Evaluación de procesos de ultrafiltración para la valorización de los fitonutrientes del aceite crudo de palma (E. oleifera×E. guineensis) para uso alimentario
dc.contributor.advisor | Díaz Moreno, Amanda Consuelo | spa |
dc.contributor.advisor | García Núñez, Jesús Alberto | spa |
dc.contributor.author | Rada Bula, Adriana Isabel | spa |
dc.contributor.cvlac | Adriana Isabel Rada Bula [0001382879] | spa |
dc.contributor.financer | Universidad Nacional de Colombia | spa |
dc.contributor.financer | Corporación Centro de Investigación en Palma de Aceite - Cenipalma | spa |
dc.contributor.googlescholar | Adriana Rada [https://scholar.google.com.mx/citations?hl=es&pli=1&user=zldM108AAAAJ] | spa |
dc.contributor.orcid | Adriana Rada-Bula [0000000208371899] | spa |
dc.contributor.projectleader | Díaz Moreno, Amanda Consuelo | spa |
dc.contributor.researchgate | Adriana Rada-Bula [https://www.researchgate.net/profile/Adriana-Rada-Bula] | spa |
dc.contributor.researchgroup | Bioalimentos | spa |
dc.contributor.scopus | Rada-Bula, A. I. | spa |
dc.contributor.subjectmatterexpert | Fontalvo, Javier | spa |
dc.date.accessioned | 2024-08-20T14:49:54Z | |
dc.date.available | 2024-08-20T14:49:54Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías, tablas | spa |
dc.description.abstract | Las deficiencias por micronutrientes, en especial por vitamina A, son frecuentes en algunas regiones del país y del mundo, especialmente durante la primera infancia donde una carencia de esta vitamina genera las tasas más altas de enfermedades y mortalidad en esta población. De acuerdo con la Organización Mundial de la Salud (OMS) y los resultados de la última Encuesta Nacional de Situación Nutricional (ENSIN), se estima que diariamente se requiere una ingesta de 300 µg y 800 µg equivalente en retinol (ER) de este micronutriente en población infantil y adultos, respectivamente. Este requerimiento no necesariamente logra cumplirse principalmente por los problemas de seguridad alimentaria que limitan el acceso a alimentos en donde este micronutriente se encuentra de manera natural. El aceite de palma crudo (E. oleifera x E. guineensis) es una de las fuentes vegetales con mayor aporte de fitonutrientes con actividad biológica, como carotenoides provitamina A y vitamina E. En consecuencia, esta materia prima se constituye como un valioso recurso nutricional, sobre todo, por su alta disponibilidad debido al actual posicionamiento del país como mayor productor de aceite de palma en América y el cuarto en mundo. Debido a las preferencias de los consumidores, el aceite de palma crudo se somete a un proceso de refinación, donde se retiran en mayor medida estos fitonutrientes beneficiosos. Para brindar una solución a este problema, a través de esta investigación se estudió un método alternativo para el aprovechar estos nutrientes, en este caso, a través del proceso de ultrafiltración con membranas poliméricas como una metodología verde que permite realizar el desgomado del aceite, conservando la concentración inicial de fitonutrientes y retirando parte de los compuestos que pueden generar sabores residuales desagradables en el aceite como los fosfátidos. De esta manera, habría mayor oportunidad para emplear el aceite de palma crudo dentro de la formulación de alimentos funcionales. Para desarrollar esta investigación, se realizó primeramente un muestreo de aceite de palma crudo O×G en tres plantas de beneficio de fruto, las cuales fueron caracterizadas químicamente con relación a la concentración de carotenoides, tocoferoles (Tocs) y tocotrienoles (T3s), obteniéndose aceites con rangos entre 604,12±3,85 mg/kg - 865,63 ±14,96 mg/kg de carotenoides totales y entre 381,36±3,92 mg/kg – 835,62±8,65 mg/kg de Tocs and T3s, permitiendo seleccionar la muestra con mayor contenido de estos compuestos y que posteriormente pudiera ser empleada para ensayos de ultrafiltración en donde se determinaron las condiciones adecuadas de desgomado empleando dos materiales de membrana: polietersulfona (PES) y fluoruro de polivinileno (PVDF) considerando como factores la presión transmembranaria (PTM) y la temperatura. Una vez obtenidas estas condiciones, se realizó un estudio de estabilidad del permeado de ultrafiltración (UF) frente al aceite de palma crudo (APC) como control. Una vez conocida la estabilidad de esta matriz oleosa, se realizó un acercamiento a posibles usos del UF través del desarrollo de un alimento horneado, mostrando una retención del 93,27±0,37% de los carotenoides y del 99,99±0,00% de Tocs y T3s posterior al horneado. Esta investigación fue el resultado del trabajo en conjunto entre plantas extractoras de aceite, destacadas por su producción de aceite crudo de palma O×G, la Corporación Centro de Investigación en Palma de Aceite – Cenipalma, Fedepalma y el Instituto de Ciencia y Tecnología de Alimentos (ICTA) de la Universidad Nacional de Colombia, logrando de esta manera, obtener inicialmente a escala laboratorio, en grado de madurez tecnológica-TRL4, el desarrollo de una estrategia innovadora que podría abrir a futuro una alternativa para la obtención de líneas de proceso en el gremio palmicultor para el aprovechamiento de los fitonutrientes de alto valor del aceite de palma crudo O×G (Texto tomado de la fuente). | spa |
dc.description.abstract | Micronutrient deficiencies, especially in vitamin A, are common in certain regions of the country and the world, particularly during early childhood, where a deficiency of this vitamin leads to the highest rates of disease and mortality in this population. According to the World Health Organization (WHO) and the results of the latest Encuesta de Situación Nutricional (ENSIN), a daily intake of 300 µg and 800 µg equivalent in retinol (RE) of this micronutrient is estimated to be required in children and adults, respectively. This requirement is not met due to food security issues that limit access to foods where this micronutrient is naturally found. Crude palm oil (E. oleifera×E. guineensis) is one of the natural sources with high contribution of phytonutrients with biological activity, such as provitamin A carotenoids and vitamin E. Consequently, this raw material constitutes a valuable nutritional resource, especially due to its high availability resulting from the country's current position as the largest palm oil producer in the Americas and the fourth largest in the world. Due to consumer preferences, crude palm oil undergoes a refining process, where these beneficial phytonutrients are removed. To address this problem, this research studied an alternative method to harness these nutrients, in this case, through the ultrafiltration process using polymeric membranes that allows degumming the oil, preserving the initial concentration of phytonutrients while it is removing compounds that generate off-flavors in the oil such as phospholipids. This would provide greater opportunity to use crude palm oil in the formulation of functional foods. The aim of this research was sampling O×G crude oil in three palm oil mill plant, which were chemically characterized in terms of carotenoid concentration, tocopherols (Tocs), and tocotrienols (T3s), obtaining oils with ranges between 604,12±3,85 mg/kg - 865,63 ±14,96 mg/kg of total carotenoids and between 381,36±3,92 mg/kg – 835,62±8,65 mg/kg of Tocs and T3s. These results allowed to selected the sample with the highest content of these compounds which was subsequently used for ultrafiltration trials where the appropriate degumming conditions were determined evaluating two membrane materials: polyethersulfone (PES) and polyvinylidene fluoride (PVDF), considering factors such as transmembrane pressure (TMP) and temperature. Once these conditions were obtained, a stability study of the ultrafiltration (UF) permeate against crude palm oil (CPO) as control was conducted. Once the stability of this oily matrix was known, an approach to uses of UF was made through the development of a baked food, showing a retention of 93.27±0.37% of carotenoids and 99.99±0.00% of Tocs and T3s after baking. This research was the result of collaborative work between oil extraction plants, with high production of O×G crude palm oil, the Colombian Oil Research Center – Cenipalma, the National Federation of Oil Palm Growers (Fedepalma), and the Instituto de Ciencia y Tecnología de Alimentos (ICTA) of the Universidad Nacional de Colombia, thus achieving initially at a laboratory scale, (Technology Readiness level - TRL4), the development of an innovative strategy that could potentially open up an alternative for obtaining process lines in the palm growers' guild for the utilization of the high-value phytonutrients from crude palm oil O×G. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencia y Tecnología de Alimentos | spa |
dc.description.researcharea | Ciencia y Tecnología de Productos Agroalimentarios | spa |
dc.description.sponsorship | Universidad Nacional de Colombia, sede Bogotá a través de la Convocatoria UN Innova: Convocatoria de Proyectos para el Fortalecimiento de la Innovación en la Universidad Nacional de Colombia a partir del Desarrollo de Prototipos y Experiencias Piloto 2019-2021 (segunda cohorte) (Código del proyecto: 53539) y contrapartida de la Corporación Centro de Investigación en Palma de Aceite - Cenipalma | spa |
dc.description.sponsorship | Universidad Nacional de Colombia, a través de la Convocatoria de financiación parcial de proyectos de tesis de doctorado y maestría de la Facultad de Ciencias Agrarias, sede Bogotá (Código del Proyecto: 49641) | spa |
dc.format.extent | xxi, 162 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86741 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Doctorado en Ciencia y Tecnología de Alimentos | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Achir, N., Randrianatoandro, V. A., Bohuon, P., Laffargue, A., & Avallone, S. (2010). Kinetic study of b-carotene and lutein degradation in oils during heat treatment. Eur. J. Lipid Sci. Technol., 112, 349–361. https://doi.org/10.1002/ejlt.200900165 | spa |
dc.relation.references | Alberca Tocto, S. K., & Huanca Vásquez, M. A. (n.d.). Evaluación del índice de estabilidad oxidativa del aceite de moringa (Moringa oleífera Lam) por el método Rancimat. | spa |
dc.relation.references | Alberto, R., Jr, G., Lima, F. De, Azevedo, L. De, Lopes, L., Nonato, R., Lopes, R., José, A., Pina, D. A., & Sanz, A. (2014). Evaluation of interspecific hybrids of palm oil reveals great genetic variability and potential selection gain. Industrial Crops & Products, 52, 512–518. https://doi.org/10.1016/j.indcrop.2013.10.036 | spa |
dc.relation.references | Alfaro, M., & Ortiz, E. (2006). Proceso de producción del aceite de palma. Ministerio de Agricultura. Gerencia de Palma. Consejo Nacional de Producción, 1–5. | spa |
dc.relation.references | Amado, M. A. (2010a). Seguimiento a las pérdidas de fitonutrientes durante el proceso de refinación del aceite de palma. Universidad Nacional de Colombia. | spa |
dc.relation.references | Amador B, D., Olarte M, M., & Castillo Q, R. (2017). Caracterización de la cadena productiva del aceite de palma en el departamento del Meta y como referencia la empresa Amador Buitrago y Cia Senc. Universidad Santo Tomás. | spa |
dc.relation.references | Amorim-Carrilho, K. T., Cepeda, A., Fente, C., & Regal, P. (2014). Review of methods for analysis of carotenoids. TrAC - Trends in Analytical Chemistry, 56, 49–73. https://doi.org/10.1016/j.trac.2013.12.011 | spa |
dc.relation.references | Amparo, L., Marchena, U., Alejandra, G., Parra, M., Adelaida, M., Quiroz, C., Henao, D. C., Zapata, P. A., Mira, L. L., Castaño, E., María, Á., López, S., Vanegas, C. V., Loaiza, M. C., & Gómez, B. D. (2009). Efecto de los compuestos bioactivos de algunos alimentos en la salud. Perspectivas En Nutrición Humana, 11(1), 27–38. | spa |
dc.relation.references | Anunciato, T. P., & Alves, P. (2012). Carotenoids and polyphenols in nutricosmetics , nutraceuticals , and cosmeceuticals. Journal of Cosmetic Dermatology, 11, 51–54. | spa |
dc.relation.references | AOAC, 920.85-1920. (2005a). Fat (crude) or ether extract in flour. 18th ed. | spa |
dc.relation.references | AOAC, 923.03-1923. (2005b). Ash of Flour. Direct Method. Official methods od analyses of the association of analytical chemists. 18th ed. . | spa |
dc.relation.references | AOAC, 925.10-1925. (2005c). Solids (total) and loss on drying (moisture). Official methods of analyses of the association of analytical chemists. 18th ed. . | spa |
dc.relation.references | AOCS. (1995). Methods and Recommended Practice of the American OIl Chemists´Society (Fourth edi). | spa |
dc.relation.references | AOCS. (2012a). Free fatty acids. Official Method Ca 5a-40. (6th Edition). | spa |
dc.relation.references | AOCS. (2012b). Peroxide Value, Acetic Acid Official Method Cd 8-53 (6th Edition). | spa |
dc.relation.references | AOCS. (2017). Tocopherols and tocotrienols in vegetable oils and fat by HPLC. Official Method Ce 8-89 (7th edition). | spa |
dc.relation.references | Arimboor, R., Natarajan, R. B., Menon, K. R., Chandrasekhar, L. P., & Moorkoth, V. (2015). Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. Journal of Food Science and Technology, 52(3), 1258–1271. https://doi.org/10.1007/s13197-014-1260-7 | spa |
dc.relation.references | Arimboor, R., Natarajan, R. B., Menon, K. R., Chandrasekhar, L. P., & Moorkoth, V. (2015). Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. Journal of Food Science and Technology, 52(3), 1258–1271. https://doi.org/10.1007/s13197-014-1260-7 | spa |
dc.relation.references | Arora, S., Manjula, S., Gopala Krishna, A. G., & Subramanian, R. (2006). Membrane processing of crude palm oil. Desalination, 191, 454–466. https://doi.org/10.1016/j.desal.2005.04.129 | spa |
dc.relation.references | Aryanti, N., Harivram, A. S. K., & Wardhani, D. H. (2020). Fouling behavior of polyethersulphone ultrafiltration membrane in the separation of glycerin-rich solution as byproduct of palm-oil-based biodiesel production. Journal of Engineering Science and Technology, 15(2), 1202–1217. | spa |
dc.relation.references | Aryanti, N., Wardhani, D. H., Maulana, Z. S., & Roberto, D. (2017). Evaluation of Ultrafiltration Performance for Phospholipid Separation. Journal of Physics: Conference Series, 909(1). https://doi.org/10.1088/1742-6596/909/1/012083 | spa |
dc.relation.references | Ayala-Díaz, I., & Romero, H. M. (2019). Cultivares Híbrido OxG y la reactivación productiva de zonas con problemáticas de PC. XV Reunión Técnica Nacional de Palma de Aceite, 39. | spa |
dc.relation.references | Ayala-Diaz, I., Tupaz, A., Daza, E., Ávila, R., Montoya, C., & Romero, H. (2023). Mejoramiento genético de los cultivares híbridos interespecíficos OxG. In híbridos interespecíficos OXG de palma. | spa |
dc.relation.references | Azmi, R. A., Goh, P. S., Ismail, A. F., Lau, W. J., Ng, B. C., Othman, N. H., Noor, A. M., & Yusoff, M. S. A. (2015). Deacidification of crude palm oil using PVA-crosslinked PVDF membrane. Journal of Food Engineering, 166, 165–173. https://doi.org/10.1016/j.jfoodeng.2015.06.001 | spa |
dc.relation.references | Badui, S. (2006). Química de Alimentos. | spa |
dc.relation.references | Baker, R. (2012). Membrane technology and applications. Third edition. Jhon Wiley & Sons, Ltd. https://doi.org/10.1002/9781118359686 | spa |
dc.relation.references | Baker, R. W. (2004a). Membrane technology and applications. In Membrane Technologies and Applications. John Wiley & Sons, Ltd. https://doi.org/10.1201/b11416 | spa |
dc.relation.references | Bassam, J., Harapanahalli, S., & Otten, D. (2001). United States Patent. Method for removing phospholipids from vegetable oil micella, method for conditioning a polymeric microfiltration, and membrane (Patent US 6,207,209 B1). | spa |
dc.relation.references | Bassam, J., Harapanahalli, S., & Otten, D. (2004). United States Patent. Methods and apparatus for processing vegetable oil miscella method for conditioning membrane, membrane and lecithin product (Patent US 6,833,149 B2). | spa |
dc.relation.references | Bassam, J., Harapanahalli, S., & Otten, D. (2009). United States Patent. Method and apparatus for processing vegetable oil miscella, method for conditioning a polymeric microfiltration membrane, membrane, and lecithin product. (Patent US 7.494.679 B2). | spa |
dc.relation.references | Bassam, J., Harapanahalli, S., & Otten, D. (2011). United States Patent. Method and apparatus for processing vegetable oil miscella, metod for conditioning a polymeric microfiltration membrane, membrane, and lecithin product (Patent US 7.923,052 B2). | spa |
dc.relation.references | Bastidas, S., Peña, E., & Reyes, R. (2013). Pregunta sobre palma de aceite Elaeis Guineensis Jacq., palma Nolí Elaeis oleissfera (Kunth) Cortées y los hibridos interspecificos Nolí x Palma de aceite (E. oleisfera x guineensis). | spa |
dc.relation.references | Baykalir, Y., Baykalir, Y., Simsek, U. G., & Yilmaz, O. (2020). Age-related changes in egg yolk composition between conventional and organic table eggs. Agricultural and Fodd Sciene , 29, 307–317. | spa |
dc.relation.references | Bechoff, A., Chijioke, U., Tomlins, K. I., Govinden, P., Ilona, P., Westby, A., & Boy, E. (2015). Carotenoid stability during storage of yellow gari made from biofortified cassava or with palm oil. Journal of Food Composition and Analysis, 44, 36–44. https://doi.org/10.1016/j.jfca.2015.06.002 | spa |
dc.relation.references | Belfort, G., Davis, R., & Zydney, A. (1994a). The behavior of suspensions and macromolecular solutions in crossflow microfiltration. Journal of Membrane Science, 96, 1–58. https://doi.org/10.1016/j.memsci.2020.117865 | spa |
dc.relation.references | Bernardo, P., & Drioli, E. (2017). 4.9 Membrane Technology in the Refinery and Petrochemical Field: Research Trends and Recent Progresses. In Comprehensive Membrane Science and Engineering (Vol. 4, pp. 164–188). https://doi.org/10.1016/b978-0-12-409547-2.12231-0 | spa |
dc.relation.references | Boynueğri, P., Yemişçioğlu, F., & Gümüşkesen, A. S. (2017). Effect of membrane degumming conditions on permeate flux and phospholipids rejection. GIDA. The Journal of Food, 42(5), 597–602. https://doi.org/10.15237/gida.GD17053 | spa |
dc.relation.references | Cadena, T., Prada, F., Perea, A., & Romero, H. M. (2013). Lipase activity, mesocarp oil content, and iodine value in oil palm fruits of Elaeis guineensis, Elaeis oleifera, and the interspecific hybrid O×G (E. oleifera × E. guineensis). Journal of the Science of Food and Agriculture, 93(3), 674–680. https://doi.org/10.1002/jsfa.5940 | spa |
dc.relation.references | Cala A., S. L., Yánez Angarita, E. Eduardo., & Jesús A., G. N. (2011). Manual de procedimientos de laboratorio en plantas de beneficio. Corporación Centro de Investigación en Palma de Aceite - CENIPALMA. | spa |
dc.relation.references | Cassiday, L. (2017). Red Palm Oil. AOCS, The American Oil Chemists’ Society, 1–1. | spa |
dc.relation.references | Cayón-Salinas, D. G., Ligarreto-Moreno, G. A., Magnitskiy, S., Rosero, G., & Leguizamón, O. (2022). Application of naphtalene acetic acid and gibberellic acid favours fruit induction and development in oil palm hybrid (Elaeis oleiferaxElaeis guineensis). Experimental Agriculture, 58(e35). | spa |
dc.relation.references | Chaves, G., Ligarreto-Moreno, G. A., & Cayon-Salinas, D. G. (2018). Physicochemical characterization of bunches from American oil palm (Elaeis oleifera H.B.K. Cortes) and their hybrids with African oil palm (Elaeis guineensis Jacq.). Acta Agronomica, 67(1), 168–176. https://doi.org/10.15446/acag.v67n1.62028 | spa |
dc.relation.references | Chew, J. W., Kilduff, J., & Belfort, G. (2020a). The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update. Journal of Membrane Science, 601(January), 117865. https://doi.org/10.1016/j.memsci.2020.117865 | spa |
dc.relation.references | Codex Alimentarius. (1999). Codex standard for named vegetables oils (Vol. 210). | spa |
dc.relation.references | Codex Alimentarius. (2023). STANDARD FOR NAMED VEGETABLE OILS. | spa |
dc.relation.references | Comisión de Codex Alimentarius. (2019). Proyecto de revisión de la norma para aceites vegetales especificados (CODEX STAN 210-1999). Programa Conjunto FAO/OMS Sobre Normas Alimentarias. Comité Del Codex Sobre Grasas y Aceites, 26a sesión, 5. | spa |
dc.relation.references | Cooman, A. (2023). Presentación. In Los híbridos interespecíficos OxG de palma de aceite (pp. 9–10). Corporación Centro de investigación en Palma de Aceite, Cenipalma. https://doi.org/10.56866/9789588360959.00 | spa |
dc.relation.references | Corley, R. H. V., & Tinker, P. B. (2016a). The oil palm (Fifth edit). Wiley Blackwell. | spa |
dc.relation.references | Cui, L., & Decker, E. A. (2016). Phospholipids in foods: Prooxidants or antioxidants? Journal of the Science of Food and Agriculture, 96(1), 18–31. https://doi.org/10.1002/jsfa.7320 | spa |
dc.relation.references | da Nóbrega Medeiros, V. (2016). Desenvolvimento de membranas de poliétersulfona por inversao de fases. Universidade Federal de Campina Grande. | spa |
dc.relation.references | Damanik, M., & Murkovic, M. (2018). The stability of palm oils during heating in a rancimat. European Food Research and Technology, 244(7), 1293–1299. https://doi.org/10.1007/s00217-018-3044-1 | spa |
dc.relation.references | Daza, E. S., Ruiz Romero, R., & Romero Angulo, H. M. (2017). Guía de bolsillo polinización asistida en el híbrido interespecífico Elaeis oleifera x Elaeis guineensis ( OxG ) (Issue 118). Corporación Centro de Investigación en Palma de Aceite, Cenipalma. | spa |
dc.relation.references | de Almeida, E. S., da Silva Damaceno, D., Carvalho, L., Victor, P. A., Dos Passos, R. M., de Almeida Pontes, P. V., Cunha-Filho, M., Sampaio, K. A., & Monteiro, S. (2021). Thermal and physical properties of crude palm oil with higher oleic content. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11157094 | spa |
dc.relation.references | de Morais Coutinho, C., Chiu, M. C., Basso, R. C., Ribeiro, A. P. B., Gonçalves, L. A. G., & Viotto, L. A. (2009a). State of art of the application of membrane technology to vegetable oils: A review. Food Research International, 42(5–6), 536–550. https://doi.org/10.1016/j.foodres.2009.02.010 | spa |
dc.relation.references | de Morais Coutinho, C., Chiu, M. C., Basso, R. C., Ribeiro, A. P. B., Gonçalves, L. A. G., & Viotto, L. A. (2009b). State of art of the application of membrane technology to vegetable oils: A review. Food Research International, 42(5–6), 536–550. https://doi.org/10.1016/j.foodres.2009.02.010 | spa |
dc.relation.references | Dominguez Cañedo, I. L., Beristain Guevara, C. I., Diaz Sobac, R., & Vasquez, L. (2014). Degradación de carotenoides y capsaicina en el complejo de inclusión molecular de oleorresina de chile habanero ( Capsicum chinense ) con β - ciclodextrina. Journal of Food, August 2014, 37–41. https://doi.org/10.1080/19476337.2014.926459 | spa |
dc.relation.references | Dong, S., Xia, H., Wang, F., & Sun, G. (2017). The effect of red palm oil on vitamin A deficiency :a meta-analysis of randomized controlled trials. Nutrients, 9(1281), 1–15. https://doi.org/10.3390/nu9121281 | spa |
dc.relation.references | Doran, P. M. (2013a). Bioprocess engineering principles. In Academic Press (Second edi). | spa |
dc.relation.references | Doran, P. M. (2013b). Bioprocess engineering principles. In Academic Press (Second edi). | spa |
dc.relation.references | Doshi, K., & Shah, S. R. (2018). Removal of phospholipids from crude edible oil by PVDF membrane. International Journal of Advance Research, Ideas and Innovation in Technology, 4(2), 2524–2529. | spa |
dc.relation.references | Fakhry, G., Ibrahim Omar, M. A., Ahmed Mahmoud, M., Abd Elrahman Gamal Fakhry, A., & Aboel-Ainin, M. A. (2023). Physicochemical characteristics, inhibition of lipid peroxidation, and oxidative stability index by antioxidant alternatives of promising binary oil blend (Canola and Olive oils). Scientific Journal of Agricultural Sciences, 141–159. https://doi.org/10.21608/sjas.2023.2461 | spa |
dc.relation.references | Fedepalma. (2016). Informe de gestión Fedepalma 2016. In Fedepalma (p. 308). | spa |
dc.relation.references | Fine, F., Brochet, C., Gaud, M., Carre, P., Simon, N., Ramli, F., & Joffre, F. (2016). Micronutrients in vegetable oils: The impact of crushing and refining processes on vitamins and antioxidants in sunflower, rapeseed, and soybean oils. In European Journal of Lipid Science and Technology (Vol. 118, Issue 5, pp. 680–697). Wiley-VCH Verlag. https://doi.org/10.1002/ejlt.201400400 | spa |
dc.relation.references | Fortune Business Insights. (2022). Natural Vitamin E Market Size, Share & Industry Analysis, by Type (Tocopherols, and Tocotrienols), Application (Dietary Supplements, Food and Beverage, Cosmetics, and Others), and Regional Forecasts 2019 - 2026. Https://Www.Fortunebusinessinsights.Com/Industry-Reports/Natural-Vitamin-e-Market-101591. | spa |
dc.relation.references | Frankel, E. (2012). Lipid oxidation. Woodhead Publishing. | spa |
dc.relation.references | Gallicchio, L., Boyd, K., Matanoski, G., Tao, X., Chen, L., Lam, T. K., Shiels, M., Hammond, E., Robinson, K. A., Caulfield, L. E., Herman, J. G., Guallar, E., & Alberg, A. J. (2008). Carotenoids and the risk of developing lung cancer: a systematic review 1-3. https://academic.oup.com/ajcn/article-abstract/88/2/372/4649847 | spa |
dc.relation.references | Garay Quintero, L. C. (2017). Evaluación funcional y biológica de un compuesto de fibra soluble como sustituto de grasa en productos de panadería. Universidad Nacional de Colombia. | spa |
dc.relation.references | García N., J. a., & Yañez A., E. E. (2010). Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia. Revista Palmas, 31(2), 41–48. | spa |
dc.relation.references | Gharby, S. (2022). Refining vegetable oils: Chemical and physical refining. In Scientific World Journal (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/6627013 | spa |
dc.relation.references | Ghendov-Mosanu, A., Netreba, N., Balan, G., Cojocari, D., Boestean, O., Bulgaru, V., Gurev, A., Popescu, L., Deseatnicova, O., Resitca, V., Socaciu, C., Pintea, A., Sanikidze, T., & Sturza, R. (2023). Effect of bioactive compounds from pumpkin powder on the quality and textural properties of shortbread cookies. Foods, 12(21). https://doi.org/10.3390/foods12213907 | spa |
dc.relation.references | Gonçalves, C. B., Rodrigues, C. E. C., Marcon, E. C., & Meirelles, A. J. A. (2016). Deacidification of palm oil by solvent extraction. Separation and Purification Technology, 160, 106–111. https://doi.org/10.1016/j.seppur.2016.01.016 | spa |
dc.relation.references | González Díaz, A., Ayala Díaz, I., Díaz Rangel, C., Rada Bula, A., Chaparro Triana, D., Varón Cárdenas, D., García Nuñez, J., & Mauricio Romero, H. (2023). Capítulo XVII. Calidad y potenciales usos del aceite de palma extraído de cultivares híbridos interespecíficos OxG. In Los híbridos interespecíficos OxG de palma de aceite (Vol. 1, pp. 503–552). | spa |
dc.relation.references | Gonzalez‒Diaz, A., Garcia‒Nunez, J. A., & Duenas‒Solarte, J. (2019). Índice de yodo: un parámetro determinante para establecer el nivel de mezcla entre aceites de palma crudos (APC) provenientes de cultivares DxP e híbridos OxG – “CxL” (0123-8353 Índice). | spa |
dc.relation.references | Gonzalez-Diaz, A., Moreno Velandia, C. A., García-Nuñez, J. A., Martinez-Ramirez, M. C., & Bernal-Villegas, P. M. (2024). Study of the changes in molecular composition of high-oleic palm oil (CoaríxLa Mé) before and after physical refining. Food Bioscience, 57. | spa |
dc.relation.references | Gonzalez-Diaz, A., Pataquiva-Mateus, A., & García-Núñez, J. A. (2021a). Characterization and response surface optimization driven ultrasonic nanoemulsification of oil with high phytonutrient concentration recovered from palm oil biodiesel distillation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612. https://doi.org/10.1016/j.colsurfa.2020.125961 | spa |
dc.relation.references | Gonzalez-Diaz, A., Pataquiva-Mateus, A., & García-Núñez, J. A. (2021b). Recovery of palm phytonutrients as a potential market for the by-products generated by palm oil mills and refineries‒A review. In Food Bioscience (Vol. 41). Elsevier Ltd. https://doi.org/10.1016/j.fbio.2021.100916 | spa |
dc.relation.references | Grasas y Aceites Vegetales y Animales. Determinación Del Índice de Acidez y de La Acidez, 17 (2011). | spa |
dc.relation.references | Gülmez, Ö., & Sahin, S. (2019). Evaluation of oxidative stability in hazelnut oil treated with several antioxidants : Kinetics and thermodynamics studies. LWT - Food Science and Technology, 111, 478–483. https://doi.org/10.1016/j.lwt.2019.05.077 | spa |
dc.relation.references | Hafidi, A., Pioch, D., & Ajana, H. (2005). Membrane-based simultaneous degumming and deacidification of vegetable oils. Innovative Food Science and Emerging Technologies, 6(2), 203–212. https://doi.org/10.1016/j.ifset.2004.12.001 | spa |
dc.relation.references | Hariyadi, P. (2020). Food safety & nutrition issues: Challenges and opportunities for Indonesian palm oil. IOP Conference Series: Earth and Environmental Science, 418(1). https://doi.org/10.1088/1755-1315/418/1/012003 | spa |
dc.relation.references | Hermia, J. (1982). Constant pressure blocking filtration laws-Application to power-law non-newtonian fluids. . Trans. Inst. Chem. Eng. , 60, 183–187. | spa |
dc.relation.references | Hern, M., Id, O., Quintanilla-carvajal, X., Id, O., & Article, O. (n.d.). Design of high-oleic palm oil nanoemulsions suitable for drying in refractance windowTM. 0–2. https://doi.org/10.1111/jfpp.15076 | spa |
dc.relation.references | Hew, K. S., Asis, A. J., Tan, T. B., Yusoff, M. M., Lai, O. M., Nehdi, I. A., & Tan, C. P. (2020). Revising degumming and bleaching processes of palm oil refining for the mitigation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) contents in refined palm oil. Food Chemistry, 307. https://doi.org/10.1016/j.foodchem.2019.125545 | spa |
dc.relation.references | Hof, K. H. van, West, C. E., Weststrate, J. a, & Hautvast, J. G. a J. (2000). Recent Advances in Nutritional Sciences Dietary Factors That Affect the Bioavailability of Carotenoids. Recent Advances in Nutritional Sciences, 14, 503–506. | spa |
dc.relation.references | Hou, Z., Cao, X., Cao, L., Ling, G., Yu, Z., & Pang, M. (2020). The removal of phospholipid from crude rapeseed oil by enzyme-membrane binding. Journal of Food Engineering, 280(September 2019), 1–16. https://doi.org/10.1016/j.jfoodeng.2020.109910 | spa |
dc.relation.references | ICBF. (2015). Encuesta Nacional de la Situación Nutricional ENSIN 2015. 58. https://doi.org/9789586231121 | spa |
dc.relation.references | Irías-Mata, A., Stuetz, W., Sus, N., Hammann, S., Gralla, K., Cordero-Solano, A., Vetter, W., & Frank, J. (2017). Tocopherols, Tocomonoenols, and Tocotrienols in Oils of Costa Rican Palm Fruits: A Comparison between Six Varieties and Chemical versus Mechanical Extraction. Journal of Agricultural and Food Chemistry, 65(34), 7476–7482. https://doi.org/10.1021/acs.jafc.7b02230 | spa |
dc.relation.references | Ismail, A. H., Wongsakul, S., Ismail-Fitry, M. R., Rozzamri, A., & Yussoff, M. (2020). Physical properties and sensory acceptance of red palm olein-based low-fat ice cream added with guar gum and xanthan gum as stabilizers. 4(September). https://doi.org/10.26656/fr.2017.4(6).229 | spa |
dc.relation.references | Jaeger de Carvalho, L. M., Barros Gomes, P., de Oliveira Godoy, R. L., Pacheco, S., Fernandes do Monte, P. H., Viana de Carvalho, J. L., Nutti, M. R., Lima Neves, A. C., Rodrigues Alves Vieira, A. C., & Ramalho Ramos, S. R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International, 47, 337–340. | spa |
dc.relation.references | Jun, W., Ping, C., Sulaiman, R., Yi, Y., & Hean, G. (2020). Storage stability and degradation kinetics of bioactive compounds in red palm oil microcapsules produced with solution-enhanced dispersion by supercritical carbon dioxide : A comparison with the spray-drying method. Food Chemistry, 304(August 2019), 125427. https://doi.org/10.1016/j.foodchem.2019.125427 | spa |
dc.relation.references | Kang, G., & Cao, Y. (2014). Application and modi fi cation of poly ( vinylidene fl uoride ) ( PVDF ) membranes – A review. Journal of Membrane Science, 463, 145–165. https://doi.org/10.1016/j.memsci.2014.03.055 | spa |
dc.relation.references | Khalid, M., Saeed-ur-Rahman, Bilal, M., Iqbal, H. M. N., & Huang, D. (2019). Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. Biocatalysis and Agricultural Biotechnology, 17, 399–407. https://doi.org/10.1016/j.bcab.2018.11.027 | spa |
dc.relation.references | Kilduff, J. E., Mattaraj, S., Sensibaugh, J., Pieracci, J. P., Yuan, Y., & Belfort, G. (2002). Modeling flux decline during nanofiltration of NOM with poly(arylsulfone) membranes modified using UV-assisted graft polymerization. Environmental Engineering Science, 19(6), 477–495. https://doi.org/10.1089/109287502320963454 | spa |
dc.relation.references | Ko, M. K., & Pellegrmo, J. J. (1992). Determination of osmotic pressure and fouling resistances and their effects on performance of ultrafiltration membranes. In Journal of Membrane Science (Vol. 74). | spa |
dc.relation.references | Lee, Y.-Y., Tang, T.-K., Phuah, E.-T., & Lai, O.-M. (2022). Recent advances in edible fats and oils technology. | spa |
dc.relation.references | Lima, J. G. de, Brito-Oliveira, T. C., & Pinho, S. C. de. (2016). Characterization and evaluation of sensory acceptability of ice creams incorporated with beta-carotene encapsulated in solid lipid microparticles. Food Science and Technology (Brazil), 36(4), 664–671. https://doi.org/10.1590/1678-457X.13416 | spa |
dc.relation.references | Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., & Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1–2), 1–27. https://doi.org/10.1016/j.memsci.2011.03.014 | spa |
dc.relation.references | Loganathan, R., Ahmad, A., Ratna, S., & Kim, T. (2020). Thermal stability and sensory acceptance of cupcakes containing red palm olein. Journal of Oleo Science, June, 1–6. https://doi.org/10.5650/jos.ess19253 | spa |
dc.relation.references | Loganathan, R., Tarmizi, A. H. A., Vethakkan, S. R., & Teng, K. T. (2020a). Retention of carotenes and vitamin e, and physicochemical changes occurring upon heating red palm olein using deep-fat fryer, microwave oven and conventional oven. Journal of Oleo Science, 69(3), 167–183. https://doi.org/10.5650/jos.ess19209 | spa |
dc.relation.references | Loganathan, R., Tarmizi, A. H. A., Vethakkan, S. R., & Teng, K. T. (2020b). Storage stability assessment of red palm olein in comparison to palm olein. Journal of Oleo Science, 69(10), 1163–1179. https://doi.org/10.5650/jos.ess20036 | spa |
dc.relation.references | Mahloko, L. M., Silungwe, H., Mashau, M. E., & Kgatla, T. E. (2019). Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon, 5(10). https://doi.org/10.1016/j.heliyon.2019.e02479 | spa |
dc.relation.references | Manorama, R., Brahman, G. N. V., & Rukmini, C. (1996). Red palm oil as a source of beta carotene for combating vitamin A deficiency. 49, 75–82. | spa |
dc.relation.references | Manorama, R., Sarita, M., & Rukmini, C. (1997). Red palm oil for combating vitamin A deficiency. Asia Pacific J Clin Nutr, 6(1), 56–59. | spa |
dc.relation.references | Marchese, J., Ochoa, N. A., Pagliero, C., & Almandoz, C. (2000). Pilot-scale ultrafiltration of an emulsified oil wastewater. Environmental Science and Technology, 34(14), 2990–2996. https://doi.org/10.1021/es9909069 | spa |
dc.relation.references | Markets and Markets. (2022). Phytonutrients market by type (carotenoids, phytosterols, flavonoids, phenolic compounds, and vitamin E), application (food & beverage, feed, pharmaceutical, and cosmetic), source, & by region - Global Trends and Forecast to 2020. Phytonutrients Market. https://www.marketsandmarkets.com/Market-Reports/phytonutrients-market-1101.html | spa |
dc.relation.references | Mba, O. I., Dumont, M. J., & Ngadi, M. (2015a). Palm oil: Processing, characterization and utilization in the food industry - A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003 | spa |
dc.relation.references | Mba, O. I., Dumont, M. J., & Ngadi, M. (2017). Thermostability and degradation kinetics of tocochromanols and carotenoids in palm oil, canola oil and their blends during deep-fat frying. LWT - Food Science and Technology, 82, 131–138. https://doi.org/10.1016/j.lwt.2017.04.027 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2019). Cadena de palma de aceite, indicadores e instrumentos. In Lecturas de Economia. | spa |
dc.relation.references | Ministerio de Salud y Protección Social, C. (2015). Estrategia nacional para la prevención y control de las deficiencias de micronutrientes en Colombia 2014-2021. In Ministerio de Salud y Protección Social. https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Miranda, A., Boya, A., & De Obaldia, E. (2021). Síntesis y caracterización de membranas piezoeléctricas en base al polímero polifluoruro de vinilideno, utilizando la técnica de electrospinning. Revista de I+D Tecnológico, 17(1). https://doi.org/10.33412/idt.v17.1.2989 | spa |
dc.relation.references | Mohammad, A. W., Ng, C. Y., Lim, Y. P., & Ng, G. H. (2012). Ultrafiltration in Food Processing Industry: Review on Application, Membrane Fouling, and Fouling Control. Food and Bioprocess Technology, 5(4), 1143–1156. https://doi.org/10.1007/s11947-012-0806-9 | spa |
dc.relation.references | Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226–254. https://doi.org/10.1016/j.desal.2014.10.043 | spa |
dc.relation.references | Mohammad, A. W., Teow, Y. H., Chong, W. C., & Ho, K. C. (2018). Hybrid processes: Membrane bioreactor. In Membrane Separation Principles and Applications: From Material Selection to Mechanisms and Industrial Uses (pp. 401–470). Elsevier. https://doi.org/10.1016/B978-0-12-812815-2.00013-2 | spa |
dc.relation.references | Mondragón Serna, A., García Nuñez, J., Baena Santa, M. A., Gonzalez Días, A., & Rada Bula, A. (2023). Capítulo XVIII. Aspectos Nutricionales y beneficios sobre la salud humana del consumo de aceite de palma extraído de los cultivares híbridos interespecíficos OxG. In Los híbridos interespecíficos OxG de palma de aceite (Vol. 1, pp. 553–590). | spa |
dc.relation.references | Mondragón Serna, A., & Pinilla Betancourt, C. (2015). Aceite de palma alto oleico: propiedades fisicoquímicas y beneficios para la salud humana. Revista Palmas, 36(4), 57–66. http://publicaciones.fedepalma.org/index.php/palmas/article/view/11645 | spa |
dc.relation.references | Mora, O. L., & Baracaldo, C. (2004). Efecto del aceite de palma crudo sobre la vitamina A y el perfil lipídico en preescolares colombianos Effect of the Crude / Red Palm Oil , on Vitamin A and Lipid Levels in Colombian Preschool Children. 25(1), 245–252. | spa |
dc.relation.references | Mozzon, M., Foligni, R., & Mannozzi, C. (2020). Current knowledge on interspecific hybrid palm oils as food and food ingredient. Foods, 9(5). https://doi.org/10.3390/foods9050631 | spa |
dc.relation.references | Mozzon, M., Foligni, R., & Tylewicz, U. (2018). Chemical characteristics and nutritional properties of hybrid palm oils. In Palm Oil (pp. 149–170). IntechOpen. https://doi.org/10.5772/intechopen.75421 | spa |
dc.relation.references | Mozzon, M., Pacetti, D., Frega, N. G., & Lucci, P. (2015). Crude palm oil from interspecific hybrid Elaeis oleifera × E. guineensis: Alcoholic constituents of unsaponifiable matter. JAOCS, Journal of the American Oil Chemists’ Society, 92(5), 717–724. https://doi.org/10.1007/s11746-015-2628-1 | spa |
dc.relation.references | Mozzon, M., Pacetti, D., Lucci, P., Balzano, M., & Frega, N. G. (2013). Crude palm oil from interspecific hybrid Elaeis oleifera × Elaeis guineensis: Fatty acid regiodistribution and molecular species of glycerides. Food Chemistry, 141(1), 245–252. https://doi.org/10.1016/j.foodchem.2013.03.016 | spa |
dc.relation.references | Mujica Granados, C., Dario Torres, E., & Vargas Esparza, M. (2010). Evolución del sector palmicultor. Universidad de Investigación y Desarrollo. | spa |
dc.relation.references | Nagarajan, J., Ramanan, R. N., Raghunandan, M. E., Galanakis, C. M., & Krishnamurthy, N. P. (2017). Chapter 8: Carotenoids. In Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques (pp. 259–296). Elsevier Inc. https://doi.org/10.1201/9781315149899 | spa |
dc.relation.references | Nagendran, B., Unnithan, U., Choo, Y., & Sundram, K. (2000). Characteristics of red palm oil, a carotene-and vitamin E–Rich refined oil for food uses. Food Nutr. Bull, 21, 189–194. | spa |
dc.relation.references | Nakao, S. (1994). Determination of pore size and pore size distribution 3. Filtration membranes. Journal of Membrane Science, 96, 131–165. | spa |
dc.relation.references | Ninčević Grassino, A., Rimac Brnčić, S., Badanjak Sabolović, M., Šic Žlabur, J., Marović, R., & Brnčić, M. (2023). Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules, 28(2). https://doi.org/10.3390/molecules28020858 | spa |
dc.relation.references | Ninčević Grassino, A., Rimac Brnčić, S., Badanjak Sabolović, M., Šic Žlabur, J., Marović, R., & Brnčić, M. (2023). Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules, 28(2). https://doi.org/10.3390/molecules28020858 | spa |
dc.relation.references | NTC 431. (2000). Grasas y aceites. Aceite crudo natural de palma africana (pp. 1–8). | spa |
dc.relation.references | NTC 5895. (2011). Aceite crudo de palma (OxG) Alto Oleico. Requisitos. (p. 12). | spa |
dc.relation.references | Ochoa, N., Pagliero, C., Marchese, J., & Mattea, M. (2001). Ultrafiltration of vegetable oils. Degumming by polymeric membranes. Separation and Purification Technology, 22–23, 417–422. https://doi.org/https://doi.org/ 10.1016/S1383-5866(00)00178-7 | spa |
dc.relation.references | Official Methods and Recommendedpractices of AOCS, 7th Ed (2017). | spa |
dc.relation.references | Ojeda, M., Borrero, M., Sequeda, G., Diez, O., Castro, V., García, Á., Ruiz, Á., Pacetti, D., Frega, N., Gagliardi, R., & Lucci, P. (2017). Hybrid palm oil (Elaeis oleifera × Elaeis guineensis) supplementation improves plasma antioxidant capacity in humans. European Journal of Lipid Science and Technology, 119(2), 1–8. https://doi.org/10.1002/ejlt.201600070 | spa |
dc.relation.references | Ong, K. K., Fakhru’l-Razi, A., Baharin, B. S., & Hassan, M. A. (1999a). Degumming of crude palm oil by membrane filtration. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 27(5–6), 381–385. https://doi.org/10.3109/10731199909117707 | spa |
dc.relation.references | Ong, K. K., Fakhru’l-Razi, A., Baharin, B. S., & Hassan, M. A. (1999b). Degumming of crude palm oil by membrane filtration. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 27(5–6), 381–385. https://doi.org/10.3109/10731199909117707 | spa |
dc.relation.references | Ooi, C. K., Choo, Y. M., Yap, S. C., Basiron, Y., & Ong, A. S. H. (1994). Recovery of carotenoids from palm oil. Journal of the American Oil Chemists’ Society, 71(4), 423–426. https://doi.org/10.1007/BF02540524 | spa |
dc.relation.references | Ooi, C. K., Choo, Y. M., Yap, S. C., & Ma, A. N. (1998). Refinación del aceite rojo de palma * Refining of red palm oil. Palmas, 19(I), 61–67. | spa |
dc.relation.references | Ordóñez-Santos, L. E., Esparza-Estrada, J., & Vanegas-Mahecha, P. (2021). Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. LWT, 139. https://doi.org/10.1016/j.lwt.2020.110598 | spa |
dc.relation.references | Palozza, P., & Krinsky, N. I. (1992). Antioxidant effects of carotenoids in vivo and in vitro: an overview. Methods Enzymol, 213, 403–420. | spa |
dc.relation.references | Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. In Food and Bioprocess Technology (Vol. 6, Issue 1, pp. 36–60). Springer Science and Business Media, LLC. https://doi.org/10.1007/s11947-012-0867-9 | spa |
dc.relation.references | Pérez, R., & Labanda, J. (2013). Estudio preliminar de la permeación de biomoléculas en membranas de nanofiltración. Revista Iberoamericana de Polímeros., 14(7), 44–54. | spa |
dc.relation.references | Perez-Santana, M., Cagampang, G. B., Gu, L., MacIntosh, I. S., Percival, S. S., & MacIntosh, A. J. (2021a). Characterization of physical properties and retention of bioactive compounds in cookies made with high oleic red palm olein. LWT, 147. https://doi.org/10.1016/j.lwt.2021.111499 | spa |
dc.relation.references | Perez-Santana, M., Cagampang, G. B., Gu, L., MacIntosh, I. S., Percival, S. S., & MacIntosh, A. J. (2021b). Characterization of physical properties and retention of bioactive compounds in cookies made with high oleic red palm olein. LWT, 147. https://doi.org/10.1016/j.lwt.2021.111499 | spa |
dc.relation.references | Piedrahita Correa, A. M. (2015). Estabilidad oxidativa y vida útil del aceite de choibá (Dipteryx oleifera benth) suplementado con extracto de romero (Rosmarinus officinalis L.). Universidad Nacional de Colombia. | spa |
dc.relation.references | Piergiovanni, L., & Limbo, S. (2019). Food shelf-life models. In Sustainable Food Supply Chains (pp. 49–60). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813411-5.00004-1 | spa |
dc.relation.references | Prada, F., Ayala, I., Delgado, W., Ruiz-Romero, R., & Romero, H. (2011). Effect of fruit ripening on content and chemical composition of oil from three oil palm cultivars (Elaeis guineensis Jacq.) grown in Colombia. Journal of Agricultural and Food Chemistry, 59, 10136–10142. https://doi.org/10.1021/jf201999d | spa |
dc.relation.references | Purwasasmita, M., Nabu, E. B. P., Khoiruddin, & Wenten, I. G. (2015). Non dispersive chemical deacidification of crude palm oil in hollow fiber membrane contactor. Journal of Engineering and Technological Sciences, 47(4), 426–446. https://doi.org/10.5614/j.eng.technol.sci.2015.47.4.6 | spa |
dc.relation.references | Rada-Bula, A., García-Nuñez, J., Muvdi-Nova, C., & Diaz-Moreno, C. (2023). Membrane technology in the oil industry and their potential application for recovery of phytonutrients from palm oil. Journal of Oil Palm Research, 35(2), 217–235. https://doi.org/10.21894/jopr.2022.0069 | spa |
dc.relation.references | Rada–Bula, A., Iqbal-Sandoval, M., Gonzalez- Diaz, A., Mondragón-Serna, A., Baena-Santa, M. A., Garcia-Nunez, J., Fontalvo, J., & Díaz-Moreno, C. (2024). Compositional characteristics and shelf life of interspecific hybrid palm oil (E. oleifera×E. guineensis). Food Packaging and Shelf Life, 42, 101240. | spa |
dc.relation.references | Rada-Bula, García-Nuñez, J. A., Muvdi-Nova, C. J., & Díaz-Moreno, C. (2023). Membrane technologies in the oil industry and their potential application for the recovery of phytonutrients from palm oil. Journal of Oil Palm Research, 35(2), 217–235. https://doi.org/10.21894/jopr.2022.0069 | spa |
dc.relation.references | Raederstorff, D., Wyss, A., Calder, P. C., Weber, P., & Eggersdorfer, M. (2015). Vitamin E function and requirements in relation to PUFA. In British Journal of Nutrition (Vol. 114, Issue 8, pp. 1113–1122). Cambridge University Press. https://doi.org/10.1017/S000711451500272X | spa |
dc.relation.references | Rajarajan, G. (2019). Development of Carotene Enriched Functional Ice Cream. International Journal of Livestock Research, 0, 1. https://doi.org/10.5455/ijlr.20180711110826 | spa |
dc.relation.references | Rancimat. (2017). Manual 892 Proffessional Rancimat. | spa |
dc.relation.references | Rancimat. (2017). Manual 892 Proffessional Rancimat. | spa |
dc.relation.references | Resolución N°810 de. (2021). Por la cual se establece el reglamento técnico sobre los requisitos de etiquetado nutricional y frontal que deben cumplir los alimentos envasados o empacados para consumo humano. | spa |
dc.relation.references | Riaz, M., Zia-Ul-Haq, M., & Dou, D. (2021). Chemistry of Carotenoids. In Carotenoids: Structure and Function in the Human Body (pp. 43–76). Springer International Publishing. https://doi.org/10.1007/978-3-030-46459-2_2 | spa |
dc.relation.references | Ricaurte, L., Perea-Flores, M. D. J., Martinez, A., & Quintanilla-Carvajal, M. X. (2016). Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innovative Food Science and Emerging Technologies, 35(April), 75–85. https://doi.org/10.1016/j.ifset.2016.04.004 | spa |
dc.relation.references | Rifqi, M., Setiasih, I. S., & Cahayana, Y. (2020). Total β-carotene of β-carotene carrot powder (Daucus Carota L.) encapsulation result. IOP Conference Series: Earth and Environmental Science, 443(1). https://doi.org/10.1088/1755-1315/443/1/012063 | spa |
dc.relation.references | Rincón Miranda, S. M., & Martínez Cárdenas, D. M. (2009). An Analysis of the Properties of Oil Palm in the Development of the its Industry. Revista Palmas, 30(2), 11–24. | spa |
dc.relation.references | Rincón, S. M., Hormaza, P. A., Moreno, L. P., Prada, F., Portillo, D. J., García, J. A., & Romero, H. M. (2013). Use of phenological stages of the fruits and physicochemical characteristics of the oil to determine the optimal harvest time of oil palm interspecific OxG hybrid fruits. Industrial Crops and Products, 49, 204–210. https://doi.org/10.1016/j.indcrop.2013.04.035 | spa |
dc.relation.references | Rincón, S., & Martinez, D. (2009). Análisis de las propiedades del aceite de palma en el desarrollo de su industria. Revista Palmas, 30(2), 11–24. | spa |
dc.relation.references | Rodríguez, G., Villanueva, E., Cortez, D., Sanchez, E., Aguirre, E., & Hidalgo, A. (2020). Oxidative Stability of Chia (Salvia hispanica L.) and Sesame (Sesamum indicum L.) Oil Blends. JAOCS, Journal of the American Oil Chemists’ Society, 97(7), 729–735. https://doi.org/10.1002/aocs.12357 | spa |
dc.relation.references | Rodríguez, G., Villanueva, E., Glorio, P., & Baquerizo, M. (2015). Oxidative stability and estimate of the shelf life of sacha inchi (Plukenetia volubilis L.) oil. Scientia Agropecuaria, 6(3), 155–163. https://doi.org/10.17268/sci.agropecu.2015.03.02 | spa |
dc.relation.references | Rodriguez-Amaya, D., & Kimura, M. (2004). HarvestPlus Handbook for Carotenoids Analysis. In Transportation Research Record: Journal of the Transportation Research Board. Breeding Crops for Better Nutrition. https://doi.org/10.3141/2068-08 | spa |
dc.relation.references | Romero-Angulo, H. M. (2023). Los híbridos interespecíficos OxG de palma de aceite (H. M. Romero-Angulo, Ed.; Vol. 1). Corporación Centro de Investigación en Palma de Aceite, Cenipalma. | spa |
dc.relation.references | Saini, R. K., & Keum, Y. S. (2016). Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Research International, 82, 59–70. https://doi.org/10.1016/j.foodres.2016.01.025 | spa |
dc.relation.references | Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International, 76, 735–750. https://doi.org/10.1016/j.foodres.2015.07.047 | spa |
dc.relation.references | Sampaio, K., Ayala, J., Silva, S. M., Ceriani, R., & Meirelles, A. J. A. (2013). Thermal degradation kinetics of carotenoids in palm oil. 191–198. https://doi.org/10.1007/s11746-012-2156-1 | spa |
dc.relation.references | Saravanan, M., Bhosle, B. M., & Subramanian, R. (2006). Processing hexane-oil miscella using a nonporous polymeric composite membrane. Journal of Food Engineering, 74(4), 529–535. https://doi.org/10.1016/j.jfoodeng.2005.03.040 | spa |
dc.relation.references | Shahidi, F., & De Camargo, A. C. (2016). Tocopherols and tocotrienols in common and emerging dietary sources: occurrence, applications, and health benefits. International Journal of Molecular Sciences, 17(10). https://doi.org/10.3390/ijms17101745 | spa |
dc.relation.references | Singh, R. V., & Sambyal, K. (2022). An overview of β-carotene production: Current status and future prospects. In Food Bioscience (Vol. 47). Elsevier Ltd. https://doi.org/10.1016/j.fbio.2022.101717 | spa |
dc.relation.references | Singh, T., Pandey, V. K., Dash, K. K., Zanwar, S., & Singh, R. (2023). Natural bio-colorant and pigments: Sources and applications in food processing. Journal of Agriculture and Food Research, 12. https://doi.org/10.1016/j.jafr.2023.100628 | spa |
dc.relation.references | Solís, C. A., Velez, S. A., & Ramirez-Navas, J. S. (2017). Tecnología de membranas: ultrafltración. Entre Ciencia e Ingeniería, 22, 26–36. | spa |
dc.relation.references | Sontag, T. J., & Parker, R. S. (2007). Influence of major structural features of tocopherols and tocotrienols on their ω-oxidation by tocopherol-ω-hydroxylase. Journal of Lipid Research, 48(5), 1090–1098. https://doi.org/10.1194/jlr.M600514-JLR200 | spa |
dc.relation.references | Souganidis, E., Laillou, A., Leyvraz, M., & Moench-pfanner, R. (2013). A Comparison of Retinyl Palmitate and Red Palm Oil β-Carotene as Strategies to Address Vitamin A Deficiency. 3257–3271. https://doi.org/10.3390/nu5083257 | spa |
dc.relation.references | Stahl, W., & Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1740, 101–107. https://doi.org/10.1016/j.bbadis.2004.12.006 | spa |
dc.relation.references | Stephens, N. G., Parson, A Schofield, P. M., Cheeseman, K., & Mitchinson, M. J. (1996). Randomized controlled trial of vitamine E in patienes with coronary disease: Cambridge Heart Association Study (CHAOS). Genes and Nutrition, 7, 19–28. | spa |
dc.relation.references | Stuijvenberg, M. E. Van, & Benadé, A. J. S. (2000). South African experience with the use of red palm oil to improve the vitamin A status of primary schoolchildren. 21(2), 212–214. | spa |
dc.relation.references | Stuijvenberg, M. E. Van, Dhansay, M. A., Lombard, C. J., Faber, M., & Benade, A. J. S. (2001). The effect of a biscuit with red palm oil as a source of b -carotene on the vitamin A status of primary school children : a comparison with b -carotene from a synthetic source in a randomised controlled trial. European Journal of Clinica Nutrition, 55, 657–662. https://doi.org/10.1038/sj.ejcn.1601196 | spa |
dc.relation.references | Sundram, K., Sambanthamurthi, R., & Tan, Y. (2003a). Palm fruit chemistry and nutrition. Asia Pacific Journal Clinic Nutrition, 12(3), 355–362. | spa |
dc.relation.references | Swami, S. B., Ghgare, S. N., Swami, S. S., Shinde, K. J., Baban Kalse, S., & Lakhichand Pardeshi, I. (2020). Natural pigments from plant sources: A review. The Pharma Innovation Journal, 9(10), 566–574. http://www.thepharmajournal.com | spa |
dc.relation.references | Syed, A. (2016). Oxidative Stability and Shelf Life of Vegetable Oils. In Oxidative Stability and Shelf Life of Foods Containing Oils and Fats (pp. 187–207). Elsevier Inc. https://doi.org/10.1016/B978-1-63067-056-6.00004-5 | spa |
dc.relation.references | Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13, 215–225. www.elsevier.com/locate/foodqual | spa |
dc.relation.references | Szewczyk, K. (2020). Potential natural sources of tocopherols and tocotrienols and possibilities their use in the food industry. Technological Progress in Food Processing, 1, 139–147. | spa |
dc.relation.references | Szewczyk, K., Chojnacka, A., & Górnicka, M. (2021). Tocopherols and tocotrienols—bioactive dietary compounds; what is certain, what is doubt? International Journal of Molecular Sciences, 22(12). https://doi.org/10.3390/ijms22126222 | spa |
dc.relation.references | Tan, C. H., Lee, C. J., Tan, S. N., Poon, D. T. S., Chong, C. Y. E., & Pui, L. P. (2021). Red palm oil: A review on processing, health benefits and its application in food. Journal of Oleo Science, 70(9), 1201–1210. https://doi.org/10.5650/jos.ess21108 | spa |
dc.relation.references | Tan, Y. A., Ainic, K., Slew, W. L., Mohtar, Y., & Chong, C. L. (2000). Estudio del PORIM sobre el aceite de palma crudo -97/98. Características de calidad e identidad. Revista Palmas, 21(4), 39–56. | spa |
dc.relation.references | Tang, G. (2014). Vitamin A value of plant food provitamin A - Evaluated by the stable isotope technologies. International Journal for Vitamin and Nutrition Research, 84, 25–29. https://doi.org/10.1024/0300-9831/a000183 | spa |
dc.relation.references | Teh, S. S., & Lau, H. L. N. (2021). Quality assessment of refined red palm-pressed mesocarp olein. Food Chemistry, 340. https://doi.org/10.1016/j.foodchem.2020.127912 | spa |
dc.relation.references | Teh, S. S., & Lau, H. L. N. (2023). Phytonutrient content and oil quality of selected edible oils upon twelve months storage. Journal of the American Oil Chemists’ Society. https://doi.org/10.1002/aocs.12692 | spa |
dc.relation.references | Teh, S. S., Lau, H. L. N., & Wafti, N. S. B. A. (2023). Storage stability and degradation kinetics of phytonutrients of red palm-pressed mesocarp olein. Journal of Oleo Science, 72(5), 511–520. https://doi.org/10.5650/jos.ess22356 | spa |
dc.relation.references | Unitata Berhad (Malaysia). (n.d.). Nutrolein - Golden palm oil. Data sheet. Retrieved September 18, 2023, from https://www.unitata.com/products/niche-products/26-nutropalm-golden-palm-oil | spa |
dc.relation.references | Upadhyay, R., & Mishra, H. N. (2015). Multivariate analysis for kinetic modeling of oxidative stability and shelf life estimation of sunflower oil blended with Sage ( Salvia officinalis ) extract under Rancimat conditions. Food Bioprocess Technloogy, 8, 801–810. https://doi.org/10.1007/s11947-014-1446-z | spa |
dc.relation.references | Urueta, J. C. (2007). Implementación del DOBI como parámetro de calidad en extractoras de aceite de palma. Revista Palmas, 28(1), 143–148. https://publicaciones.fedepalma.org/index.php/palmas/article/viewFile/1301/1301 | spa |
dc.relation.references | U.S. Food & Drug Administration. (2020). SCOGS (Select Committee on GRAS Substances). | spa |
dc.relation.references | Van Der Bruggen, B. (2009). Chemical modification of polyethersulfone nanofiltration membranes: A review. Journal of Applied Polymer Science, 114(1), 630–642. https://doi.org/10.1002/app.30578 | spa |
dc.relation.references | Wenten, I. G., Victoria, A. V., Tanukusuma, G., Khoiruddin, K., & Zunita, M. (2019). Simultaneous clarification and dehydration of crude palm oil using superhydrophobic polypropylene membrane. Journal of Food Engineering, 248(November 2018), 23–27. https://doi.org/10.1016/j.jfoodeng.2018.12.010 | spa |
dc.relation.references | Wibowo, S., Vervoort, L., Tomic, J., Santiago, J. S., Lemmens, L., Panozzo, A., Grauwet, T., Hendrickx, M., & Van Loey, A. (2015). Colour and carotenoid changes of pasteurised orange juice during storage. Food Chemistry, 171, 330–340. https://doi.org/10.1016/j.foodchem.2014.09.007 | spa |
dc.relation.references | Xu, Z., Ye, Z., Li, Y., Li, J., & Liu, Y. (2020). Comparative study of the oxidation stability of high oleic oils and palm oil during thermal treatment. 2020. | spa |
dc.relation.references | Yaakob, C. M., & Chin-Ping, T. (2003). Carotenoids. Chapter 2. In F. D. Gunstone (Ed.), Lipids for Funtional Foods and Nutraceuticals (pp. 25–52). https://doi.org/10.1016/B978-0-12-410423-5.00002-X | spa |
dc.relation.references | Zainal, Z., Khaza’ai, H., Kutty Radhakrishnan, A., & Chang, S. K. (2022). Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Research International, 156, 111175. https://doi.org/10.1016/j.foodres.2022.111175 | spa |
dc.relation.references | Zhao, C., Xue, J., Ran, F., & Sun, S. (2013). Modification of polyethersulfone membranes - A review of methods. Progress in Materials Science, 58(1), 76–150. https://doi.org/10.1016/j.pmatsci.2012.07.002 | spa |
dc.relation.references | Ziegler, M., Wallert, M., Lorkowski, S., & Peter, K. (2020). Cardiovascular and metabolic protection by vitamin E: A matter of treatment strategy? In Antioxidants (Vol. 9, Issue 10, pp. 1–40). MDPI. https://doi.org/10.3390/antiox9100935 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.ddc | 660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales | spa |
dc.subject.lemb | OLIGOELEMENTOS EN LA NUTRICIÓN | spa |
dc.subject.lemb | Trace elements in nutrition | eng |
dc.subject.lemb | CAROTINOIDES | spa |
dc.subject.lemb | Carotinoids | eng |
dc.subject.lemb | ISOPENTENOIDES | spa |
dc.subject.lemb | Isopentenoids | eng |
dc.subject.lemb | COLESTEROL | spa |
dc.subject.lemb | Cholesterol | eng |
dc.subject.proposal | Aceite de palma | spa |
dc.subject.proposal | Desgomado | spa |
dc.subject.proposal | Estabilidad | spa |
dc.subject.proposal | Tocoferoles | spa |
dc.subject.proposal | Tocotrienoles | spa |
dc.subject.proposal | Ultrafiltración | spa |
dc.subject.proposal | Degumming | eng |
dc.subject.proposal | Palm oil, Stability | eng |
dc.subject.proposal | Tocopherols | eng |
dc.subject.proposal | Tocotrienols | eng |
dc.subject.proposal | Ultrafiltration | eng |
dc.title | Evaluación de procesos de ultrafiltración para la valorización de los fitonutrientes del aceite crudo de palma (E. oleifera×E. guineensis) para uso alimentario | spa |
dc.title.translated | Evaluation of ultrafiltration process for the valorization of phytonutrients in crude palm oil (E. oleifera × E. guineensis) for food application | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | “Validación de un prototipo de sistema de membranas para la separación de fitonutrientes del aceite crudo de palma (E. oleifera×E. guineensis) para aplicaciones en la industria alimentaria”. | spa |
oaire.awardtitle | “Caracterización de perfil de carotenoides, tocoferoles y tocotrienoles de las muestras de aceite crudo de palma del cruce interespecífico O×G”. | spa |
oaire.fundername | Universidad Nacional de Colombia, sede Bogotá en alianza con Corporación Centro de Investigación en Palma de Aceite - Cenipalma | spa |
oaire.fundername | Universidad Nacional de Colombia, sede Bogotá. Facultad de Ciencias Agrarias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1140815613.2024.pdf
- Tamaño:
- 3.34 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: