |
dc.relation.references | Maniruzzaman, M.; Shin, J.; Al Mehedi Hasan, M. & Yasumura, A.: , 2022; Efficient feature selection and machine learning based adhd detection using eeg signal; Computers, Materials and Continua; 72 (3): 5179–5195;doi:https://doi.org/10.32604/cmc.2022.028339; URL https://www.sciencedirect.com/science/article/pii/S1546221822010037 | spa |
dc.relation.references | Manpreet Kaur, Neelam Rup Prakash, P. K. & Puri, G. D.: , 2022; Electroencephalogram-based pain classification using artificial neural networks; IETE Journal of Research; 68 (3): 2312–2325; doi:10.1080/03772063.2019.1702903; URL https://doi.org/10.1080/03772063.2019.1702903 | spa |
dc.relation.references | Mari, T.; Henderson, J.; Maden, M.; Nevitt, S.; Duarte, R. & Fallon, N.: , 2021; Systematic review of the effectiveness of machine learning algorithms for classifying pain intensity, phenotype or treatment outcomes using electroencephalogram data; The Journal of Pain; 23; doi:10.1016/j.jpain.2021.07.011. | spa |
dc.relation.references | Mayor Torres, J. M.; Medina-DeVilliers, S.; Clarkson, T.; Lerner, M. D. & Riccardi, G.: , 2023; Evaluation of interpretability for deep learning algorithms in eeg emotion recognition: A case study in autism; Artificial Intelligence in Medicine; 143: 102545; doi:https://doi.org/10.1016/j.artmed.2023.102545; URL https://www.sciencedirect.com/science/article/pii/S0933365723000593 | spa |
dc.relation.references | Melzack, R.; Casey, K. L. et al.: , 1968; Sensory, motivational, and central control determinants of pain: a new conceptual model; The skin senses; 1: 423–43 | spa |
dc.relation.references | Meng, J.; Zhao, Y.; Wang, K.; Sun, J.; Yi, W.; Xu, F.; Xu, M. & Ming, D.: , 2023; Rhythmic temporal prediction enhances neural representations of movement intention for brain–computer interface; Journal of Neural Engineering; 20 (6): 066004 | spa |
dc.relation.references | Miao, M.; Hu, W.; Yin, H. & Zhang, K.: , 2020; Spatial-frequency feature learning and classification of motor imagery eeg based on deep convolution neural network; Computational and mathematical methods in medicine; 2020 | spa |
dc.relation.references | Miotto, R.; Wang, F.; Wang, S.; Jiang, X. & Dudley, J. T.: , 2018; Deep learning for healthcare: review, opportunities and challenges; Briefings in bioinformatics; 19 (6): 1236–1246 | spa |
dc.relation.references | Modares-Haghighi, P.; Boostani, R.; Nami, M. & Sanei, S.: , 2021; Quantification of pain severity using eeg-based functional connectivity; Biomedical Signal Processing and Control; 69: 102840; doi:https://doi.org/10.1016/j.bspc.2021.102840; URL https://www.sciencedirect.com/science/article/pii/S1746809421004377 | spa |
dc.relation.references | Mumtaz, W.; Rasheed, S. & Irfan, A.: , 2021; Review of challenges associated with the eeg artifact removal methods; Biomedical Signal Processing and Control; 68: 102741; doi:https://doi.org/10.1016/j.bspc.2021.102741; URL https://www.sciencedirect.com/science/article/pii/S1746809421003384 | spa |
dc.relation.references | Mungoven, T. J.; Henderson, L. A. & Meylakh, N.: , 2021; Chronic migraine pathophysiology and treatment: A review of current perspectives; Frontiers in Pain Research; 2; doi:10.3389/fpain.2021.705276; URL https://www.frontiersin.org/journals/pain-research/articles/10.3389/fpain.2021.705276 | spa |
dc.relation.references | Musallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin, S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri, M.: , 2021; Electroencephalography-based motor imagery classification using temporal convolutional network fusion; Biomedical Signal Processing and Control ; 69: 102826;doi:https://doi.org/10.1016/j.bspc.2021.102826; URL https://www.sciencedirect.com/science/article/pii/S1746809421004237 | spa |
dc.relation.references | Nezam, T.; Boostani, R.; Abootalebi, V. & Rastegar, K.: , 2021; A novel classification strategy to distinguish five levels of pain using the eeg signal features; IEEE Transactions on Affective Computing; 12 (1): 131–140; doi:10.1109/TAFFC.2018.2851236 | spa |
dc.relation.references | Nicolas-Alonso, L. F. & Gomez-Gil, J.: , 2012; Brain computer interfaces, a review; sensors; 12 (2): 1211–1279 | spa |
dc.relation.references | Nunez, P. L. & Srinivasan, R.: , 2006; Electric Fields of the Brain: The Neurophysics of EEG; Oxford University Press; doi:10.1093/acprof:oso/9780195050387.001.0001 | spa |
dc.relation.references | Okolo C, O. A.: , 2018; Use of dry electroencephalogram and support vector for objective pain assessment; Biomed Instrum Technol ; doi:10.2345/0899-8205-52.5.372 | spa |
dc.relation.references | Onishi, S.; Nishimura, M.; Fujimura, R. & Hayashi, Y.: , 2024; Why do tree ensemble approximators not outperform the recursive-rule extraction algorithm?; Machine Learning and Knowledge Extraction; 6 (1): 658–678; doi:10.3390/make6010031; URL https://www.mdpi.com/2504-4990/6/1/31 | spa |
dc.relation.references | Park, S.-H.; Lee, D. & Lee, S.-G.: , 2017; Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 498–505 | spa |
dc.relation.references | Park, S. M.; Jeong, B.; Oh, D. Y.; Choi, C.-H.; Jung, H. Y.; Lee, J.-Y.; Lee, D. & Choi, J.-S.: , 2021; Identification of major psychiatric disorders from resting-state electroencephalography using a machine learning approach; Frontiers in Psychiatry; 12; doi:10.3389/fpsyt.2021.707581; URL https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2021.707581 | spa |
dc.relation.references | Paschali, M.; Lazaridou, A. & Edwards, R. R.: , 2020; Clinical and Research Tools for Pain Assessment; Springer International Publishing, Cham; ISBN 978-3-030-27447-4; págs. 55–65; doi:10.1007/978-3-030-27447-4_6; URL https://doi.org/10.1007/978-3-030-27447-4_6 | spa |
dc.relation.references | Pawan & Dhiman, R.: , 2023; Machine learning techniques for electroencephalogram based brain-computer interface: A systematic literature review; Measurement: Sensors; 28: 100823; doi:https://doi.org/10.1016/j.measen.2023.100823; URL https://www.sciencedirect.com/science/article/pii/S2665917423001599 | spa |
dc.relation.references | Ploner M, Sorg C, G. J.: , 2017; Brain rhythms of pain; Trends Cogn Sci | spa |
dc.relation.references | Pulgarin-Giraldo, J. D.; Ruales-Torres, A.; Álvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2017; Relevant kinematic feature selection to support human action recognition in mocap data; en Biomedical Applications Based on Natural and Artificial Computing: International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, June 19-23, 2017, Proceedings, Part II ; Springer; págs. 501–509 | spa |
dc.relation.references | Pérez-Velasco, S.; Santamaría-Vázquez, E.; Martínez-Cagigal, V.; Marcos-Martínez, D. & Hornero, R.: , 2022; Eegsym: Overcoming inter-subject variability in motor imagery based bcis with deep learning; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 1766–1775; doi:10.1109/TNSRE.2022.3186442 | spa |
dc.relation.references | Raeisi, K.; Khazaei, M.; Croce, P.; Tamburro, G.; Comani, S. & Zappasodi, F.: , 2022; A graph convolutional neural network for the automated detection of seizures in the neonatal eeg; Computer methods and programs in biomedicine; 222: 106950. | spa |
dc.relation.references | Rahman, A. A.; Faisal, F.; Nishat, M. M.; Siraji, M. I.; Khalid, L. I.; Khan, M. R. H. & Reza, M. T.: , 2021; Detection of epileptic seizure from eeg signal data by employing machine learning algorithms with hyperparameter optimization; en 2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART); págs. 1–4; doi:10.1109/BioSMART54244.2021.9677770 | spa |
dc.relation.references | Rakhmatulin, I.; Dao, M.-S.; Nassibi, A. & Mandic, D.: , 2024; Exploring convolutional neural network architectures for eeg feature extraction; Sensors; 24 (3); doi:10.3390/s24030877; URL https://www.mdpi.com/1424-8220/24/3/877 | spa |
dc.relation.references | Rockholt, M. M.; Kenefati, G.; Doan, L. V.; Chen, Z. S. & Wang, J.: , 2023; In search of a composite biomarker for chronic pain by way of eeg and machine learning: where do we currently stand?; Frontiers in Neuroscience;17; doi:10.3389/fnins.2023.1186418; URL https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1186418 | spa |
dc.relation.references | Rodrigues, P.; Neto, A.; Sato, J.; Soriano, D. & Nasuto, S.:, 2022; Single-Trial Functional Connectivity Dynamics of Event-Related Desynchronization for Motor Imagery EEG-Based Brain-Computer Interfaces; ISBN 978-3-030-70600-5; págs. 1887–1893; doi:10.1007/978-3-030-70601-2_275 | spa |
dc.relation.references | Ruiz-Gómez, S. J.; Hornero, R.; Poza, J.; Maturana-Candelas, A.; Pinto, N. & Gómez, C.: , 2019; Computational modeling of the effects of eeg volume conduction on functional connectivity metrics. application to alzheimer’s disease continuum; Journal of Neural Engineering; 16 (6): 066019; doi:10.1088/1741-2552/ab4024; URL https://dx.doi.org/10.1088/1741-2552/ab4024 | spa |
dc.relation.references | Saengjaroentham, C.; Strother, L. C.; Dripps, I.; Sultan Jabir, M. R.; Pradhan, A.; Goadsby, P. J. & Holland, P. R.: , 2020; Differential medication overuse risk of novel anti-migraine therapeutics; Brain; 143 (9): 2681–2688; doi:10.1093/brain/awaa211; URL https://doi.org/10.1093/brain/awaa211 | spa |
dc.relation.references | Saha, S. & Baumert, M.: , 2020; Intra- and inter-subject variability in eeg-based sensorimotor brain computer interface: A review; Frontiers in Computational Neuroscience; 13; doi:10.3389/fncom.2019.00087; URL https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2019.00087 | spa |
dc.relation.references | Sazgar, M. & Young, M. G.: , 2019; EEG Artifacts; Springer International Publishing, Cham; ISBN 978-3-030-03511-2; págs. 149–162; doi:10.1007/978-3-030-03511-2_8; URL https://doi.org/10.1007/978-3-030-03511-2_8 | spa |
dc.relation.references | Schirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networks for eeg decoding and visualization; Human Brain Mapping; 38 (11): 5391–5420; doi:https://doi.org/10.1002/hbm.23730; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730 | spa |
dc.relation.references | Schulz E, Zherdin A, T. L. P. C. P. M.: , 2012; Decoding an individual’s sensitivity to pain from the multivariate analysis of eeg data; Cereb Cortex ; doi:10.1093/cercor/bhr186 | spa |
dc.relation.references | Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D. & Batra, D.: , 2019; Grad-cam: Visual explanations from deep networks via gradient-based localization; International Journal of Computer Vision;128 (2): 336–359; doi:10.1007/s11263-019-01228-7; URL http://dx.doi.org/10.1007/s11263-019-01228-7 | spa |
dc.relation.references | Sen, D.; Mishra, B. B. & Pattnaik, P. K.: , 2023; A review of the filtering techniques used in eeg signal processing; en 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI); págs. 270–277; doi:10.1109/ICOEI56765.2023.10125857 | spa |
dc.relation.references | Shoeibi, A.; Sadeghi, D.; Moridian, P.; Ghassemi, N.; Heras, J.; Alizadehsani, R.; Khadem, A.; Kong, Y.; Nahavandi, S.; Zhang, Y.- D. & Gorriz, J. M.: , 2021; Automatic diagnosis of schizophrenia in eeg signals using cnn-lstm models; Frontiers in Neuroinformatics; 15; doi:10.3389/fninf.2021.777977; URL https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2021.777977 | spa |
dc.relation.references | Si, Y.; Li, F.; Duan, K.; Tao, Q.; Li, C.; Cao, Z.; Zhang, Y.;Biswal, B.; Li, P.; Yao, D. & Xu, P.: , 2020; Predicting individual decision-making responses based on single-trial eeg; NeuroImage; 206: 116333; doi:https://doi.org/10.1016/j.neuroimage.2019.116333; URL https://www.sciencedirect.com/science/article/pii/S1053811919309243 | spa |
dc.relation.references | Stˇastný, J.; Sovka, P. & Kostilek, M.: , 2014; Overcoming inter-subject variability in bci using eeg-based identification; Radioengineering; 23: 266–273 | spa |
dc.relation.references | Subasi, A.; Ahmed, A.; Alickovic, E. & Hassan, A. R.: , 2019; Effect of photic stimulation for migraine detection using random forest and discrete wavelet transform; Biomedical Signal Processing and Control; 49: 231–239; doi:10.1016/j.bspc.2018.12.011 | spa |
dc.relation.references | Teel, E. F.; Ocay, D. D.; Blain-Moraes, S. & Ferland, C. E.: , 2022; Accurate classification of pain experiences using wearable electroencephalography in adolescents with and without chronic musculoskeletal pain; Frontiers in Pain Research;3; doi:10.3389/fpain.2022.991793; URL https://www.frontiersin.org/journals/pain-research/articles/10.3389/fpain.2022.991793 | spa |
dc.relation.references | Tibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Clas- sification of motor imagery eeg using deep learning increases performance in ineffi- cient bci users; PLOS ONE ; 17 (7): 1–18; doi:10.1371/journal.pone.0268880; URL https://doi.org/10.1371/journal.pone.0268880 | spa |
dc.relation.references | Tiemann, L.; Hohn, V. & Ploner, M.: , 2024; Brain mediators of pain; URL osf.io/bsv86 | spa |
dc.relation.references | Tobón-Henao, M.; Álvarez Meza, A. M. & Castellanos- Dominguez, C. G.: , 2023; Kernel-based regularized eegnet using centered alignment and gaussian connectivity for motor imagery discrimination; Computers; 12 (7); doi: 10.3390/computers12070145; URL https://www.mdpi.com/2073-431X/12/7/145 | spa |
dc.relation.references | Tu Y, Tan A, B. Y. H. Y. Z. Z.: , 2016; Decoding subjective intensity of nociceptive pain from pre-stimulus and post-stimulus brain activities; Front Comput Neurosci; doi:10.3389/fncom.2016.00032 | spa |
dc.relation.references | van der Miesen, M.; Lindquist, M. & Wager, T.: , 2019; Neuroimaging-based biomarkers for pain: State of the field and current directions; PAIN Reports; 4: e751; doi:10.1097/PR9.0000000000000751 | spa |
dc.relation.references | Vivaldi, N.; Caiola, M.; Solarana, K. & Ye, M.: , 2021; Evaluating performance of eeg data-driven machine learning for traumatic brain injury classification; IEEE Transactions on Biomedical Engineering; 68 (11): 3205–3216; doi:10.1109/ TBME.2021.3062502 | spa |
dc.relation.references | Voytek, B. & Knight, R. T.: , 2015; Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease; Biological Psychiatry; 77 (12): 1089–1097; doi:https://doi.org/10.1016/ j.biopsych.2015.04.016; URL https://www.sciencedirect.com/science/article/ pii/S0006322315003546; cortical Oscillations for Cognitive/Circuit Dysfunction in Psychiatric Disorders | spa |
dc.relation.references | Wagemakers SH, van der Velden JM, G. A. H.-K. A. v. D. J. V. J.: , 2019; A systematic review of devices and techniques that objectively measure patients’ pain; Pain Physician | spa |
dc.relation.references | Wu, F.; Mai, W.; Tang, Y.; Liu, Q.; Chen, J. & Guo, Z.: , 2022; Learning spatial-spectral-temporal eeg representations with deep attentive- recurrent-convolutional neural networks for pain intensity assessment; Neuroscience; 481: 144–155; doi:https://doi.org/10.1016/j.neuroscience.2021.11.034; URL https: //www.sciencedirect.com/science/article/pii/S0306452221006011 | spa |
dc.relation.references | Yasoda, K.; Ponmagal, R. S.; Bhuvaneshwari, K. S. & Venkat- achalam, K.: , 2020; Automatic detection and classification of eeg artifacts using fuzzy kernel svm and wavelet ica (wica); Soft Comput.; 24 (21): 16011–16019; doi:10. 1007/s00500-020-04920-w; URL https://doi.org/10.1007/s00500-020-04920-w | spa |
dc.relation.references | Yu, M.; Sun, Y.; Zhu, B.; Zhu, L.; Lin, Y.; Tang, X.; Guo, Y.; Sun, G. & Dong, M.: , 2020; Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using eeg; Neurocomputing; 378: 270–282; doi: https://doi.org/10.1016/j.neucom.2019.10.023; URL https://www.sciencedirect. com/science/article/pii/S0925231219313980 | spa |
dc.relation.references | Zhang, A.; Lipton, Z. C.; Li, M. & Smola, A. J.: , 2021a; Dive into deep learning; arXiv preprint arXiv:2106.11342 | spa |
dc.relation.references | Zhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021b; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10 | spa |
dc.relation.references | Zhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021b; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10 | spa |
dc.relation.references | Zhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021b; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10 | spa |
dc.relation.references | Zhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021b; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10 | spa |
dc.relation.references | Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A. & Torralba, A.: , 2016; Learning deep features for discriminative localization; en 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); págs. 2921–2929; doi:10.1109/CVPR.2016.319 | spa |
dc.relation.references | Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A. & Torralba, A.: , 2016; Learning deep features for discriminative localization; en 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); págs. 2921–2929; doi:10.1109/CVPR.2016.319 | spa |
dc.relation.references | Zis P, Liampas A, A. A. T. G. N. P. U. Z. K. V. H. G. V. G. Z. Y. S. P.: , 2022; Eeg recordings as biomarkers of pain perception: Where do we stand and where to go?; Pain Ther ; doi:10.1007/s40122-022-00372-2. | spa |
dc.relation.references | Zoumpourlis, G. & Patras, I.: , 2022; Covmix: Covariance mixing regularization for motor imagery decoding; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–7 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Dolor | spa |
dc.subject.proposal | Redes neuronales | spa |
dc.subject.proposal | Conectividad funcional | spa |
dc.subject.proposal | Variabilidad inter sujeto | spa |
dc.subject.proposal | Interpretabilidad | spa |
dc.subject.proposal | Pain | eng |
dc.subject.proposal | Neural networks | eng |
dc.subject.proposal | Functional connectivity | eng |
dc.subject.proposal | Inter-subject variability | eng |
dc.subject.proposal | Interpretability | eng |
dc.subject.unesco | Neurobiología | spa |
dc.subject.unesco | Neurobiology | eng |
dc.subject.unesco | Inteligencia artificial | spa |
dc.subject.unesco | Artificial intelligence | eng |
dc.subject.unesco | Neurotecnología | spa |
dc.subject.unesco | Neurotechnology | eng |
dc.title | EEG-based pain detection using gaussian functional connectivity and shallow deep learning with preserved interpretability | eng |
dc.title.translated | Detección del dolor basada en EEG utilizando conectividad funcional gaussiana y aprendizaje profundo superficial con interpretabilidad preservada | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1007286825.2025.pdf
- Tamaño:
- 10.95 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: