Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica

dc.contributor.advisorCorrea Gutiérrez, Rosa Elvira
dc.contributor.advisorArrieta Paternina, Mario Roberto
dc.contributor.authorCastrillón Franco, Maria Camila
dc.contributor.researchgroupGrupo de Investigación en Tecnologías Aplicadas Gitaspa
dc.date.accessioned2023-10-02T19:23:01Z
dc.date.available2023-10-02T19:23:01Z
dc.date.issued2023-09-22
dc.descriptionilustraciones, diagramas, resultados de simulacionesspa
dc.description.abstractCon la creciente incorporación de recursos renovables en la matriz energética, uno de los principales retos es determinar la afectación que tiene este tipo de generación, basados principalmente en conversores, en la estabilidad dinámica de los sistemas eléctricos de potencia, siendo necesario determinar los sistemas de control adicionales que se deben incorporar en esta tecnología para mantener las principales variables eléctricas dentro del rango de operación establecido. En esta investigación se presenta el diseño de un Control Linear Cuadrático Gaussiano, LQG, implementado en el lazo de control de potencia reactiva de los generadores eólicos, para amortiguar modos oscilatorios inter-área en sistemas eléctricos de potencia. Para ello, primero se obtiene el modelo lineal del sistema eléctrico de potencia, inicialmente a través de la linealización con análisis de pequeña señal y luego con el método de identificación Loewner basado en mediciones. Después de sintonizar el control, se incorpora y se analiza su comportamiento e influencia en el amortiguamiento de los modos oscilatorios, utilizando como herramienta la gráfica del lugar geométrico de las raíces. Por último, se prueba el desempeño del controlador a través de simulación transitoria sobre el modelo no lineal de dos sistemas de prueba, que presentan diferentes modos oscilatorios, donde se demuestra que el control a través de aerogeneradores permite amortiguar los modos inter-área del sistema. (Texto tomado de la fuente)spa
dc.description.abstractWith the increasing incorporation of renewable resources in the energy matrix, one of the main challenges is to determine the effect that this type of generation, mainly based on converters, has on the dynamic stability of the electrical power systems, being necessary to determine the additional control systems that must be incorporated in this technology to maintain the main electrical variables within the established operating range. This research presents the design of a Linear Quadratic Gaussian Control, LQG, implemented in the reactive power control loop of wind generators, to damp inter-area oscillatory modes in electric power systems. For this purpose, first the linear model of the electrical power system is obtained, initially through linearization with small-signal analysis and then with the measurement-based Loewner identification method. After tuning the control, its behavior and influence on the damping of the oscillatory modes is incorporated and analyzed, using the root locus plot as a tool. Finally, the performance of the controller is tested through transient simulation on the nonlinear model of two test systems, which present different oscillatory modes, where it is demonstrated that the control through wind turbines allows damping the inter-area modes of the system.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.notesContiene resultados de simulacionesspa
dc.description.researchareaAnálisis, operación y control en sistemas de energía eléctricaspa
dc.format.extent118 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84740
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.indexedBiremespa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdollahi, M., Candela, J. I., Rocabert, J., Elsaharty, M. A., & Rodriguez, P. (2020). Novel Analytical Method for Dynamic Design of Renewable SSG SPC Unit to Mitigate Low-Frequency Electromechanical Oscillations. IEEE Transactions on Power Electronics, 35(7), 7532–7544. https://doi.org/10.1109/TPEL.2019.2956397spa
dc.relation.referencesAraújo, J. A. V., & Cabré, M. M. (2023). Energía solar y eólica en Colombia: panorama y resumen de políticas 2022. https://doi.org/10.51414/SEI2023.016spa
dc.relation.referencesBagchi, S., Goswami, S., Bhaduri, R., Ganguly, M., & Roy, A. (2017). Small signal stability analysis and comparison with DFIG incorporated system using FACTS devices. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016. https://doi.org/10.1109/ICPEICES.2016.7853294spa
dc.relation.referencesBasit, M. A., Dilshad, S., Badar, R., & Sami ur Rehman, S. M. (2020). Limitations, challenges, and solution approaches in grid-connected renewable energy systems. In International Journal of Energy Research (Vol. 44, Issue 6, pp. 4132–4162). John Wiley and Sons Ltd. https://doi.org/10.1002/er.5033spa
dc.relation.referencesBhukya, J., & Mahajan, V. (2019). Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm. International Journal of Electrical Power and Energy Systems, 108(January), 314–335. https://doi.org/10.1016/j.ijepes.2019.01.017spa
dc.relation.referencesBoukarim, G. E., Wang, S., Chow, J. H., Taranto, G. N., & Martins, N. (2000). A Comparison of Classical, Robust, and Decentralized Control Designs for Multiple Power System Stabilizers. In IEEE TRANSACTIONS ON POWER SYSTEMS (Vol. 15, Issue 4).spa
dc.relation.referencesBrunton, S. L., & Kutz, N. L. (2019). Data-Driven Science and Engineering. Cai, G., Chen, X., Sun, Z., Yang, D., Liu, C., & Li, H. (2019). A coordinated dual-channel wide area damping control strategy for a doubly-fed induction generator used for suppressing inter-area oscillation. Applied Sciences (Switzerland), 9(11). https://doi.org/10.3390/app9112353spa
dc.relation.referencesChow, J. H., Boukarim, G. E., & Murdoch, A. (2004). Power System Stabilizers as Undergraduate Control Design Projects. IEEE Transactions on Power Systems, 19(1), 144–151. https://doi.org/10.1109/TPWRS.2003.821003spa
dc.relation.referencesChow, J. H., & Cheung, K. W. (1992). A Toolbox for Power System Dynamics and Control Engineering Education and Research. In Transactions on Power Systems (Vol. 7, Issue 4).spa
dc.relation.referencesChow, J. H., & Larsen E. V. (1987). SVC Control Design Concepts for System Dynamics Performance. IEEE Publication .spa
dc.relation.referencesChow, J. H., & Sanchez‐Gasca, J. J. (2019). Power System Coherency and Model Reduction. In Power System Modeling, Computation, and Control. https://doi.org/10.1002/9781119546924.ch16spa
dc.relation.referencesChow, J. H., & Sanchez‐Gasca, J. J. (2020). Power system, modeling, computation and control (Wiley). John Wiley & Sons Ltd.spa
dc.relation.referencesColombia presenta plan de expansión energética a largo plazo - BNamericas. (n.d.). Retrieved September 10, 2022, from https://www.bnamericas.com/es/noticias/colombia-presenta-plan-de-expansion-energetica-a-largo-plazospa
dc.relation.referencesDarabian, M., Jabari, F., & Ahmad Khani, M. (2023). Optimal design and operation of damping controllers in PV–wind integrated sustainable energy grids considering system uncertainties. IET Renewable Power Generation. https://doi.org/10.1049/rpg2.12779spa
dc.relation.referencesElizondo, M. A., Fan, R., Kirkham, H., Ghosal, M., Wilches-Bernal, F., Schoenwald, D., & Lian, J. (2018). Interarea Oscillation Damping Control Using High-Voltage DC Transmission: A Survey. IEEE Transactions on Power Systems, 33(6), 6515–6923. https://doi.org/10.1109/TPWRS.2018.2832227spa
dc.relation.referencesEllis, A., Pourbeik, P., Sanchez-Gasca, J. J., Senthil, J., & Weber, J. (2015). Generic wind turbine generator models for WECC - A second status report. IEEE Power and Energy Society General Meeting, 2015-September. https://doi.org/10.1109/PESGM.2015.7285645spa
dc.relation.referencesFornasini, E., & Valcher, M. E. (2013). Observability, reconstructibility and state observers of Boolean control networks. IEEE Transactions on Automatic Control, 58(6), 1390–1401. https://doi.org/10.1109/TAC.2012.2231592spa
dc.relation.referencesGautam, D., & Vittal, V. (2009). Impact of DFIG based wind turbine generators on transient and small signal stability of power systems. 2009 IEEE Power and Energy Society General Meeting, PES ’09, 24(3), 1426–1434. https://doi.org/10.1109/PES.2009.5275847spa
dc.relation.referencesGlobal Wind Report Council. (2023). Global wind report 2023.spa
dc.relation.referencesGomes, S., Guimarães, C. H. C., Martins, N., & Taranto, G. N. (2018). Damped Nyquist Plot for a pole placement design of power system stabilizers. Electric Power Systems Research, 158, 158–169. https://doi.org/10.1016/j.epsr.2018.01.012spa
dc.relation.referencesGupta, A. K., Verma, K., & Niazi, K. R. (2017). Dynamic impact analysis of DFIG-based wind turbine generators on low-frequency oscillations in power system. IET Generation, Transmission and Distribution, 11(18), 4500–4510. https://doi.org/10.1049/iet-gtd.2017.0308spa
dc.relation.referencesGupta, A. K., Verma, K., & Niazi, K. R. (2019). Robust coordinated control for damping low frequency oscillations in high wind penetration power system. International Transactions on Electrical Energy Systems, 29(5), 1–17. https://doi.org/10.1002/2050-7038.12006spa
dc.relation.referencesGurung, N., Bhattarai, R., & Kamalasadan, S. (2020). Optimal Oscillation Damping Controller Design for Large-Scale Wind Integrated Power Grid. IEEE Transactions on Industry Applications, 56(4), 4225–4235. https://doi.org/10.1109/TIA.2020.2988432spa
dc.relation.referencesGurung, N., & Kamalasadan, S. (2018). Linear-Quadratic Gaussian based Power Oscillation Damping Controller Design for Doubly Fed Induction Generator. IEEE Power and Energy Society General Meeting, 2018-August. https://doi.org/10.1109/PESGM.2018.8586108spa
dc.relation.referencesHe, P., Arefifar, S. A., Li, C., Wen, F., Ji, Y., & Tao, Y. (2019). Enhancing oscillation damping in an interconnected power system with integrated wind farms using unified power flow controller. Energies, 12(2). https://doi.org/10.3390/en12020322spa
dc.relation.referencesIEEE Power Engineering Society. (2006). IEEE Recommended Practice for Excitation System Models for Power System Stability Studies.spa
dc.relation.referencesIRENA. (2019). Future of Wind: Deployment, investment, technology, grid integration and socio-economic aspects. In International Renewable Energy Agency. www.irena.org/publicationsspa
dc.relation.referencesIsbeih, Y., Ghosh, S., Elmoursi, M., & El-Saadany, E. (2021). Online DMDc based model identification approach for transient stability enhancement using wide area measurements. IEEE Transactions on Power Systems, 36(5), 4884–4887. https://doi.org/10.1109/TPWRS.2021.3094331spa
dc.relation.referencesCastrillón-Franco, C., Paternina, M. R. A., Reyes, F. E. R., Zamora-Mendez, A., Correa, R. E., & Ortiz-Bejar, J. (2023). Damping Control of Inter-area Oscillations Using non-conventional equipment. 2023 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2023).Acceptedspa
dc.relation.referencesIzdebski, M., Małkowski, R., & Miller, P. (2022). New Performance Indices for Power System Stabilizers. Energies, 15(24). https://doi.org/10.3390/en15249582spa
dc.relation.referencesKlein, M., Rogers, G. J., Moorty, S., Kundur, P., Hydro, O., & Toronto, C. (1992). Analytical Investigation of Factors Influencing Power System Stabilizers Performance. In IEEE Transactions on Energy Conversion (Vol. 7, Issue 3).spa
dc.relation.referencesKundur, P. (1994). Power System Stability And Control. In McGraw-Hill, Inc (p. 1167).spa
dc.relation.referencesLewis, M. (2023). Global installed wind power capacity just reached 1 TW | Electrek. https://electrek.co/2023/06/16/global-installed-wind-power-capacity/spa
dc.relation.referencesLi, H., Liu, S., Ji, H., Yang, D., Yang, C., Chen, H., Zhao, B., Hu, Y., & Chen, Z. (2014). Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system. International Journal of Electrical Power and Energy Systems, 61, 279–287. https://doi.org/10.1016/j.ijepes.2014.03.009spa
dc.relation.referencesLiao, K., Xu, Y., & Zhou, H. (2019). A robust damping controller for DFIG based on variable-gain sliding mode and Kalman filter disturbance observer. International Journal of Electrical Power and Energy Systems, 107(December 2018), 569–576. https://doi.org/10.1016/j.ijepes.2018.12.018spa
dc.relation.referencesMehta, B., Bhatt, P., & Pandya, V. (2014). Small signal stability analysis of power systems with DFIG based wind power penetration. International Journal of Electrical Power and Energy Systems, 58, 64–74. https://doi.org/10.1016/j.ijepes.2014.01.005spa
dc.relation.referencesMiller, N. W., & Sanchez-gasca, J. J. (2008). Modeling of GE Wind Turbine-Generators for Grid Studies Prepared by : May.spa
dc.relation.referencesMondal, D., Chakrabarti, A., & Sengupta, A. (2014). Optimal and Robust Control. In Power System Small Signal Stability Analysis and Control (pp. i–ii). Elsevier. https://doi.org/10.1016/b978-0-12-800572-9.09987-xspa
dc.relation.referencesMondal, D., Chakrabarti, A., & Sengupta, A. (2020). Power System Small Signal Stability Analysis and Control.spa
dc.relation.referencesNkosi, N. R., Bansal, R. C., Adefarati, T., Naidoo, R. M., & Bansal, S. K. (2023). A review of small-signal stability analysis of DFIG-based wind power system. International Journal of Modelling and Simulation, 43(3), 153–170. https://doi.org/10.1080/02286203.2022.2056951spa
dc.relation.referencesNoori, A., Jafari Shahbazadeh, M., & Eslami, M. (2020). Designing of wide-area damping controller for stability improvement in a large-scale power system in presence of wind farms and SMES compensator. International Journal of Electrical Power and Energy Systems, 119. https://doi.org/10.1016/j.ijepes.2020.105936spa
dc.relation.referencesOgata, Katsuhiko. (2009). Ingeniería de Control Moderna. Pearson Educación.spa
dc.relation.referencesPadiyar K. R. (2008). Power system dynamics. www.mhm20.blogfa.comspa
dc.relation.referencesPaternina, M. R. A., Ramirez-Arredondo, J. M., Lara-Jimenez, J. D., & Zamora-Mendez, A. (2017). Dynamic Equivalents by Modal Decomposition of Tie-Line Active Power Flows. IEEE Transactions on Power Systems, 32(2), 1304–1314. https://doi.org/10.1109/TPWRS.2016.2572601spa
dc.relation.referencesPower System Dynamic Performance Committee. (2020). Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies.spa
dc.relation.referencesPrakash, A., Singh, P., Kumar, K., & Parida, S. K. (2022). Design of a Reduced-Order WADC for Wind Turbine System-Integrated Power System. IEEE Transactions on Industry Applications, 58(3), 3250–3260. https://doi.org/10.1109/TIA.2022.3159319spa
dc.relation.referencesPrakash, A., Tiwari, R. K., Kumar, K., & Parida, S. K. (2022). Interacting Multiple Model Strategy Based Adaptive Wide-Area Damping Controller Design for Wind Farm Embedded Power System. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2022.3231647spa
dc.relation.referencesRawal, M., Nauityal, D. C., & Rawat, M. S. (2021). Analysis of small signal stability in DFIG integrated power system. Proceedings of the 2021 1st International Conference on Advances in Electrical, Computing, Communications and Sustainable Technologies, ICAECT 2021. https://doi.org/10.1109/ICAECT49130.2021.9392505spa
dc.relation.referencesRergis, C. M., Kamwa, I., Khazaka, R., & Messina, A. R. (2019). A Loewner Interpolation Method for Power System Identification and Order Reduction. IEEE Transactions on Power Systems, 34(3), 1834–1844. https://doi.org/10.1109/TPWRS.2018.2884655spa
dc.relation.referencesRokni Nakhi, P., & Ahmadi Kamarposhti, M. (2020). Multi objective design of type II fuzzy based power system stabilizer for power system with wind farm turbine considering uncertainty. International Transactions on Electrical Energy Systems, 30(4). https://doi.org/10.1002/2050-7038.12285spa
dc.relation.referencesSauer, P. W., Pai, M. A., & Chow, J. H. (2017). Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox. In Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox 2e. https://doi.org/10.1002/9781119355755spa
dc.relation.referencesShahgholian, G. (2013). Review of Power System Stabilizer: Application, Modeling, Analysys and Control Strategy. International Journal on "Technical and Physical Problems of Engineering. www.iotpe.comspa
dc.relation.referencesSharma, A., Sahu, B., Triphathy, N. P., Nagar, L. K., & Patidar, N. P. (2014). Time latency compensation for wide area damping controller. Proceedings of 6th IEEE Power India International Conference, PIICON 2014, 2–7. https://doi.org/10.1109/34084POWERI.2014.7117609spa
dc.relation.referencesShen, Y., Liang, L., Zhang, B., Liao, K., Xu, Y., Yang, H., & Yu, Q. (2018). Power Modulation of DFIG-based Wind Turbines for System Oscillation Damping. International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018, 1124–1129. https://doi.org/10.1109/ISGT-Asia.2018.8467869spa
dc.relation.referencesSimon, L., & Swarup, S. (2017). Wide Area Oscillation Damping Control with DFIG based Wind Turbines using WAMS.spa
dc.relation.referencesSlootweg, J. G., & Kling, W. L. (2003). The impact of large scale wind power generation on power system oscillations. Electric Power Systems Research, 67(1), 9–20. https://doi.org/10.1016/S0378-7796(03)00089-0spa
dc.relation.referencesVittal, E., O’Malley, M., & Keane, A. (2012). Rotor angle stability with high penetrations of wind generation. IEEE Transactions on Power Systems, 27(1), 353–362. https://doi.org/10.1109/TPWRS.2011.2161097spa
dc.relation.referencesWilches-Bernal, F. (2015). Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification. PhD Thesis, 2015(August 2015).spa
dc.relation.referencesWilches-Bernal, F., Chow, J. H., & Sanchez-Gasca, J. J. (2016). Impact of wind generation power electronic interface on power system inter-area oscillations. IEEE Power and Energy Society General Meeting, 2016-Novem(July), 1–5. https://doi.org/10.1109/PESGM.2016.7741212spa
dc.relation.referencesWilches-Bernal, F., Lackner, C., Chow, J. H., & Sanchez-Gasca, J. J. (2016). Small-signal analysis of power system swing modes as affected by wind turbine-generators. 2016 IEEE Power and Energy Conference at Illinois, PECI 2016, February, 7–12. https://doi.org/10.1109/PECI.2016.7459228spa
dc.relation.referencesWilches-Bernal, F., Lackner, C., Chow, J. H., & Sanchez-Gasca, J. J. (2019). Effects of wind turbine generators on inter-area oscillations and damping control design. Proceedings of the Annual Hawaii International Conference on System Sciences, 2019-Janua(d), 3649–3658. https://doi.org/10.24251/hicss.2019.441spa
dc.relation.referencesWorld Energy Trade. (2019). ¿Cómo funcionan los aerogeneradores? https://www.worldenergytrade.com/energias-alternativas/energia-eolica/como-funcionan-los-aerogeneradoresspa
dc.relation.referencesYao, W., Jiang, L., Wen, J., Wu, Q., & Cheng, S. (2015). Wide-area damping controller for power system interarea oscillations: A networked predictive control approach. IEEE Transactions on Control Systems Technology, 23(1), 27–36. https://doi.org/10.1109/TCST.2014.2311852spa
dc.relation.referencesYousefian, R., Bhattarai, R., & Kamalasadan, S. (2017). Transient Stability Enhancement of Power Grid with Integrated Wide Area Control of Wind Farms and Synchronous Generators. IEEE Transactions on Power Systems, 32(6), 4818–4831. https://doi.org/10.1109/TPWRS.2017.2676138spa
dc.relation.referencesZelaya Arrazabal, F. A. (2019). Identificación de modelos de sistemas de potencia basado en datos. Universidad Nacional Autonoma de Mexico.spa
dc.relation.referencesZelaya, F. A., Chow, J. H., Paternina, M. R. A., & Zamora, A. (2020). Power system linear model selective identification by exploiting the Loewner interpolation method. IEEE Power and Energy Society General Meeting, 2020-August. https://doi.org/10.1109/PESGM41954.2020.9282088spa
dc.relation.referencesZhang, X., Lu, C., Liu, S., & Wang, X. (2016). A review on wide-area damping control to restrain inter-area low frequency oscillation for large-scale power systems with increasing renewable generation. Renewable and Sustainable Energy Reviews, 57, 45–58. https://doi.org/10.1016/j.rser.2015.12.167spa
dc.relation.referencesZhang, Z., & Zhao, X. (2022). Control of HVDC-Connected PMSG-Based Wind Turbines for Power System Oscillation Damping. 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2022. https://doi.org/10.1109/PEDG54999.2022.9923123spa
dc.relation.referencesZhao, Y., Zhu, L., Xiao, H., Liu, Y., Farantatos, E., Patel, M., Darvishi, A., & Fardanesh, B. (2019). An Adaptive Wide-Area Damping Controller via FACTS for the New York State Grid Using a Measurement-Driven Model.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.lembEnergía eólicaspa
dc.subject.lembRecursos energéticosspa
dc.subject.lembRecursos energéticos renovablesspa
dc.subject.lembRenewable energy sourceseng
dc.subject.lembWind powereng
dc.subject.lembPower resourceseng
dc.subject.proposalEnergías renovablesspa
dc.subject.proposalEnergía eólicaspa
dc.subject.proposalEstabilidad de pequeña señal,spa
dc.subject.proposalModos oscilatoriosspa
dc.subject.proposalControl LQGspa
dc.subject.proposalIdentificación basada en medidasspa
dc.subject.proposalSistemas de energía eléctrica.spa
dc.subject.proposalRenewable energyeng
dc.subject.proposalWind energyeng
dc.subject.proposalSmall signal stabilityeng
dc.subject.proposalOscillatory modeseng
dc.subject.proposalLQG controleng
dc.subject.proposalMeasurement-based identificationeng
dc.subject.proposalElectric power systems.eng
dc.titleControl de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólicaspa
dc.title.translatedControl of electromechanical oscillations in electrical energy systems using wind turbine generationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1047996682.2023.pdf
Tamaño:
4.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: