Factibilidad técnica para la fabricación de herramientas de punzonado en caliente en acero M2 a través de manufactura aditiva FFF-SDS*: *FFF-SDS (Fused Filament Fabrication – Shape Debinding Sintering)

dc.contributor.advisorHerrera Quintero, Liz Karenspa
dc.contributor.advisorGil Plazas, Andrés Fernandospa
dc.contributor.authorAngarita Florez, Andrés Felipespa
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)spa
dc.date.accessioned2025-10-27T20:37:46Z
dc.date.available2025-10-27T20:37:46Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa manufactura aditiva, en la actualidad, se destaca como una tecnología emergente de alto potencial, brindando oportunidades tanto en investigación como en la creación de prototipos funcionales a escala. El siguiente trabajo presenta la obtención de herramientas de punzonado en caliente en acero M2 mediante la tecnología de manufactura aditiva FFF-SDS identificando su comportamiento en un entorno real de servicio. El presente trabajo detalla la metodología para la producción del filamento metálico utilizado, así como la impresión de probetas cilíndricas para establecer parámetros enfocados en la densidad de la pieza en verde. Posteriormente, se imprimieron probetas tipo moneda para analizar la influencia de la temperatura y tiempo de sinterización en rangos de 1250°C a 1350°C y entre 30 minutos a 60 minutos, presentando dos mecanismos de sinterización, en fase sólida y fase liquida supersólida, presentando una matriz martensítica y segregación de carburos con la diferencia de bajas porosidades y alta contracciones volumétricas en la fase liquida supersólida a 1350°C. Con base en estos resultados, se realizaron tratamientos térmicos de temple y triple revenido con el fin de aumentar la dureza y resistencia mecánica de las herramientas de punzonado, donde finalmente se estudia el comportamiento en servicio de las herramientas de punzonado en la empresa IMAL, punzonando ballestas de acero SAE 5160H. Las herramientas fabricadas se sometieron a un control dimensional estricto y fueron analizadas mediante microscopía óptica y electrónica para estudiar las deformaciones plásticas y las fracturas súbitas ocurridas durante el servicio. (Texto tomado de la fuente).spa
dc.description.abstractAdditive manufacturing currently stands out as a high-potential emerging technology, offering opportunities both in research and in the development of functional prototypes on a scale. This work presents the production of hot punching tools in M2 steel using FFF- SDS additive manufacturing technology, evaluating their behavior in a real service environment. The methodology for producing the metal filament is detailed, followed by the printing of cylindrical specimens to establish parameters focused on the green part density. Subsequently, coin-shaped specimens were printed to analyze the influence of sintering temperature and time, ranging from 1250 °C to 1350 °C and from 30 to 60 minutes. Two sintering mechanisms were identified: solid-state sintering and supersolidus liquid-phase sintering, the latter occurring at 1350 °C, characterized by a martensitic matrix, carbide segregation, low porosity, and high volumetric shrinkage. Based on these results, quenching and triple tempering heat treatments were applied to increase the hardness and mechanical strength of the punching tools. Finally, the in-service performance of the tools was evaluated at IMAL, where they were used for hot punching of SAE 5160H steel springs. The fabricated tools underwent strict dimensional control and were analyzed using optical and electron microscopy to examine the plastic deformations and the sudden fractures that occurred during service.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaPulvimetalurgia y manufactura aditivaspa
dc.format.extentxvii, 165 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89066
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesC. S. Sierra, “El sector industrial generó 25,97 billones durante los primeros tres meses de este año,” Oct. 2021, [Online]. Available: https://www.larepublica.co/economia/el-sector-manufacturero-genero-25-97- billones-en-el-primer-trimestre-de-este-ano-3170855
dc.relation.referencesN. S. Myers and R. M. German, “Supersolidus liquid phase sintering of injection molded M2 tool steel,” International Journal of Powder Metallurgy, vol. 35, no. 6, pp. 45–51, 1999.
dc.relation.referencesJ. D. Rubiano Buitrago, A. F. Gil Plazas, L. A. Boyacá Mendivelso, and L. K. Herrera Quintero, “Fused Filament Fabrication of WC-10Co Hardmetals: A Study on Binder Formulations and Printing Variables,” Journal of Manufacturing and Materials Processing, vol. 8, no. 3, 2024, doi: 10.3390/jmmp8030118.
dc.relation.referencesJ. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, “Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives,” Materials, vol. 11, no. 5, 2018, doi: 10.3390/ma11050840.
dc.relation.referencesM. Spoerk, C. Holzer, and J. Gonzalez-Gutierrez, “Material extrusion‐based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage,” J Appl Polym Sci, vol. 137, Feb. 2019, doi: 10.1002/app.48545.
dc.relation.referencesS. A. M. Tofail, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Materials Today, vol. 21, no. 1, pp. 22–37, 2018, doi: https://doi.org/10.1016/j.mattod.2017.07.001.
dc.relation.referencesJ. Horvath, “A Brief History of 3D Printing,” in Mastering 3D Printing, Berkeley, CA: Apress, 2014, pp. 3–10. doi: 10.1007/978-1-4842-0025-4_1.
dc.relation.referencesR. K. Enneti, V. P. Onbattuvelli, and S. V Atre, “4 - Powder binder formulation and compound manufacture in Metals and Surface Engineering. , Woodhead Publishing, 2012, pp. 64–92. doi: https://doi.org/10.1533/9780857096234.1.64. metal injection molding (MIM),” in Handbook of Metal Injection Molding, D. F. Heaney, Ed., in Woodhead Publishing Series in
dc.relation.referencesR. M. German, P. Suri, and S. J. Park, “Review: Liquid phase sintering,” J Mater Sci, vol. 44, no. 1, pp. 1–39, 2009.
dc.relation.referencesC. Kukla, J. Gonzalez-Gutierrez, I. Duretek, S. Schuschnigg, and C. Holzer, “Effect of particle size on the properties of highly-filled polymers for fused filament fabrication,” in AIP Conference Proceedings, 2017.
dc.relation.referencesJ. Gonzalez-Gutierrez, S. Cano Cano, S. Schuschnigg, C. Holzer, and C. Kukla, “Highly-filled Polymers for Fused Filament Fabrication,” Feb. 2018.
dc.relation.referencesS. Coelho et al., “Development of formulations of WC-Co filament for Fused Filament Fabrication,” Jul. 2020.
dc.relation.referencesJ. Gonzalez-Gutierrez, R. Guráň, M. Spoerk, C. Holzer, D. Godec, and C. Kukla, “3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts,” Metalurgija, vol. 57, no. 1–2, pp. 117–120, 2018.
dc.relation.referencesW. Lengauer, I. Duretek, M. Fürst, J. Gonzalez-Gutierrez, S. Schuschnigg, and C. Kukla, Fused-Filament Printing of Hardmetals and Cermets with Feedstock from RTP Powders. 2019.
dc.relation.referencesFILASTRUDER, “FILASTRUDER KIT,” https://www.filastruder.com/collections/filastruders- accessories/products/filastruder-kit?variant=323882043. Accessed: Feb. 24, 2025. [Online]. Available: https://www.filastruder.com/collections/filastruders- accessories/products/filastruder-kit?variant=323882043
dc.relation.referencesFILASTRUDER, “FILAWINDER .” Accessed: Feb. 24, 2025. [Online]. Available: https://www.filastruder.com/products/filawinder
dc.relation.referencesS. Banerjee and C. J. Joens, “Debinding and sintering of metal injection molding (MIM) components,” 2012, pp. 133–180. doi: 10.1533/9780857096234.1.133.
dc.relation.referencesJ. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, and C. Holzer, “Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing,” Mater Lett, vol. 248, pp. 165–168, Feb. 2019, doi: 10.1016/j.matlet.2019.04.024.
dc.relation.referencesInstituto Nacional de Seguridad y Salud en el Trabajo, “DOCUMENTACIÓN TOXICOLÓGICA PARA EL ESTABLECIMIENTO DEL LÍMITE DE EXPOSICIÓN PROFESIONAL DEL CICLOHEXANO,” 2009. Accessed: Feb.17, 2025. [Online]. Available: https://www.insst.es/documents/94886/288927/DLEP10.pdf/b3f1ddee-daab- 4488-8386-257f0c013456
dc.relation.referencesR. K. Enneti, S. J. Park, R. M. German, and S. V. Atre, “Review: Thermal debinding process in particulate materials processing,” Feb. 01, 2012. doi: 10.1080/10426914.2011.560233.
dc.relation.referencesN. S. Myers and D. F. Heaney, “Metal injection molding (MIM) of high-speed tool steels,” in Handbook of Metal Injection Molding, 2012, pp. 516–525. doi: 10.1533/9780857096234.4.516.
dc.relation.referencesS. S. A. de C.V., “Acero SISA M2 - Acero Rápido,” 2024. [Online]. Available: https://sisa1.com.mx/wp-content/uploads/Acero%20SISA%20M2.pdf
dc.relation.referencesR. M. German, P. Suri, and S. J. Park, “Review: liquid phase sintering,” J Mater Sci, vol. 44, pp. 1–39, 2009, [Online]. Available: https://api.semanticscholar.org/CorpusID:136777748
dc.relation.referencesR. M. German, “Supersolidus liquid-phase sintering of prealloyed powders,” Metallurgical and Materials Transactions A, vol. 28, no. 7, pp. 1553–1567, 1997, doi: 10.1007/s11661-997-0217-0.
dc.relation.referencesR. Singh, “6 - Classification of steels,” in Applied Welding Engineering (Third Edition), Third Edition., R. Singh, Ed., Butterworth-Heinemann, 2020, pp. 53– 60. doi: https://doi.org/10.1016/B978-0-12-821348-3.00014-8.
dc.relation.referencesR. De Oro Calderon, M. Jalili Ziyaeian, J. Dunkley, C. Gierl-Mayer, and H. Danninger, “New masteralloys for sintered high strength steels – the attractive route between mixing and prealloying,” Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings), pp. 15–27, Feb. 2018, doi: 10.17073/1997-308X-2018-4-15-27.
dc.relation.referencesS. Banerjee, V. Gemenetzis, and F. Thümmler, “Liquid Phase Formation During Sintering of Low-Alloy Steels with Carbide-Base Master Alloy Additions,” Powder Metallurgy, vol. 23, no. 3, pp. 126–129, 1980, doi: 10.1179/pom.1980.23.3.126.
dc.relation.referencesR. M. German, “Densification of prealloyed tool steel powders : Sintering model,” International Journal of Powder Metallurgy, vol. 33, pp. 49–61, 1997, [Online]. Available: https://api.semanticscholar.org/CorpusID:221899208
dc.relation.references“Computer model for the sintering densification of injection molded M2 tool steel,” International Journal of Powder Metallurgy (Princeton, New Jersey), vol. 35, p. p 9, Feb. 1999.
dc.relation.referencesU. de Santiago de Chile, “Capítulo 6: Aleaciones Hierro-Carbono (Diagrama Hierro-Carbono),” 2024. [Online]. Available: https://www.metalurgia.usach.cl/sites/metalurgia/files/documentos/capitulo06f e-c.pdf
dc.relation.referencesE. UNIVERSIDADDECHIL, “DIAGRAMAS DE FASE PARA DOS Y TRES COMPONENTES”.
dc.relation.referencesH. Halfa, “Thermodynamic Calculation for Silicon Modified AISI M2 High Speed Tool Steel,” Journal of Minerals and Materials Characterization and Engineering, vol. 1, pp. 257–270, 2013, doi: 10.4236/jmmce.2013.15040.
dc.relation.referencesL. Herrera, J. Rubiano, A. Gil Plazas, and A. Boyaca, “Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication,” Revista Facultad de Ingeniería, vol. 31, Mar. 2022, doi: 10.19053/01211129.v31.n60.2022.13913.
dc.relation.referencesASM Handbook Committee, ASM Handbook, Volume 9, Metallography and Microstructures. United States of America: Metals Handbook, 1998.
dc.relation.referencesN. Qaud, “Additive manufacturing technologies at Sulzer,” Sulzer Technical Review, vol. 100, pp. 4–7, Mar. 2018.
dc.relation.referencesJ. A. Naranjo, C. Berges, A. Gallego, and G. Herranz, “A novel printable high- speed steel filament: Towards the solution for wear-resistant customized tools by AM alternative,” Journal of Materials Research and Technology, vol. 11, pp. 1534–1547, 2021, doi: https://doi.org/10.1016/j.jmrt.2021.02.001.
dc.relation.referencesG. Herranz, B. Levenfeld, and A. Várez, “Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process,” Materials Science Forum, vol. 534–536, pp. 353–356, 2007, doi: 10.4028/www.scientific.net/MSF.534-536.353.
dc.relation.referencesStainless.eu, “Calculador de la conversión de la dureza del acero,” 2024. [Online]. Available: https://www.stainless.eu/es/calculador-de-la-conversion- de-la-dureza-del-acero/
dc.relation.referencesI. Todd and A. T. Sidambe, “6 - Developments in metal injection moulding (MIM),” in Advances in Powder Metallurgy, I. Chang and Y. Zhao, Eds., in Woodhead Publishing Series in Metals and Surface Engineering. , Woodhead Publishing, 2013, pp. 109–146. doi: https://doi.org/10.1533/9780857098900.1.109.
dc.relation.referencesJ. Damon, P. Schüßler, F. Mühl, S. Dietrich, and V. Schulze, “Short-time induction heat treatment of high speed steel AISI M2: Laboratory proof of concept and application-related component tests,” Mater Des, vol. 230, p. 111991, 2023, doi: https://doi.org/10.1016/j.matdes.2023.111991.
dc.relation.referencesIronman 4x4 Colombia, “Resortes Tipo Ballestas - Ironman 4x4 Colombia,” 2025. [Online]. Available: https://ironman4x4colombia.com/product/resortes- tipo-ballestas/
dc.relation.referencesIMAL S.A.S., “¿Quiénes Somos? - IMAL S.A.S.,” 2025. [Online]. Available: https://www.imal.com.co/la-compania/quienes-somos
dc.relation.referencesE. H. Judd, Spring Design Manual. Warrendale, PA: SAE International, 1996.
dc.relation.referencesA. Viloria, H. Hernandes, Y. Arango, A. Jimenez, and H. Mendoza, “Mejoramiento del Proceso de Granallado para Resortes de Ballesta Utilizando Medición de Esfuerzos Residuales por Difracción de Rayos X,” Ingeniería e Investigación, vol. 24, no. 003, pp. 33–40, 2004.
dc.relation.referencesD. Mantilla Nova, “Diseño óptimo de resortes tipo ballesta para la suspensión de un vehículo comercial considerando las condiciones dinámicas.” [Online]. Available: https://repositorio.unal.edu.co/handle/unal/54697
dc.relation.referencesM. A. Calle, D. B. Benitez, N. B. de Lima, and E. Gonzalves, “Importance of considering a material micro-failure criterion in the numerical modelling of the shot peening process applied to parabolic leaf springs,” Latin American Journal of Solids and Structures, vol. 7, pp. 21–40, 2010.
dc.relation.referencesM. A. Cavalieri, D. A. Berazategui, M. B. Goldschmit, E. N. Dvorkin, L. Montelatici, and D. Wolter, “Modeling of the Piercing Process: Preliminary Results,” in 14th Rolling Conference, Argentina, 2002, pp. 300–310.
dc.relation.referencesS. Mateos, C. Rico, E. Cuesta, and G. Valiño, “Aspectos Analíticos y tecnológicos del proceso de punzonado de chapa,” MetalUnivers, vol. 5, pp. 32–45, Mar. 2002, doi: 10.23850/22565035.804.
dc.relation.referencesM. Cuellar, “Selección de aceros para punzonado de chapas gruesas. Parte I. Selección de aceros para troquelar en casos especiales.,” Informador Técnico, vol. 39, p. 7, Mar. 1989, doi: 10.23850/22565035.1248.
dc.relation.referencesD. Liedtke, “Über das Härten und Anlassen von Schnellarbeitsstahl in Theorie und Praxis,” vol. 32, no. 2, pp. 49–60, 1977, doi: doi:10.1515/htm-1977- 320202.
dc.relation.referencesM. Cuellar, “Selección de aceros para punzonado de chapas gruesas. Parte II tratamiento térmico,” Informador Técnico, vol. 40, p. 8, Mar. 1989, doi: 10.23850/22565035.1243.
dc.relation.referencesA. S. M. I. H. Committee, Ed., ASM Metals Handbook, Volume 4: Heat Treating. Materials Park, OH: ASM International, 1991.
dc.relation.referencesJ. L. Dossett and G. E. Totten, Heat Treating of Irons and Steels, vol. 4D. in ASM Handbook, vol. 4D. Materials Park, OH: ASM International, 2014.
dc.relation.referencesT. H. Yu, C. Y. Chen, and J.-R. Yang, “Decomposition of Retained Austenite in a High-Speed Steel GPM A30,” J Mater Eng Perform, vol. 16, pp. 102–108, Feb. 2007, doi: 10.1007/s11665-006-9016-9.
dc.relation.referencesA. Kulmburg, “Beitrag zur Wärmebehandlung von Schnellarbeitsstählen in Vakuumöfen,” vol. 46, no. 3, pp. 131–136, 1991, doi: doi:10.1515/htm-1991- 460303.
dc.relation.referencesASM International, ASM Handbook, Volume 4A: Steel Heat Treating Fundamentals and Processes. Materials Park, OH, USA: ASM International, 2013.
dc.relation.referencesP. Director Paul Whittaker et al., “MIM 2018 Keynote Address: Benedikt Blitz looks at Metal Powders and MIM from a global steel perspective,” 2020.
dc.relation.referencesT. Mioković, V. Schulze, O. Vöhringer, and D. Löhe, “Prediction of phase transformations during laser surface hardening of AISI 4140 including the effects of inhomogeneous austenite formation,” Materials Science and Engineering: A, vol. 435–436, pp. 547–555, 2006, doi: https://doi.org/10.1016/j.msea.2006.07.037.
dc.relation.referencesI. Tool, “Tabla de Conversión de Dureza,” 2024. [Online]. Available: http://www.izartool.com/images/Tabla_conversion.pdf
dc.relation.referencesU. de Cantabria, “Tema IV: Comportamiento Mecánico,” 2024. [Online]. Available: https://ocw.unican.es/pluginfile.php/1874/course/section/1515/Tema4.pdf
dc.relation.referencesAT-Machining, “Tolerancias de ingeniería: definición, tipos y ajustes,” 2025. [Online]. Available: https://at-machining.com/es/engineering-tolerances/
dc.relation.referencesMecos, “Soluciones técnicas fabricación chapa,” 2017. [Online]. Available: https://www.mecos.es/files/articulos/Soluciones-tecnicas-fabricacion- chapa.pdf
dc.relation.referencesE. P. DeGarmo, J. T. Black, and R. A. Kohser, Materials and Processes in Manufacturing, 11th ed. Wiley, 2011.
dc.relation.referencesI. Cristofolini, A. Rao, C. Menapace, and A. Molinari, “Influence of sintering temperature on the shrinkage and geometrical characteristics of steel parts produced by powder metallurgy,” J Mater Process Technol, vol. 210, no. 13, pp. 1716–1725, 2010, doi: https://doi.org/10.1016/j.jmatprotec.2010.06.002.
dc.relation.references“Powder_Metallurgy_of_Iron_and_Steel”.
dc.relation.referencesA. Safarian, M. Subaşi, and Ç. Karataş, “Reducing debinding time in thick components fabricated by powder injection molding,” Paper presented at “7th International Powder Metallurgy Conference and Exhibition” (TPM-7), 24–28 June 2014, Gazi University, Ankara, Turkey., vol. 106, no. 5, pp. 527–531, 2015, doi: doi:10.3139/146.111212.
dc.relation.referencesO. Yılmaz, K. Samet, H. Koçak, and Ç. Karataş, “An investigation of manufacturing of assembled part by using chromium interface in powder injection molding process,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 34, no. 2, pp. 621–634, 2019, doi: 10.17341/gazimmfd.416519.
dc.relation.referencesM. Belgacem, B. Thierry, and G. Jean-Claude, “Investigations on thermal debinding process for fine 316L stainless steel feedstocks and identification of kinetic parameters from coupling experiments and finite element simulations,” Powder Technol, vol. 235, pp. 192–202, 2013, doi: https://doi.org/10.1016/j.powtec.2012.10.006.
dc.relation.referencesG. E. Totten, Steel Heat Treatment: Metallurgy and Technologies. CRC Press, 2006.
dc.relation.referencesHFM, “Prensa de forja hidráulica: una guía completa,” HFM Press, 2024, [Online]. Available: https://www.hfmpress.com/es/prensa-de-forja-hidraulica- una-guia-completa/
dc.relation.referencesS. Mateos, C. Rico, E. Cuesta, and G. Valiño, “Equipos y tecnologías para corte de chapa. Aspectos analíticos y tecnológicos del proceso de punzonado de chapa (1 parte),” Informador Técnico, vol. 67, p. 49, Apr. 2003, doi: 10.23850/22565035.824.
dc.relation.referencesH. A. Héctor and E. M. Edgar, “Mecánica de fractura y análisis de falla,” 2002. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/49665
dc.relation.referencesH. H. A. Édgar Espejo Mora, Análisis de fallas de estructuras y elementos mecánicos, 1.a ed. Bogotá: Editorial UNAL - Universidad Nacional de Colombia, 2017. [Online]. Available: https://portaldelibros.unal.edu.co/gpd- anyalisis-de-fallas-de-estructuras-y-elementos-mecyanicos-9789587830224- 667e35308881c.html
dc.relation.referencesF. Suárez, “Estudio de la rotura en barras de acero. Aspectos experimentales y numéricos.,” 2013.
dc.relation.referencesG. Atxaga, A. Pelayo, I. FUNDACIÓN, and S. Sebastián, “ESTUDIO DE LA ROTURA DE UN CONJUNTO DE ARANDELAS”.
dc.relation.referencesA. A. Tafti, V. Demers, S. M. Majdi, G. Vachon, and V. Brailovski, “Effect of Thermal Debinding Conditions on the Sintered Density of Low-Pressure Powder Injection Molded Iron Parts,” Metals (Basel), vol. 11, no. 2, 2021, doi: 10.3390/met11020264.
dc.relation.referencesE. Medvedovski and M. Peltsman, “Low Pressure Injection Moulding Mass Production Technology of Complex Shape Advanced Ceramic Components,” Advances in Applied Ceramics, vol. 111, Apr. 2012, doi: 10.1179/1743676112Y.0000000025.
dc.relation.referencesW. da Silveira, P. A. P. Wendhausen, and A. N. Klein, “Study of the Debinding Rate on MIM Parts Using Plasma Assisted Debinding,” Materials Science Forum, vol. 591–593, pp. 229–234, 2008, doi: 10.4028/www.scientific.net/MSF.591-593.229.
dc.relation.referencesL. Gorjan, A. Dakskobler, and T. Kosmač, “Strength Evolution of Injection- Molded Ceramic Parts During Wick-Debinding,” Journal of the American Ceramic Society, vol. 95, no. 1, pp. 188–193, 2012, doi: https://doi.org/10.1111/j.1551-2916.2011.04872.x.
dc.relation.referencesPrecision Punch & Tooling, “Standard M2 Steel Punch - QB.008,” 2025. [Online]. Available: https://precisionpunch.com/shop/qb/standard-m2-steel/qb- 008.html
dc.relation.referencesJ. Owen, “Metal 3D Printing with BASF Ultrafuse® 316L,” Jun. 2023. [Online]. Available: https://shop3duniverse.com/blogs/3d-printing-materials/metal-3d- printing-with-basf-ultrafuse-316l
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicosspa
dc.subject.proposalManufactura Aditivaspa
dc.subject.proposalSinterizaciónspa
dc.subject.proposalTratamientos Térmicosspa
dc.subject.proposalComportamiento en serviciospa
dc.subject.proposalFused Filament Fabricationspa
dc.subject.proposalShape Debinding Sinteringspa
dc.subject.proposalAISI M2spa
dc.subject.proposalAISI M2eng
dc.subject.proposalShape Debinding Sinteringeng
dc.subject.proposalFused Filament Fabricationeng
dc.subject.proposalAdditive manufacturingeng
dc.subject.proposalSinteringeng
dc.subject.proposalHeat treatmentseng
dc.subject.proposalIn-service behavioreng
dc.subject.unescoAcerospa
dc.subject.unescoSteeleng
dc.subject.unescoIngeniería de la producciónspa
dc.subject.unescoProduction engineeringeng
dc.subject.unescoIngeniería térmicaspa
dc.subject.unescoThermal engineeringeng
dc.titleFactibilidad técnica para la fabricación de herramientas de punzonado en caliente en acero M2 a través de manufactura aditiva FFF-SDS*: *FFF-SDS (Fused Filament Fabrication – Shape Debinding Sintering)spa
dc.title.translatedTechnical feasibility for the manufacture of hot punching tools in M2 steel using additive manufacturing FFF-SDS*: *FFF-SDS (Fused Filament Fabrication – Shape Debinding Sintering)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Factibilidad técnica para la fabricación de herramientas de punzonado en caliente en acero M2 a través de manufactura aditiva FFF-SDS.pdf
Tamaño:
7.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: