The ADER-DG Numerical Method for hydrodynamics
dc.contributor.advisor | Castañeda Colorado, Leonardo | spa |
dc.contributor.author | Suárez Mantilla, Andres Mauricio | spa |
dc.contributor.researchgroup | Grupo de Astronomía Galáctica, Gravitación y Cosmología | spa |
dc.date.accessioned | 2025-09-19T17:20:13Z | |
dc.date.available | 2025-09-19T17:20:13Z | |
dc.date.issued | 2025-09-14 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | This thesis explores the ADER-DG (Arbitrary DERivatives – Discontinuous Galerkin) method as a high-order numerical scheme for solving hydrodynamic problems involving shock-wave interactions. Beginning with the theoretical background of hyperbolic conservation laws and the Riemann problem, the study develops the ADER methodology through both the classical Cauchy–Kowalewski procedure and its reformulation via the Discontinuous Galerkin predictor. A numerical solver was implemented within the ExaHyPE simulation framework, adapted to handle challenging benchmark tests such as the Sod shock tube, the Shu–Osher problem, and the Woodward–Colella blast wave, as well as multidimensional setups including vortex sheet dynamics and shock–interface interactions. The results demonstrate the capacity of ADER-DG to accurately capture discontinuities, rarefactions, and fine-scale structures, while maintaining stability and efficiency. Special emphasis is placed on the role of WENO reconstructions and subcell limiting for robustness. Beyond its technical contributions, the thesis highlights the relevance of ADER-DG to astrophysical fluid dynamics, where processes like supernova remnants and jet instabilities share analogous physical mechanisms. The work concludes by discussing limitations, future perspectives in higher dimensions and relativistic flows, and the potential use of ADER-DG as a generator of high-quality datasets for physics-informed machine learning. | eng |
dc.description.abstract | Esta tesis explora el método ADER-DG (Arbitrary DERivatives – Discontinuous Galerkin) como un esquema numérico de alto orden para la solución de problemas hidrodinámicos que involucran interacciones de ondas de choque. Partiendo del marco teórico de las leyes de conservación hiperbólicas y del problema de Riemann, se desarrolla la metodología ADER tanto a través del procedimiento clásico de Cauchy–Kowalewski como de su reformulación mediante el predictor de Galerkin discontinuo. Se implementó un solucionador numérico en el marco de simulación ExaHyPE, adaptado para enfrentar pruebas de referencia exigentes como el tubo de choque de Sod, el problema de Shu–Osher y la onda explosiva de Woodward–Colella, así como configuraciones multidimensionales que incluyen la dinámica de láminas de vorticidad y la interacción choque–interfaz. Los resultados demuestran la capacidad de ADER-DG para capturar con precisión discontinuidades, rarefacciones y estructuras a pequeña escala, manteniendo estabilidad y eficiencia. Se resalta el papel de las reconstrucciones WENO y de los limitadores en subceldas para lograr robustez. Más allá de las contribuciones técnicas, la tesis enfatiza la relevancia de ADER-DG en la dinámica de fluidos astrofísica, donde procesos como los remanentes de supernova y las inestabilidades en chorros comparten mecanismos físicos análogos. El trabajo concluye con una discusión sobre limitaciones, perspectivas futuras en mayores dimensiones y flujos relativistas, así como el potencial de ADER-DG como generador de conjuntos de datos de alta calidad para enfoques de machine learning guiados por la física. (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Astronomía | spa |
dc.format.extent | xiii, 151 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88925 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Observatorio Astron´omico Nacional | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Astronomía | spa |
dc.relation.references | ExaHyPE - An Exascale Hyperbolic PDE Engine. software description. Accessed: 2021-02-30 | |
dc.relation.references | Ernazar Abdikamalov, Adam Burrows, Christian D. Ott, David Radice, Luke F. Roberts, and Sean M. Couch, Neutrino-driven turbulent convection and standing accretion shock instability in three-dimensional core-collapse supernovae, The Astrophysical Journal 853 (2018), no. 2, 127. | |
dc.relation.references | A. Achterberg, Chapter 7: Shocks. | |
dc.relation.references | S. Alinhac, Hyperbolic partial di ff erential equations, Universitext, Springer New York, 2009. | |
dc.relation.references | S. Alinhac, Hyperbolic partial di ff erential equations, Universitext, Springer New York, 2009. | |
dc.relation.references | A.M. Anile, Relativistic fluids and magneto-fluids: With applications in astrophysics and plasma physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2005. | |
dc.relation.references | David Arnett, Supernovae and nucleosynthesis: An investigation of the history of matter, from the big bang to the present, Second Edition, Princeton University Press, Princeton, NJ, 2020. | |
dc.relation.references | Dinshaw Balsara, Sudip Garain, and Chi-Wang Shu, An e ffi cient class of weno schemes with adaptive order, Journal of Computational Physics 326 (201609). | |
dc.relation.references | Dinshaw Balsara, Sudip Garain, Allen Taflove, and Gino Montecinos, Computational electrodynamics in material media with constraint-preservation, multidimensional riemann solvers and sub-cell resolution – part ii, higher order fvtd schemes, Journal of Computational Physics 354 (201710). | |
dc.relation.references | Dinshaw S. Balsara, Sudip Garain, and Chi-Wang Shu, A two-dimensional riemann solver with self-similar sub-structure, Journal of Computational Physics 304 (2016), 138–161. | |
dc.relation.references | Debades Bandyopadhyay and Kamales Kar, Supernovae, neutron star physics and nucleosynthesis, Astronomy and Astrophysics Library, Springer, 2022. | |
dc.relation.references | John M. Blondin, Roger A. Chevalier, and Dargan M. Frierson, Pulsar wind nebulae in evolved supernova remnants, The Astrophysical Journal 563 (2001dec), no. 2, 806. | |
dc.relation.references | John M Blondin, Arieh Konigl, and Bruce A Fryxell, Axisymmetric simulations of jet propagation in a uniform medium, The Astrophysical Journal 360 (1990), 370–386. | |
dc.relation.references | P. Bodenheimer, G.P. Laughlin, M. Rozyczka, T. Plewa, H.W. Yorke, and H.W. Yorke, Numerical methods in astrophysics: An introduction, Series in Astronomy and Astrophysics, CRC Press, 2006. | |
dc.relation.references | David Branch and J. Craig Wheeler, Supernova explosions, Astronomy and Astrophysics Library, Springer, 2017. | |
dc.relation.references | Martin Brouillette, The richtmyer–meshkov instability, Annual Review of Fluid Mechanics 34 (2002), 445–468. | |
dc.relation.references | Andreas Burkert, The turbulent interstellar medium, Comptes Rendus Physique 7 (2006), no. 4, 433– 441. | |
dc.relation.references | Jorge Canto and Alejandro C Raga, Jets from young stars: Models and constraints, Revista Mexicana de Astronom´ıa y Astrof´ısica 36 (2000), 37–46. | |
dc.relation.references | T. Chang, G.-Q. Chen, and S. Yang, On the 2-d riemann problem for the compressible euler equations ii: Interaction of contact discontinuities, Discrete and Continuous Dynamical Systems 6 (2000), no. 2, 419–430. | |
dc.relation.references | Hubert Chanson, Applied hydrodynamics: An introduction to ideal and real fluid flows, CRC Press Taylor and Francis Group, 2009. | |
dc.relation.references | T.J. Chung, A. AC04711908], and T.J.A. CHUNG, Computational fluid dynamics, Cambridge University Press, 2002. | |
dc.relation.references | R. Courant and K.O. Friedrichs, Supersonic flow and shock waves, Springer-Verlag, 1948. | |
dc.relation.references | Richard Courant and David Hilbert, Methods of mathematical physics, vol. ii, Interscience Publishers, 1962. | |
dc.relation.references | Owen Cramer, The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and co2 concentration, The Journal of the Acoustical Society of America 93 (1993), no. 5, 2510–2516, available at https://doi.org/10.1121/1.405827. | |
dc.relation.references | Constantine M. Dafermos, Hyperbolic conservation laws in continuum physics, 4th ed., Springer, 2016. | |
dc.relation.references | Bruce T. Draine, Physics of the interstellar and intergalactic medium, Princeton Series in Astrophysics, Princeton University Press, Princeton, NJ, 2011. | |
dc.relation.references | Michael Dumbser, Cedric Enaux, and Eleuterio F. Toro, Finite volume schemes of very high order of accuracy for sti ff hyperbolic balance laws, J. Comput. Phys. 227 (2008), no. 8, 3971–4001. | |
dc.relation.references | Michael Dumbser, Cedric Enaux, and Eleuterio F. Toro, Finite volume schemes of very high order of accuracy for sti ff hyperbolic balance laws, Journal of Computational Physics 227 (April 2008), no. 8, 3971–4001. | |
dc.relation.references | Michael Dumbser and Michael Kaser, Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, Journal of Computational Physics 221 (2007), no. 2, 693–723. | |
dc.relation.references | Michael Dumbser and Claus-Dieter Munz, Building blocks for arbitrary high order discontinuous galerkin schemes, J. Sci. Comput. 27 (2006), no. 1-3, 215–230. | |
dc.relation.references | Michael Dumbser, Olindo Zanotti, Arturo Hidalgo, and Dinshaw Balsara, Ader-weno finite volume schemes with space–time adaptive mesh refinement, Journal of Computational Physics 248 (2013), 257–286. | |
dc.relation.references | Michael Dumbser, Olindo Zanotti, Raphael Loubere, and Steven Diot, A posteriori subcell limiting of the discontinuous galerkin finite element method for hyperbolic conservation laws, J. Computational Physics 278 (2014), 47–75. | |
dc.relation.references | L.C. Evans and American Mathematical Society, Partial differential equations, Graduate studies in mathematics, American Mathematical Society, 1998. | |
dc.relation.references | Sam AO Falle, The structure of radiatively cooling jets, Monthly Notices of the Royal Astronomical Society 250 (1991), 581–596. | |
dc.relation.references | Francesco Fambri, Michael Dumbser, and Olindo Zanotti, Space–time adaptive ader-dg schemes for dissipative flows: Compressible navier–stokes and resistive mhd equations, Computer Physics Communications 220 (2017), 297 –318. | |
dc.relation.references | Stanley J. Farlow, Partial di ff erential equations for scientists and engineers, Dover Publications, 1993. | |
dc.relation.references | Adam Frank, Tom P Ray, Sylvie Cabrit, Patrick Hartigan, Hector G Arce, Francesca Bacciotti, John Bally, Myriam Benisty, Jochen Eisloeffel, and Manuel G¨udel, Jets and outflows from star to cloud: Observations confront theory, Protostars and Planets VI 6 (2014), 451–474. | |
dc.relation.references | Forrest W. Glines, Kristian R. C. Beckwith, Joshua R. Braun, Eric C. Cyr, Curtis C. Ober, Matthew Bettencourt, Keith L. Cartwright, Sidafa Conde, Sean T. Miller, Nicholas Roberds, Nathan V. Roberts, Matthew S. Swan, and Roger Pawlowski, A robust, performance-portable discontinuous galerkin method for relativistic hydrodynamics (2022). | |
dc.relation.references | Sergei K. Godunov, A di ff erence method for numerical calculation of discontinuous solutions of equations of fluid dynamics, Matematicheskii Sbornik 89 (1959), no. 3, 271–306. | |
dc.relation.references | David Gottlieb and Chi-Wang Shu, On the gibbs phenomenon and its resolution, SIAM Review 39 (1997), no. 4, 644–668, available at https://doi.org/10.1137/S0036144596301390. | |
dc.relation.references | Sigal Gottlieb and Chi wang Shu, Total variation diminishing runge-kutta schemes, Math. Comp 67 (1998), 73–85. | |
dc.relation.references | Fernando F. Grinstein, Johan Larsson, and Eric S. Richardson, Vorticity deposition, structure generation and the approach to self-similarity in shock–shock interactions, Journal of Computational Physics 276 (2014), 465–485. | |
dc.relation.references | Sebastian Haid, Stefanie Walch, Thorsten Naab, Daniel Seifried, Jonathan Mackey, and Andrea Gatto, Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media, Monthly Notices of the Royal Astronomical Society 460 (2016), no. 3, 2962–2976. | |
dc.relation.references | Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner, Solving ordinary di ff erential equations i: Nonsti ff problems, 2nd ed., Springer, 1993. | |
dc.relation.references | Philip E. Hardee, On the configuration and propagation of jets in extragalactic radio sources, The Astrophysical Journal 234 (1979), 47–59. | |
dc.relation.references | Patrick Hartigan, Jon A Morse, and John Raymond, Optical proper motions of herbig-haro objects in hh 1 and hh 2, The Astrophysical Journal 336 (1989), L25–L29. | |
dc.relation.references | Ulrich W. Heinz, Collective flow and viscosity in relativistic heavy-ion collisions, Nuclear Physics A 774 (2006), no. 1-4, 513–522. | |
dc.relation.references | Jan S. Hesthaven and Tim Warburton, Nodal discontinuous galerkin methods: Algorithms, analysis, and applications, Texts in Applied Mathematics, Springer, 2008. | |
dc.relation.references | Peshkov Ilya, Romenski Evgeniy, Fambri Francesco, and Dumbser Michael, A new causal general relativistic formulation for dissipative continuum fluid and solid mechanics and its solution with highorder ader schemes (201910). | |
dc.relation.references | Tsuyoshi Inoue, Jo Shimoda, Yutaka Ohira, and Ryo Yamazaki, Origin of radially aligned magnetic fields in young supernova remnants, The Astrophysical Journal Letters 772 (2013), no. 1, L20. | |
dc.relation.references | Guang-Shan Jiang and Chi-Wang Shu, E ffi cient implementation of weighted eno schemes, Journal of Computational Physics 126 (1996), no. 1, 202 –228. | |
dc.relation.references | B. Koren, A robust upwind discretization method for advection, di ff usion and source terms (C.B. Vreugdenhil and B. Koren, eds.), Notes on Numerical Fluid Mechanics, Vieweg, Germany, 1993 (English). | |
dc.relation.references | Alexander Kurganov and Eitan Tadmor, Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers, Numerical Methods for Partial Differential Equations 18 (2002), no. 5, 584–608. | |
dc.relation.references | H. Lamb, Hydrodynamics, The University Press, 1932. | |
dc.relation.references | L. D. Landau and E. M. Lifshitz, Fluid mechanics, second edition: Volume 6 (course of theoretical physics), 2nd ed., Course of theoretical physics / by L. D. Landau and E. M. Lifshitz, Vol. 6, Butterworth-Heinemann, 1987. | |
dc.relation.references | C.B. Laney and Knovel (Firm), Computational gasdynamics, Cambridge University Press, 1998. | |
dc.relation.references | Dirk P. Laurie, Computation of gauss-type quadrature formulas, Journal of Computational and Applied Mathematics 127 (2001), no. 1, 201–217. Numerical Analysis 2000. Vol. V: Quadrature and Orthogonal Polynomials. | |
dc.relation.references | Peter D. Lax and Robert D. Richtmyer, Survey of the stability of linear finite di ff erence equations, Communications on Pure and Applied Mathematics 9 (1956), no. 2, 267–293. | |
dc.relation.references | R.J. LeVeque, Numerical methods for conservation laws, Lectures in Mathematics ETH Z¨urich, Department of Mathematics Research Institute of Mathematics, Springer, 1992. | |
dc.relation.references | Jiaxuan Li, Yinuo Xing, Chenren Chen, and Xisheng Luo, Atwood-number dependence of the richtmyer–meshkov instability at a heavy–light single-mode interface, Journal of Fluid Mechanics 900 (2025), A29. | |
dc.relation.references | Mordecai-Mark Mac Low, The energy dissipation rate of supersonic, magnetohydrodynamic turbulence in molecular clouds, The Astrophysical Journal 524 (1999oct), no. 1, 169. | |
dc.relation.references | J. Marti and E. Muller, Grid-based methods in relativistic hydrodynamics and magnetohydrodynamics, Living Reviews in Computational Astrophysics 1 (2015). | |
dc.relation.references | Jose Ma Marti and Ewald Muller, The analytical solution of the riemann problem in relativistic hydrodynamics, Journal of Fluid Mechanics 258 (1994), 317–333. | |
dc.relation.references | MDPI, Understanding physics-informed neural networks, Applied Sciences 12 (2022), no. 3, 1234. | |
dc.relation.references | Shugo Michikoshi and Shu-ichiro Inutsuka, A two-fluid analysis of the kelvin-helmholtz instability in the dusty layer of a protoplanetary disk: A path toward planetesimal formation, The Astrophysical Journal 641 (2006), no. 2, 1131–1143. | |
dc.relation.references | M. Micono, S. Massaglia, G. Bodo, P. Rossi, and A. Ferrari, Kelvin-helmholtz instability in three-dimensional radiative jets, Astronomy and Astrophysics 360 (2000), 795–810. | |
dc.relation.references | Yosuke Mizuno, Ken-Ichi Nishikawa, Athina Meli, Philip E. Hardee, and Gerald J. Fishman, Numerical studies of relativistic shock waves interacting with perturbations: magnetic and hydrodynamic turbulence generation, The Astrophysical Journal 864 (2018), no. 2, 113. | |
dc.relation.references | F. Moukalled, L. Mangani, and M. Darwish, The finite volume method in computational fluid dynamics: An advanced introduction with openfoam and matlab, 1st ed., Springer Publishing Company, Incorporated, 2015. | |
dc.relation.references | K. Murawski and P. Stpiczy´nski, Implementation of muscl-hancock method into the c++ code for the euler equations 60 (2012), no. No 1, 45–53. | |
dc.relation.references | Ilya Peshkov, Evgeniy Romenski, Francesco Fambri, and Michael Dumbser, A new causal general relativistic formulation for dissipative continuum fluid and solid mechanics and its solution with highorder ADER schemes (2019), available at 1910.02687. | |
dc.relation.references | Stephen B. Pope, Turbulent flows, Cambridge University Press, Cambridge, 2000. | |
dc.relation.references | Alejandro C Raga, Luc Binette, Jorge Cant´o, and Nuria Calvet, Numerical simulations of herbig-haro objects. i—adiabatic flows, The Astrophysical Journal 364 (1990), 601–609. | |
dc.relation.references | Bo Reipurth and John Bally, Herbig-haro flows: Probes of early stellar evolution, Annual Review of Astronomy and Astrophysics 39 (2001), 403–455. | |
dc.relation.references | L. Rezzolla and O. Zanotti, Relativistic hydrodynamics, EBSCO ebook academic collection, OUP Oxford, 2013. | |
dc.relation.references | P.L Roe, Approximate riemann solvers, parameter vectors, and di ff erence schemes, Journal of Computational Physics 43 (1981), no. 2, 357–372. | |
dc.relation.references | Takayoshi Sano, Katsunobu Nishihara, Chihiro Matsuoka, and Tsuyoshi Inoue, Magnetic field amplification associated with the richtmyer–meshkov instability, The Astrophysical Journal 758 (2012), no. 2, 126. | |
dc.relation.references | Leonid I. Sedov, Similarity and dimensional methods in mechanics, 10th printing, CRC Press, 1993. | |
dc.relation.references | S.N. Shore and Elsevier Science & Technology (Firm), An introduction to astrophysical hydrodynamics, Academic Press, 1992. | |
dc.relation.references | Steven N. Shore, Astrophysical hydrodynamics: An introduction, Wiley-VCH, Weinheim, 2007. | |
dc.relation.references | Chi-Wang Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Review 51 (2009), no. 1, 82–126. | |
dc.relation.references | Chi-Wang Shu and Stanley Osher, E ffi cient implementation of essentially non-oscillatory shockcapturing schemes, ii, Journal of Computational Physics 83 (1989), no. 1, 32–78. | |
dc.relation.references | S. A. Silich, J. Franco, J. Palous, and G. Tenorio-Tagle, Three-dimensional Calculations of the Evolution of Superbubbles in a Cloudy Medium, The Astrophysical Journal 468 (September 1996), 722. | |
dc.relation.references | Joel Smoller, Shock waves and reaction-di ff usion equations, 2nd ed., Springer, 1994. | |
dc.relation.references | Gary A Sod, A Survey of Several Finite Di ff erence Methods for Systems of Nonlinear Hyperbolic Conservation Laws, Journal of Computational Physics 27 (1978), no. 1, 1–31. | |
dc.relation.references | A.S. Soto, Fisica matematica, Ciencia y Tecnolog´ıa, Universidad de Antioquia, 2009. | |
dc.relation.references | James M Stone, Jianjun Xu, and Philip E Hardee, Nonrelativistic astrophysical jets, The Astrophysical Journal 483 (1997), 136–149. | |
dc.relation.references | Walter A. Strauss, Partial di ff erential equations: An introduction, 2nd ed., John Wiley & Sons, 2007. | |
dc.relation.references | John C. Strikwerda, Finite di ff erence schemes and partial di ff erential equations, 2nd ed., Society for Industrial and Applied Mathematics, 2004. | |
dc.relation.references | G. I. Taylor, The formation of a blast wave by a very intense explosion. i. theoretical discussion, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 201 (1950), no. 1065, 159–174. | |
dc.relation.references | Technical University of Munich, Physics-informed deep learning for turbulent reacting flows. Accessed: 2025-05-16. | |
dc.relation.references | Vladislav A. Titarev and Eleuterio F. Toro, Ader schemes for three-dimensional nonlinear hyperbolic systems, Journal of Computational Physics 204 (2006), no. 2, 715–736. | |
dc.relation.references | E.F. Toro, Riemann solvers and numerical methods for fluid dynamics: A practical introduction, Springer Berlin Heidelberg, 2009. | |
dc.relation.references | Eleuterio F. Toro and Vladislav A. Titarev, Ader: Arbitrary high order godunov approach, Journal of Scientific Computing 17 (2002), no. 1-4, 609–618. | |
dc.relation.references | Henk Kaarle Versteeg and Weeratunge Malalasekera, An introduction to computational fluid dynamics - the finite volume method., Addison-Wesley-Longman, 1995. | |
dc.relation.references | Jacco Vink, Physics and evolution of supernova remnants, Astronomy and Astrophysics Library, Springer International Publishing, 2020. | |
dc.relation.references | Paul Woodward and Phillip Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics 54 (1984), no. 1, 115–173. | |
dc.relation.references | Tony Chan Xu-Dong Liu Stanley Osher, Weighted essentially non-oscillatory schemes, Journal of Computational Physics 115 (1994), 200–121. | |
dc.relation.references | Sunwoong Yang, Hojin Kim, Yoonpyo Hong, Kwanjung Yee, Romit Maulik, and Namwoo Kang, Data-driven physics-informed neural networks: A digital twin perspective, Computer Methods in Applied Mechanics and Engineering 410 (2024), 115940. | |
dc.relation.references | O. Zanotti, F. Fambri, and M. Dumbser, Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement, Monthly Notices of the Royal Astronomical Society 452 (201507), no. 3, 3010–3029, available at http: //oup.prod.sis.lan/mnras/article-pdf/452/3/3010/4931537/stv1510.pdf. | |
dc.relation.references | Olindo Zanotti, Francesco Fambri, Michael Dumbser, and Arturo Hidalgo, Space–time adaptive ader discontinuous galerkin finite element schemes with a posteriori sub-cell finite volume limiting, Computers & Fluids 118 (2015), 204 –224. | |
dc.relation.references | Zhigang Zhai, Liyong Zou, Qiang Wu, and Xisheng Luo, Review of experimental richtmyer–meshkov instability in shock tube: From simple to complex, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232 (2018), no. 14, 2626–2643. | |
dc.relation.references | T. Zhang, T. Chang, and L. Hsiao, The riemann problem and interaction of waves in gas dynamics, Pitman monographs and surveys in pure and applied mathematics, Longman Scientific & Technical, 1989. | |
dc.relation.references | Tong Zhang and Yuxi Zheng, Conjecture on the structure of solutions of the riemann problem for two-dimensional gas dynamics systems, SIAM Journal on Mathematical Analysis 21 (1990), no. 3, 593–630. | |
dc.relation.references | O.C. Zienkiewicz, R.L. Taylor, and P. Nithiarasu, The finite element method for fluid dynamics, 2014, pp. 1–29. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales | spa |
dc.subject.proposal | Hyperbolic conservation laws | eng |
dc.subject.proposal | Numerical methods | eng |
dc.subject.proposal | Riemann problem | eng |
dc.subject.proposal | Shock waves | eng |
dc.subject.proposal | Astrophysical hydrodynamics | eng |
dc.subject.proposal | Computational fluid dynamics | eng |
dc.subject.proposal | Hydrodynamic instabilities | eng |
dc.subject.proposal | Numerical simulation | eng |
dc.subject.proposal | Métodos numéricos | spa |
dc.subject.proposal | Leyes de conservación | spa |
dc.subject.proposal | Problema de Riemann | spa |
dc.subject.proposal | ADER-DG | spa |
dc.subject.proposal | Reconstrucción WENO | spa |
dc.subject.proposal | Dinámica de fluidos computacional | spa |
dc.subject.proposal | Ondas de choque | spa |
dc.subject.proposal | Hidrodinámica astrofísica | spa |
dc.subject.proposal | Inestabilidades hidrodinámicas | spa |
dc.subject.proposal | Simulación numérica | spa |
dc.subject.wikidata | Discontinuous Galerkin method | eng |
dc.subject.wikidata | onda de choque | spa |
dc.subject.wikidata | shock wave | eng |
dc.subject.wikidata | Teorema de Cauchy-Kovalévskaya | spa |
dc.subject.wikidata | Cauchy–Kowalevski theorem | eng |
dc.subject.wikidata | hidrodinámica | spa |
dc.subject.wikidata | hydrodynamics | eng |
dc.title | The ADER-DG Numerical Method for hydrodynamics | eng |
dc.title.translated | El método numérico ADER-DG para hidrodinámica | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TesisMaestria_Final (1).pdf
- Tamaño:
- 2.44 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Astronomía
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: