Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica
dc.contributor.advisor | Correa Gutiérrez, Rosa Elvira | |
dc.contributor.advisor | Arrieta Paternina, Mario Roberto | |
dc.contributor.author | Castrillón Franco, Maria Camila | |
dc.contributor.researchgroup | Grupo de Investigación en Tecnologías Aplicadas Gita | spa |
dc.date.accessioned | 2023-10-02T19:23:01Z | |
dc.date.available | 2023-10-02T19:23:01Z | |
dc.date.issued | 2023-09-22 | |
dc.description | ilustraciones, diagramas, resultados de simulaciones | spa |
dc.description.abstract | Con la creciente incorporación de recursos renovables en la matriz energética, uno de los principales retos es determinar la afectación que tiene este tipo de generación, basados principalmente en conversores, en la estabilidad dinámica de los sistemas eléctricos de potencia, siendo necesario determinar los sistemas de control adicionales que se deben incorporar en esta tecnología para mantener las principales variables eléctricas dentro del rango de operación establecido. En esta investigación se presenta el diseño de un Control Linear Cuadrático Gaussiano, LQG, implementado en el lazo de control de potencia reactiva de los generadores eólicos, para amortiguar modos oscilatorios inter-área en sistemas eléctricos de potencia. Para ello, primero se obtiene el modelo lineal del sistema eléctrico de potencia, inicialmente a través de la linealización con análisis de pequeña señal y luego con el método de identificación Loewner basado en mediciones. Después de sintonizar el control, se incorpora y se analiza su comportamiento e influencia en el amortiguamiento de los modos oscilatorios, utilizando como herramienta la gráfica del lugar geométrico de las raíces. Por último, se prueba el desempeño del controlador a través de simulación transitoria sobre el modelo no lineal de dos sistemas de prueba, que presentan diferentes modos oscilatorios, donde se demuestra que el control a través de aerogeneradores permite amortiguar los modos inter-área del sistema. (Texto tomado de la fuente) | spa |
dc.description.abstract | With the increasing incorporation of renewable resources in the energy matrix, one of the main challenges is to determine the effect that this type of generation, mainly based on converters, has on the dynamic stability of the electrical power systems, being necessary to determine the additional control systems that must be incorporated in this technology to maintain the main electrical variables within the established operating range. This research presents the design of a Linear Quadratic Gaussian Control, LQG, implemented in the reactive power control loop of wind generators, to damp inter-area oscillatory modes in electric power systems. For this purpose, first the linear model of the electrical power system is obtained, initially through linearization with small-signal analysis and then with the measurement-based Loewner identification method. After tuning the control, its behavior and influence on the damping of the oscillatory modes is incorporated and analyzed, using the root locus plot as a tool. Finally, the performance of the controller is tested through transient simulation on the nonlinear model of two test systems, which present different oscillatory modes, where it is demonstrated that the control through wind turbines allows damping the inter-area modes of the system. | eng |
dc.description.curriculararea | Área Curricular de Ingeniería Eléctrica e Ingeniería de Control | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.description.notes | Contiene resultados de simulaciones | spa |
dc.description.researcharea | Análisis, operación y control en sistemas de energía eléctrica | spa |
dc.format.extent | 118 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84740 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abdollahi, M., Candela, J. I., Rocabert, J., Elsaharty, M. A., & Rodriguez, P. (2020). Novel Analytical Method for Dynamic Design of Renewable SSG SPC Unit to Mitigate Low-Frequency Electromechanical Oscillations. IEEE Transactions on Power Electronics, 35(7), 7532–7544. https://doi.org/10.1109/TPEL.2019.2956397 | spa |
dc.relation.references | Araújo, J. A. V., & Cabré, M. M. (2023). Energía solar y eólica en Colombia: panorama y resumen de políticas 2022. https://doi.org/10.51414/SEI2023.016 | spa |
dc.relation.references | Bagchi, S., Goswami, S., Bhaduri, R., Ganguly, M., & Roy, A. (2017). Small signal stability analysis and comparison with DFIG incorporated system using FACTS devices. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016. https://doi.org/10.1109/ICPEICES.2016.7853294 | spa |
dc.relation.references | Basit, M. A., Dilshad, S., Badar, R., & Sami ur Rehman, S. M. (2020). Limitations, challenges, and solution approaches in grid-connected renewable energy systems. In International Journal of Energy Research (Vol. 44, Issue 6, pp. 4132–4162). John Wiley and Sons Ltd. https://doi.org/10.1002/er.5033 | spa |
dc.relation.references | Bhukya, J., & Mahajan, V. (2019). Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm. International Journal of Electrical Power and Energy Systems, 108(January), 314–335. https://doi.org/10.1016/j.ijepes.2019.01.017 | spa |
dc.relation.references | Boukarim, G. E., Wang, S., Chow, J. H., Taranto, G. N., & Martins, N. (2000). A Comparison of Classical, Robust, and Decentralized Control Designs for Multiple Power System Stabilizers. In IEEE TRANSACTIONS ON POWER SYSTEMS (Vol. 15, Issue 4). | spa |
dc.relation.references | Brunton, S. L., & Kutz, N. L. (2019). Data-Driven Science and Engineering. Cai, G., Chen, X., Sun, Z., Yang, D., Liu, C., & Li, H. (2019). A coordinated dual-channel wide area damping control strategy for a doubly-fed induction generator used for suppressing inter-area oscillation. Applied Sciences (Switzerland), 9(11). https://doi.org/10.3390/app9112353 | spa |
dc.relation.references | Chow, J. H., Boukarim, G. E., & Murdoch, A. (2004). Power System Stabilizers as Undergraduate Control Design Projects. IEEE Transactions on Power Systems, 19(1), 144–151. https://doi.org/10.1109/TPWRS.2003.821003 | spa |
dc.relation.references | Chow, J. H., & Cheung, K. W. (1992). A Toolbox for Power System Dynamics and Control Engineering Education and Research. In Transactions on Power Systems (Vol. 7, Issue 4). | spa |
dc.relation.references | Chow, J. H., & Larsen E. V. (1987). SVC Control Design Concepts for System Dynamics Performance. IEEE Publication . | spa |
dc.relation.references | Chow, J. H., & Sanchez‐Gasca, J. J. (2019). Power System Coherency and Model Reduction. In Power System Modeling, Computation, and Control. https://doi.org/10.1002/9781119546924.ch16 | spa |
dc.relation.references | Chow, J. H., & Sanchez‐Gasca, J. J. (2020). Power system, modeling, computation and control (Wiley). John Wiley & Sons Ltd. | spa |
dc.relation.references | Colombia presenta plan de expansión energética a largo plazo - BNamericas. (n.d.). Retrieved September 10, 2022, from https://www.bnamericas.com/es/noticias/colombia-presenta-plan-de-expansion-energetica-a-largo-plazo | spa |
dc.relation.references | Darabian, M., Jabari, F., & Ahmad Khani, M. (2023). Optimal design and operation of damping controllers in PV–wind integrated sustainable energy grids considering system uncertainties. IET Renewable Power Generation. https://doi.org/10.1049/rpg2.12779 | spa |
dc.relation.references | Elizondo, M. A., Fan, R., Kirkham, H., Ghosal, M., Wilches-Bernal, F., Schoenwald, D., & Lian, J. (2018). Interarea Oscillation Damping Control Using High-Voltage DC Transmission: A Survey. IEEE Transactions on Power Systems, 33(6), 6515–6923. https://doi.org/10.1109/TPWRS.2018.2832227 | spa |
dc.relation.references | Ellis, A., Pourbeik, P., Sanchez-Gasca, J. J., Senthil, J., & Weber, J. (2015). Generic wind turbine generator models for WECC - A second status report. IEEE Power and Energy Society General Meeting, 2015-September. https://doi.org/10.1109/PESGM.2015.7285645 | spa |
dc.relation.references | Fornasini, E., & Valcher, M. E. (2013). Observability, reconstructibility and state observers of Boolean control networks. IEEE Transactions on Automatic Control, 58(6), 1390–1401. https://doi.org/10.1109/TAC.2012.2231592 | spa |
dc.relation.references | Gautam, D., & Vittal, V. (2009). Impact of DFIG based wind turbine generators on transient and small signal stability of power systems. 2009 IEEE Power and Energy Society General Meeting, PES ’09, 24(3), 1426–1434. https://doi.org/10.1109/PES.2009.5275847 | spa |
dc.relation.references | Global Wind Report Council. (2023). Global wind report 2023. | spa |
dc.relation.references | Gomes, S., Guimarães, C. H. C., Martins, N., & Taranto, G. N. (2018). Damped Nyquist Plot for a pole placement design of power system stabilizers. Electric Power Systems Research, 158, 158–169. https://doi.org/10.1016/j.epsr.2018.01.012 | spa |
dc.relation.references | Gupta, A. K., Verma, K., & Niazi, K. R. (2017). Dynamic impact analysis of DFIG-based wind turbine generators on low-frequency oscillations in power system. IET Generation, Transmission and Distribution, 11(18), 4500–4510. https://doi.org/10.1049/iet-gtd.2017.0308 | spa |
dc.relation.references | Gupta, A. K., Verma, K., & Niazi, K. R. (2019). Robust coordinated control for damping low frequency oscillations in high wind penetration power system. International Transactions on Electrical Energy Systems, 29(5), 1–17. https://doi.org/10.1002/2050-7038.12006 | spa |
dc.relation.references | Gurung, N., Bhattarai, R., & Kamalasadan, S. (2020). Optimal Oscillation Damping Controller Design for Large-Scale Wind Integrated Power Grid. IEEE Transactions on Industry Applications, 56(4), 4225–4235. https://doi.org/10.1109/TIA.2020.2988432 | spa |
dc.relation.references | Gurung, N., & Kamalasadan, S. (2018). Linear-Quadratic Gaussian based Power Oscillation Damping Controller Design for Doubly Fed Induction Generator. IEEE Power and Energy Society General Meeting, 2018-August. https://doi.org/10.1109/PESGM.2018.8586108 | spa |
dc.relation.references | He, P., Arefifar, S. A., Li, C., Wen, F., Ji, Y., & Tao, Y. (2019). Enhancing oscillation damping in an interconnected power system with integrated wind farms using unified power flow controller. Energies, 12(2). https://doi.org/10.3390/en12020322 | spa |
dc.relation.references | IEEE Power Engineering Society. (2006). IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. | spa |
dc.relation.references | IRENA. (2019). Future of Wind: Deployment, investment, technology, grid integration and socio-economic aspects. In International Renewable Energy Agency. www.irena.org/publications | spa |
dc.relation.references | Isbeih, Y., Ghosh, S., Elmoursi, M., & El-Saadany, E. (2021). Online DMDc based model identification approach for transient stability enhancement using wide area measurements. IEEE Transactions on Power Systems, 36(5), 4884–4887. https://doi.org/10.1109/TPWRS.2021.3094331 | spa |
dc.relation.references | Castrillón-Franco, C., Paternina, M. R. A., Reyes, F. E. R., Zamora-Mendez, A., Correa, R. E., & Ortiz-Bejar, J. (2023). Damping Control of Inter-area Oscillations Using non-conventional equipment. 2023 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2023).Accepted | spa |
dc.relation.references | Izdebski, M., Małkowski, R., & Miller, P. (2022). New Performance Indices for Power System Stabilizers. Energies, 15(24). https://doi.org/10.3390/en15249582 | spa |
dc.relation.references | Klein, M., Rogers, G. J., Moorty, S., Kundur, P., Hydro, O., & Toronto, C. (1992). Analytical Investigation of Factors Influencing Power System Stabilizers Performance. In IEEE Transactions on Energy Conversion (Vol. 7, Issue 3). | spa |
dc.relation.references | Kundur, P. (1994). Power System Stability And Control. In McGraw-Hill, Inc (p. 1167). | spa |
dc.relation.references | Lewis, M. (2023). Global installed wind power capacity just reached 1 TW | Electrek. https://electrek.co/2023/06/16/global-installed-wind-power-capacity/ | spa |
dc.relation.references | Li, H., Liu, S., Ji, H., Yang, D., Yang, C., Chen, H., Zhao, B., Hu, Y., & Chen, Z. (2014). Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system. International Journal of Electrical Power and Energy Systems, 61, 279–287. https://doi.org/10.1016/j.ijepes.2014.03.009 | spa |
dc.relation.references | Liao, K., Xu, Y., & Zhou, H. (2019). A robust damping controller for DFIG based on variable-gain sliding mode and Kalman filter disturbance observer. International Journal of Electrical Power and Energy Systems, 107(December 2018), 569–576. https://doi.org/10.1016/j.ijepes.2018.12.018 | spa |
dc.relation.references | Mehta, B., Bhatt, P., & Pandya, V. (2014). Small signal stability analysis of power systems with DFIG based wind power penetration. International Journal of Electrical Power and Energy Systems, 58, 64–74. https://doi.org/10.1016/j.ijepes.2014.01.005 | spa |
dc.relation.references | Miller, N. W., & Sanchez-gasca, J. J. (2008). Modeling of GE Wind Turbine-Generators for Grid Studies Prepared by : May. | spa |
dc.relation.references | Mondal, D., Chakrabarti, A., & Sengupta, A. (2014). Optimal and Robust Control. In Power System Small Signal Stability Analysis and Control (pp. i–ii). Elsevier. https://doi.org/10.1016/b978-0-12-800572-9.09987-x | spa |
dc.relation.references | Mondal, D., Chakrabarti, A., & Sengupta, A. (2020). Power System Small Signal Stability Analysis and Control. | spa |
dc.relation.references | Nkosi, N. R., Bansal, R. C., Adefarati, T., Naidoo, R. M., & Bansal, S. K. (2023). A review of small-signal stability analysis of DFIG-based wind power system. International Journal of Modelling and Simulation, 43(3), 153–170. https://doi.org/10.1080/02286203.2022.2056951 | spa |
dc.relation.references | Noori, A., Jafari Shahbazadeh, M., & Eslami, M. (2020). Designing of wide-area damping controller for stability improvement in a large-scale power system in presence of wind farms and SMES compensator. International Journal of Electrical Power and Energy Systems, 119. https://doi.org/10.1016/j.ijepes.2020.105936 | spa |
dc.relation.references | Ogata, Katsuhiko. (2009). Ingeniería de Control Moderna. Pearson Educación. | spa |
dc.relation.references | Padiyar K. R. (2008). Power system dynamics. www.mhm20.blogfa.com | spa |
dc.relation.references | Paternina, M. R. A., Ramirez-Arredondo, J. M., Lara-Jimenez, J. D., & Zamora-Mendez, A. (2017). Dynamic Equivalents by Modal Decomposition of Tie-Line Active Power Flows. IEEE Transactions on Power Systems, 32(2), 1304–1314. https://doi.org/10.1109/TPWRS.2016.2572601 | spa |
dc.relation.references | Power System Dynamic Performance Committee. (2020). Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies. | spa |
dc.relation.references | Prakash, A., Singh, P., Kumar, K., & Parida, S. K. (2022). Design of a Reduced-Order WADC for Wind Turbine System-Integrated Power System. IEEE Transactions on Industry Applications, 58(3), 3250–3260. https://doi.org/10.1109/TIA.2022.3159319 | spa |
dc.relation.references | Prakash, A., Tiwari, R. K., Kumar, K., & Parida, S. K. (2022). Interacting Multiple Model Strategy Based Adaptive Wide-Area Damping Controller Design for Wind Farm Embedded Power System. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2022.3231647 | spa |
dc.relation.references | Rawal, M., Nauityal, D. C., & Rawat, M. S. (2021). Analysis of small signal stability in DFIG integrated power system. Proceedings of the 2021 1st International Conference on Advances in Electrical, Computing, Communications and Sustainable Technologies, ICAECT 2021. https://doi.org/10.1109/ICAECT49130.2021.9392505 | spa |
dc.relation.references | Rergis, C. M., Kamwa, I., Khazaka, R., & Messina, A. R. (2019). A Loewner Interpolation Method for Power System Identification and Order Reduction. IEEE Transactions on Power Systems, 34(3), 1834–1844. https://doi.org/10.1109/TPWRS.2018.2884655 | spa |
dc.relation.references | Rokni Nakhi, P., & Ahmadi Kamarposhti, M. (2020). Multi objective design of type II fuzzy based power system stabilizer for power system with wind farm turbine considering uncertainty. International Transactions on Electrical Energy Systems, 30(4). https://doi.org/10.1002/2050-7038.12285 | spa |
dc.relation.references | Sauer, P. W., Pai, M. A., & Chow, J. H. (2017). Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox. In Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox 2e. https://doi.org/10.1002/9781119355755 | spa |
dc.relation.references | Shahgholian, G. (2013). Review of Power System Stabilizer: Application, Modeling, Analysys and Control Strategy. International Journal on "Technical and Physical Problems of Engineering. www.iotpe.com | spa |
dc.relation.references | Sharma, A., Sahu, B., Triphathy, N. P., Nagar, L. K., & Patidar, N. P. (2014). Time latency compensation for wide area damping controller. Proceedings of 6th IEEE Power India International Conference, PIICON 2014, 2–7. https://doi.org/10.1109/34084POWERI.2014.7117609 | spa |
dc.relation.references | Shen, Y., Liang, L., Zhang, B., Liao, K., Xu, Y., Yang, H., & Yu, Q. (2018). Power Modulation of DFIG-based Wind Turbines for System Oscillation Damping. International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018, 1124–1129. https://doi.org/10.1109/ISGT-Asia.2018.8467869 | spa |
dc.relation.references | Simon, L., & Swarup, S. (2017). Wide Area Oscillation Damping Control with DFIG based Wind Turbines using WAMS. | spa |
dc.relation.references | Slootweg, J. G., & Kling, W. L. (2003). The impact of large scale wind power generation on power system oscillations. Electric Power Systems Research, 67(1), 9–20. https://doi.org/10.1016/S0378-7796(03)00089-0 | spa |
dc.relation.references | Vittal, E., O’Malley, M., & Keane, A. (2012). Rotor angle stability with high penetrations of wind generation. IEEE Transactions on Power Systems, 27(1), 353–362. https://doi.org/10.1109/TPWRS.2011.2161097 | spa |
dc.relation.references | Wilches-Bernal, F. (2015). Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification. PhD Thesis, 2015(August 2015). | spa |
dc.relation.references | Wilches-Bernal, F., Chow, J. H., & Sanchez-Gasca, J. J. (2016). Impact of wind generation power electronic interface on power system inter-area oscillations. IEEE Power and Energy Society General Meeting, 2016-Novem(July), 1–5. https://doi.org/10.1109/PESGM.2016.7741212 | spa |
dc.relation.references | Wilches-Bernal, F., Lackner, C., Chow, J. H., & Sanchez-Gasca, J. J. (2016). Small-signal analysis of power system swing modes as affected by wind turbine-generators. 2016 IEEE Power and Energy Conference at Illinois, PECI 2016, February, 7–12. https://doi.org/10.1109/PECI.2016.7459228 | spa |
dc.relation.references | Wilches-Bernal, F., Lackner, C., Chow, J. H., & Sanchez-Gasca, J. J. (2019). Effects of wind turbine generators on inter-area oscillations and damping control design. Proceedings of the Annual Hawaii International Conference on System Sciences, 2019-Janua(d), 3649–3658. https://doi.org/10.24251/hicss.2019.441 | spa |
dc.relation.references | World Energy Trade. (2019). ¿Cómo funcionan los aerogeneradores? https://www.worldenergytrade.com/energias-alternativas/energia-eolica/como-funcionan-los-aerogeneradores | spa |
dc.relation.references | Yao, W., Jiang, L., Wen, J., Wu, Q., & Cheng, S. (2015). Wide-area damping controller for power system interarea oscillations: A networked predictive control approach. IEEE Transactions on Control Systems Technology, 23(1), 27–36. https://doi.org/10.1109/TCST.2014.2311852 | spa |
dc.relation.references | Yousefian, R., Bhattarai, R., & Kamalasadan, S. (2017). Transient Stability Enhancement of Power Grid with Integrated Wide Area Control of Wind Farms and Synchronous Generators. IEEE Transactions on Power Systems, 32(6), 4818–4831. https://doi.org/10.1109/TPWRS.2017.2676138 | spa |
dc.relation.references | Zelaya Arrazabal, F. A. (2019). Identificación de modelos de sistemas de potencia basado en datos. Universidad Nacional Autonoma de Mexico. | spa |
dc.relation.references | Zelaya, F. A., Chow, J. H., Paternina, M. R. A., & Zamora, A. (2020). Power system linear model selective identification by exploiting the Loewner interpolation method. IEEE Power and Energy Society General Meeting, 2020-August. https://doi.org/10.1109/PESGM41954.2020.9282088 | spa |
dc.relation.references | Zhang, X., Lu, C., Liu, S., & Wang, X. (2016). A review on wide-area damping control to restrain inter-area low frequency oscillation for large-scale power systems with increasing renewable generation. Renewable and Sustainable Energy Reviews, 57, 45–58. https://doi.org/10.1016/j.rser.2015.12.167 | spa |
dc.relation.references | Zhang, Z., & Zhao, X. (2022). Control of HVDC-Connected PMSG-Based Wind Turbines for Power System Oscillation Damping. 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2022. https://doi.org/10.1109/PEDG54999.2022.9923123 | spa |
dc.relation.references | Zhao, Y., Zhu, L., Xiao, H., Liu, Y., Farantatos, E., Patel, M., Darvishi, A., & Fardanesh, B. (2019). An Adaptive Wide-Area Damping Controller via FACTS for the New York State Grid Using a Measurement-Driven Model. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica | spa |
dc.subject.lemb | Energía eólica | spa |
dc.subject.lemb | Recursos energéticos | spa |
dc.subject.lemb | Recursos energéticos renovables | spa |
dc.subject.lemb | Renewable energy sources | eng |
dc.subject.lemb | Wind power | eng |
dc.subject.lemb | Power resources | eng |
dc.subject.proposal | Energías renovables | spa |
dc.subject.proposal | Energía eólica | spa |
dc.subject.proposal | Estabilidad de pequeña señal, | spa |
dc.subject.proposal | Modos oscilatorios | spa |
dc.subject.proposal | Control LQG | spa |
dc.subject.proposal | Identificación basada en medidas | spa |
dc.subject.proposal | Sistemas de energía eléctrica. | spa |
dc.subject.proposal | Renewable energy | eng |
dc.subject.proposal | Wind energy | eng |
dc.subject.proposal | Small signal stability | eng |
dc.subject.proposal | Oscillatory modes | eng |
dc.subject.proposal | LQG control | eng |
dc.subject.proposal | Measurement-based identification | eng |
dc.subject.proposal | Electric power systems. | eng |
dc.title | Control de oscilaciones electromecánicas en sistemas de energía eléctrica mediante plantas de generación eólica | spa |
dc.title.translated | Control of electromechanical oscillations in electrical energy systems using wind turbine generation | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1047996682.2023.pdf
- Tamaño:
- 4.62 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: