Quantum randomness and quantum measurement in a unitary setting

dc.contributor.advisorDittrich, Thomas
dc.contributor.authorRodríguez Villalba, Óscar Eduardo
dc.contributor.researchgroupCaos y Complejidadspa
dc.date.accessioned2023-02-03T14:04:47Z
dc.date.available2023-02-03T14:04:47Z
dc.date.issued2023-02-01
dc.descriptionilustracionesspa
dc.description.abstractIn this thesis a novel approach towards quantum measurement and quantum randomness, within the framework of unitary time evolution, is proposed. Spin measurements are simulated by coupling the spin to an environment modeled as a heat bath comprising a finite number of boson modes with initial states represented in terms of coherent states. The time evolution of the entire system is achieved by means of the multi-Davydov ansatz. In order to simulate measurements with equally likely outcomes, the spin is prepared in a neutral polarized state prior the measurement. The uncontrollable nature of the environment is captured in its initial state by preparing each mode in a coherent state sampled from a random distribution. An environment that does not introduce a deliberate bias is set by centering the random distribution in the origin of the phase space. Before considering unbiased measurements, the most appropriate parameters of the model are identified by means of simulations with intermediate initial conditions between the ground state and thermal states compatible with the time evolution method. Different measurement protocols are modeled by turning on and off the self-energy of the spin and the coupling with the environment with time-dependent modulations. The outcome of the measurement is assessed by the long-term behavior of the spin. Due to its interaction with the environment, the spin gets entangled with it losing its coherence, thus reproducing the “first state vector collapse”. Quantum randomness is observed as the tendency of the final state to approach either one of two possible eigenstates of the spin measured operator, recovering an almost pure state. The entire process is characterized by the exchange of energy and entropy between the spin and the environment. It leads to the observation of a prominent role of low-frequency modes in the long-term behavior of the spin. The measurement process is also analyzed from the information theory perspective. The information dynamics during the entire process is followed using the partial entropy of the spin. A round trip of the spin state from a pure state through a mixed state back to a final state close to a pure state is identified. With this approach the entire measurement process is reproduced in an approximate way. (Texto tomado de la fuente)eng
dc.description.abstractEn esta tesis se propone un enfoque novedoso hacia la medición cuántica y la aleatoriedad cuántica, en el marco de la evolución temporal unitaria. Las mediciones de espín se simulan acoplando el espín a un entorno modelado como un baño de calor que comprende un número finito de modos bosónicos con estados iniciales representados en términos de estados coherentes. La evolución temporal de todo el sistema se logra mediante el multi-Davydov ansatz. Para simular mediciones con resultados igualmente probables, el espín se prepara en un estado polarizado neutral antes de la medición. La naturaleza incontrolable del entorno se captura en su estado inicial al preparar cada modo en un estado coherente muestreado a partir de una distribución aleatoria. Un entorno que no introduce un sesgo deliberado se establece centrando la distribución aleatoria en el origen del espacio de fase. Antes de considerar medidas no sesgadas, se identifican los parámetros más apropiados del modelo mediante simulaciones con condiciones iniciales intermedias entre el estado fundamental y los estados térmicos compatibles con elmétodo de evolución temporal. Se modelan diferentes protocolos de medición activando y desactivando la autoenergía del espín y el acoplamiento con el entorno con modulaciones dependientes del tiempo. El resultado de la medición se evalúa por el comportamiento a largo plazo del espín. Debido a su interacción con el entorno, el espín se enreda con él perdiendo su coherencia, reproduciendo así el “primer colapso del vector de estado”. La aleatoriedad cuántica se observa como la tendencia del estado final a acercarse a uno de los dos posibles estados propios del operador medido de espín, recuperando un estado casi puro. Todo el proceso se caracteriza por el intercambio de energía y entropía entre el espín y el entorno. Esto conduce a la observación de un papel destacado de los modos de baja frecuencia en el comportamiento a largo plazo del espín. El proceso de medición también se analiza desde la perspectiva de la teoría de la información. Se sigue la dinámica de la información durante todo el proceso utilizando la entropía parcial del espín. Se identifica un viaje de ida y vuelta del estado de espín desde un estado puro a través de un estado mixto hasta un estado final cercano a un estado puro. Con este enfoque, todo el proceso de medición se reproduce de forma aproximada.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.format.extentxiv, 81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83268
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesW. Gerlach and O. Stern. Das magnetische moment des silberatoms. Zeitschrift für Physik, 9(1):353–355, 1922.spa
dc.relation.referencesJ. J. Sakurai. Modern quantum mechanics. Addison-Wesley, 1994.spa
dc.relation.referencesH. M. Wiseman and G. J. Milburn. Quantum measurement and control. Cambridge university press, 2009.spa
dc.relation.referencesW. H. Zurek. Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Physical review D, 24(6):1516, 1981.spa
dc.relation.referencesW. H. Zurek. Environment-induced superselection rules. Physical review D, 26(8): 1862, 1982.spa
dc.relation.referencesE. Joos and H. D. Zeh. The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condensed Matter, 59(2):223–243, 1985.spa
dc.relation.referencesT. Konrad. Less is more: on the Theory and Application of Weak and Unsharp Measurements in Quantum Mechanics. PhD thesis, Universität Konstanz, 2003.spa
dc.relation.referencesC.-M. Goletz, W. Koch, and F. Grossmann. Semiclassical dynamics of open quantum systems: Comparing the finite with the infinite perspective. Chemical Physics, 375 (2-3):227–233, 2010.spa
dc.relation.referencesM. Galiceanu, M. W. Beims, and W. T. Strunz. Quantum energy and coherence exchange with discrete baths. Physica A: Statistical Mechanics and its Applications, 415:294–306, 2014.spa
dc.relation.referencesM. A. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge University press, 2002.spa
dc.relation.referencesA. Peres. When is a quantum measurement? American Journal of Physics, 54(8): 688–692, 1986. ISSN 0002-9505. doi: 10.1119/1.14505.spa
dc.relation.referencesA. Peres. Quantum Measurements Are Reversible. American Journal of Physics, 42 (10):886–891, 1974. ISSN 0002-9505. doi: 10.1119/1.1987884.spa
dc.relation.referencesN. G. Van Kampen. Ten theorems about quantum mechanical measurements. Physica A: Statistical Mechanics and its Applications, 153(1):97–113, 1988. ISSN 03784371. doi: 10.1016/0378-4371(88)90105-7.spa
dc.relation.referencesJ. Von Neumann. Mathematical foundations of quantum mechanics. Princeton uni- versity press, 1955.spa
dc.relation.referencesM. Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76(4):1267–1305, 2004. ISSN 00346861. doi: 10.1103/RevModPhys.76.1267.spa
dc.relation.referencesW. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3):715–775, 2003. ISSN 00346861. doi: 10.1103/ RevModPhys.75.715.spa
dc.relation.referencesM. Schlosshauer. Decoherence: and the quantum-to-classical transition. Springer Science & Business Media, 2007.spa
dc.relation.referencesW. G. Unruh. Analysis of quantum-nondemolition measurement. Physical Review D, 18(6):1764–1772, 1978. ISSN 05562821. doi: 10.1103/PhysRevD.18.1764.spa
dc.relation.referencesS. Weigert. Chaos and quantum-nondemolition measurements. Physical Review A, 43(12):6597, 1991.spa
dc.relation.referencesA. De Pasquale, C. Foti, A. Cuccoli, V. Giovannetti, and P. Verrucchi. Dynamical model for positive-operator-valued measures. Physical Review A, 100(1):1–9, 2019. ISSN 24699934. doi: 10.1103/PhysRevA.100.012130.spa
dc.relation.referencesM. Ozawa. Quantum measuring processes of continuous observables. Journal of Mathematical Physics, 25(1):79–87, 1984. ISSN 00222488. doi: 10.1063/1.526000.spa
dc.relation.referencesO. Pessoa. Can the decoherence approach help to solve the measurement problem? Synthese, 113(3):323–346, 1997.spa
dc.relation.referencesW. H. Zurek. Reduction of the wavepacket: How long does it take? In Frontiers of Nonequilibrium Statistical Physics, pages 145–149. Springer, 1986.spa
dc.relation.referencesR. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entangle- ment. Reviews of modern physics, 81(2):865, 2009.spa
dc.relation.referencesA. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical review, 47(10):777, 1935.spa
dc.relation.referencesM. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs. Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications. Reviews of Modern Physics, 81(4):1727, 2009.spa
dc.relation.referencesN. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. Bell nonlocality. Reviews of Modern Physics, 86(2):419, 2014.spa
dc.relation.referencesE. Benítez Rodríguez, E. Piceno Martínez, and L. M. Arévalo Aguilar. A full quantum analysis of the Stern–Gerlach experiment using the evolution operator method: An- alyzing current issues in teaching quantum mechanics. European Journal of Physics, 38(2):025403, 2017.spa
dc.relation.referencesA. P. French and E. F. Taylor. An introduction to quantum physics. W. W. Norton & Company, 1978.spa
dc.relation.referencesA. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf. Introduction to quantum noise, measurement, and amplification. Reviews of Modern Physics, 82(2):1155, 2010.spa
dc.relation.referencesD. E. Platt. A modern analysis of the Stern–Gerlach experiment. American Journal of Physics, 60(4):306–308, 1992.spa
dc.relation.referencesS. Cruz-Barrios and J. Gómez-Camacho. Semiclassical description of Stern–Gerlach experiments. Physical Review A, 63(1):012101, 2000.spa
dc.relation.referencesS. R. Gautam, T. N. Sherry, and E. C. G. Sudarshan. Interaction between classical and quantum systems: A new approach to quantum measurement. iii. illustration. Physical Review D, 20(12):3081, 1979.spa
dc.relation.referencesG. Potel, F. Barranco, S. Cruz-Barrios, and J. Gómez-Camacho. Quantum me- chanical description of Stern–Gerlach experiments. Physical Review A, 71(5):052106, 2005.spa
dc.relation.referencesH. Wennerström and P. O. Westlund. A quantum description of the Stern–Gerlach experiment. Entropy, 19(5):186, 2017.spa
dc.relation.referencesA. Venugopalan, D. Kumar, and R. Ghosh. Environment–induced decoherence i. the Stern–Gerlach measurement. Physica A: Statistical Mechanics and its Applications, 220(3-4):563–575, 1995.spa
dc.relation.referencesA. Venugopalan. Decoherence and Schrödinger–cat states in a Stern–Gerlach–type experiment. Physical Review A, 56(5):4307, 1997.spa
dc.relation.referencesP. Gomis and A. Pérez. Decoherence effects in the Stern–Gerlach experiment using matrix Wigner functions. Physical Review A, 94(1):012103, 2016.spa
dc.relation.referencesB. G. Englert, J. Schwinger, and M. O. Scully. Is spin coherence like Humpty- Dumpty? i. simplified treatment. Foundations of physics, 18(10):1045–1056, 1988.spa
dc.relation.referencesE. Benítez Rodríguez, E. Piceno Martínez, and L. M. Arévalo Aguilar. Single-particle steering and nonlocality: The consecutive Stern-Gerlach experiments. Physical Re- view A, 103(4):042217, 2021.spa
dc.relation.referencesA. Y. Khrennikov. Probability and randomness: quantum versus classical. World Scientific, 2016.spa
dc.relation.referencesT. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger. A fast and compact quantum random number generator. Review of Scientific Instruments, 71 (4):1675–1680, 2000.spa
dc.relation.referencesP. Diaconis, S. Holmes, and R. Montgomery. Dynamical bias in the coin toss. SIAM review, 49(2):211–235, 2007.spa
dc.relation.referencesA. Nitzan. Chemical dynamics in condensed phases: relaxation, transfer and reactions in condensed molecular systems. Oxford university press, 2006.spa
dc.relation.referencesM. N. Bera, A. Acín, M. Kuś, M. W. Mitchell, and M. Lewenstein. Randomness in quantum mechanics: philosophy, physics and technology. Reports on Progress in Physics, 80(12):124001, 2017.spa
dc.relation.referencesP. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y. K. Liu, B. Christensen, S. W. Nam, et al. Experimentally generated randomness certified by the impossibility of superluminal signals. Nature, 556(7700):223–226, 2018.spa
dc.relation.referencesM. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri. True random numbers from amplified quantum vacuum. Optics express, 19(21):20665–20672, 2011.spa
dc.relation.referencesP. Grangier and A. Auffeves. What is quantum in quantum randomness? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2123):20170322, 2018.spa
dc.relation.referencesI. V. Volovich. Randomness in classical mechanics and quantum mechanics. Foundations of Physics, 41(3):516–528, 2011.spa
dc.relation.referencesA. Zeilinger. A foundational principle for quantum mechanics. Foundations of Physics, 29(4):631–643, 1999spa
dc.relation.referencesU. Weiss. Quantum dissipative systems. World Scientific, 2012.spa
dc.relation.referencesR. P. Feynman and F. L. Vernon. The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics, 24(C):118–173, 1963. ISSN 1096035X. doi: 10.1016/0003-4916(63)90068-X.spa
dc.relation.referencesH. -P. Breuer, F. Petruccione, et al. The theory of open quantum systems. Oxford University Press on Demand, 2002.spa
dc.relation.referencesR. Hartmann and W. T. Strunz. Accuracy assessment of perturbative master equations: Embracing nonpositivity. Physical Review A, 101(1):012103, 2020.spa
dc.relation.referencesE. J. Heller. Frozen Gaussians: A very simple semiclassical approximation. The Journal of Chemical Physics, 75(6):2923–2931, 1981.spa
dc.relation.referencesM. F. Herman and E. Kluk. A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations. Chemical Physics, 91(1):27–34, 1984.spa
dc.relation.referencesH. Wang and M. Thoss. Multilayer formulation of the multiconfiguration time- dependent Hartree theory. The Journal of chemical physics, 119(3):1289–1299, 2003.spa
dc.relation.referencesD. V. Shalashilin and I. Burghardt. Gaussian-based techniques for quantum propagation from the time-dependent variational principle: Formulation in terms of trajectories of coupled classical and quantum variables. The Journal of chemical physics, 129(8):084104, 2008.spa
dc.relation.referencesM. Werther, S. L. Choudhury, and F. Grossmann. Coherent state based solutions of the time-dependent Schrödinger equation: hierarchy of approximations to the variational principle. International Reviews in Physical Chemistry, 40(1):81–125, 2021.spa
dc.relation.referencesV. Bargmann, P. Butera, L. Girardello, and J. R. Klauder. On the completeness of the coherent states. Reports on Mathematical Physics, 2(4):221–228, 1971.spa
dc.relation.referencesW. P. Schleich. Quantum optics in phase space. John Wiley & Sons, 2011.spa
dc.relation.referencesA. O. Caldeira and A. J. Leggett. Quantum tunnelling in a dissipative system. Annals of physics, 149(2):374–456, 1983.spa
dc.relation.referencesH. Wang and M. Thoss. From coherent motion to localization: Ii. dynamics of the spin-boson model with sub-Ohmic spectral density at zero temperature. Chemical Physics, 370(1-3):78–86, 2010.spa
dc.relation.referencesS. T. Smith and R. Onofrio. Thermalization in open classical systems with finite heat baths. The European Physical Journal B, 61(3):271–275, 2008.spa
dc.relation.referencesJane Rosa and Marcus W Beims. Dissipation and transport dynamics in a ratchet coupled to a discrete bath. Physical Review E, 78(3):031126, 2008.spa
dc.relation.referencesF. Q. Potiguar and U. M. S. Costa. Numerical calculation of the energy-relative fluctuation for a system in contact with a finite heat bath. Physica A: Statistical Mechanics and its Applications, 342(1-2):145–150, 2004.spa
dc.relation.referencesH. Hasegawa. Classical small systems coupled to finite baths. Physical Review E, 83 (2):021104, 2011.spa
dc.relation.referencesC. Manchein, J. Rosa, and M. W. Beims. Chaotic motion at the emergence of the time averaged energy decay. Physica D: Nonlinear Phenomena, 238(16):1688–1694, 2009.spa
dc.relation.referencesM. A. Marchiori and M. A. M. de Aguiar. Energy dissipation via coupling with a finite chaotic environment. Physical Review E, 83(6):061112, 2011.spa
dc.relation.referencesA. S. Davydov. The theory of contraction of proteins under their excitation. Journal of Theoretical Biology, 38(3):559–569, 1973.spa
dc.relation.referencesA. S. Davydov and N. I. Kislukha. Solitary excitons in one-dimensional molecular chains. physica status solidi (b), 59(2):465–470, 1973.spa
dc.relation.referencesA. S. Davydov et al. Solitons in molecular systems. Springer, 1985.spa
dc.relation.referencesM. Werther and F. Grossmann. The Davydov d1. 5 ansatz for the quantum Rabi model. Physica Scripta, 93(7):074001, 2018.spa
dc.relation.referencesJ. Frenkel. Wave mechanics: advanced general theory, volume 1. Oxford University Press, 1934.spa
dc.relation.referencesM. Werther. The multi Davydov-ansatz: Apoptosis of moving Gaussian functions with applications to open quantum system dynamics. PhD thesis, Technische Universität Dresden, April 2020.spa
dc.relation.referencesT. Dittrich and R. Graham. Continuous quantum measurements and chaos. Physical Review A, 42(8):4647, 1990.spa
dc.relation.referencesA. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger. Dynamics of the dissipative two-state system. Reviews of Modern Physics, 59 (1):1, 1987.spa
dc.relation.referencesR. A. Marcus and N. Sutin. Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 811(3):265–322, 1985.spa
dc.relation.referencesC. Gerry, P. Knight, and P. L. Knight. Introductory quantum optics. Cambridge university press, 2005.spa
dc.relation.referencesH. Wang. Basis set approach to the quantum dissipative dynamics: Application of the multiconfiguration time-dependent Hartree method to the spin-boson problem. The Journal of Chemical Physics, 113(22):9948–9956, 2000.spa
dc.relation.referencesA. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen, and G. R. Fleming. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Physical Chemistry Chemical Physics, 12(27):7319–7337, 2010.spa
dc.relation.referencesB. W. Shore and P. L. Knight. The Jaynes-Cummings model. Journal of Modern Optics, 40(7):1195–1238, 1993.spa
dc.relation.referencesJ. Larson. Dynamics of the Jaynes–Cummings and Rabi models: old wine in new bottles. Physica Scripta, 76(2):146, 2007.spa
dc.relation.referencesD. Braak. Integrability of the Rabi model. Physical Review Letters, 107(10):100401, 2011.spa
dc.relation.referencesE. K. Irish. Generalized rotating-wave approximation for arbitrarily large coupling. Physical review letters, 99(17):173601, 2007.spa
dc.relation.referencesE. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab. Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator. Physical Review B, 72(19):195410, 2005.spa
dc.relation.referencesT. Werlang, A. V. Dodonov, E. I. Duzzioni, and C. J. Villas-Bôas. Rabi model beyond the rotating-wave approximation: Generation of photons from vacuum through decoherence. Physical Review A, 78(5):053805, 2008.spa
dc.relation.referencesG. A. Finney and J. Gea-Banacloche. Quantum suppression of chaos in the spin-boson model. Physical Review E, 54(2):1449, 1996.spa
dc.relation.referencesJ. Gea-Banacloche. Atom-and field-state evolution in the Jaynes-Cummings model for large initial fields. Physical Review A, 44(9):5913, 1991.spa
dc.relation.referencesL. E. Ballentine. States of a dynamically driven spin. i. quantum-mechanical model. Physical Review A, 44(7):4126, 1991.spa
dc.relation.referencesL. E. Ballentine. States of a dynamically driven spin. ii. classical model and the quantum-to-classical limit. Physical Review A, 44(7):4133, 1991.spa
dc.relation.referencesB. Gardas. Exact solution of the Schrödinger equation with the spin-boson Hamiltonian. Journal of Physics A: Mathematical and Theoretical, 44(19):195301, 2011.spa
dc.relation.referencesM. Thoss, H. Wang, and W. H. Miller. Self-consistent hybrid approach for complex systems: Application to the spin-boson model with Debye spectral density. The Journal of Chemical Physics, 115(7):2991–3005, 2001.spa
dc.relation.referencesH. Wang and M. Thoss. From coherent motion to localization: dynamics of the spin-boson model at zero temperature. New Journal of Physics, 10(11):115005, 2008.spa
dc.relation.referencesR. Bulla, N. H. Tong, and M. Vojta. Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model. Physical review letters, 91(17):170601, 2003.spa
dc.relation.referencesD. Kast and J. Ankerhold. Persistence of coherent quantum dynamics at strong dissipation. Physical review letters, 110(1):010402, 2013.spa
dc.relation.referencesT. Dittrich and S. Peña-Martínez. Toppling pencils — macroscopic randomness from microscopic fluctuations. Entropy, 22(9):1046, 2020.spa
dc.relation.referencesR. Hartmann, M. Werther, F. Grossmann, and W. T. Strunz. Exact open quantum system dynamics: Optimal frequency vs time representation of bath correlations. The Journal of Chemical Physics, 150(23):234105, 2019.spa
dc.relation.referencesT. Dittrich. Quantum chaos and quantum randomness: Paradigms of entropy production on the smallest scales. Entropy, 21(3):286, 2019.spa
dc.relation.referencesO. C. Stoica. Quantum measurement and initial conditions. International Journal of Theoretical Physics, 55(3):1897–1911, 2016.spa
dc.relation.referencesC. Gardiner and P. Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer, 1999.spa
dc.relation.referencesL. Wang, Y. Fujihashi, L. Chen, and Y. Zhao. Finite-temperature time-dependent variation with multiple davydov states. The Journal of chemical physics, 146(12): 124127, 2017.spa
dc.relation.referencesG. Lindblad. Entropy, information and quantum measurements. Communications in Mathematical Physics, 33(4):305–322, 1973.spa
dc.relation.referencesW. H. Zurek. Information transfer in quantum measurements: Irreversibility and amplification. In Quantum Optics, Experimental Gravity, and Measurement Theory, pages 87–116. Springer, 1983.spa
dc.relation.referencesW. H. Zurek. Einselection and decoherence from an information theory perspective. In Quantum Communication, Computing, and Measurement 3, pages 115–125. Springer, 2002.spa
dc.relation.referencesR. Blume-Kohout and W. H. Zurek. A simple example of “quantum darwinism”: Redundant information storage in many-spin environments. Foundations of Physics, 35(11):1857–1876, 2005.spa
dc.relation.referencesR. Blume-Kohout and W. H. Zurek. Quantum darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information. Physical review A, 73(6):062310, 2006.spa
dc.relation.referencesH. Ollivier and W. H. Zurek. Quantum discord: a measure of the quantumness of correlations. Physical review letters, 88(1):017901, 2001.spa
dc.relation.referencesV. Vedral. Foundations of quantum discord. In Lectures on General Quantum Correlations and their Applications, pages 3–7. Springer, 2017.spa
dc.relation.referencesL. Henderson and V. Vedral. Classical, quantum and total correlations. Journal of physics A: mathematical and general, 34(35):6899, 2001.spa
dc.relation.referencesV. Vedral. Classical correlations and entanglement in quantum measurements. Physical review letters, 90(5):050401, 2003.spa
dc.relation.referencesJ. Machta. Entropy, information, and computation. American Journal of Physics, 67(12):1074–1077, 1999spa
dc.relation.referencesV. Vedral. The role of relative entropy in quantum information theory. Reviews of Modern Physics, 74(1):197, 2002.spa
dc.relation.referencesV. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight. Quantifying entanglement. Physical Review Letters, 78(12):2275, 1997.spa
dc.relation.referencesJ. M. Raimond, M. Brune, and S. Haroche. Reversible decoherence of a mesoscopic superposition of field states. Physical review letters, 79(11):1964, 1997.spa
dc.relation.referencesZ. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-Jáuregui, R. J. Schoelkopf, M. Mirrahimi, H. J. Carmichael, and M. H. Devoret. To catch and reverse a quantum jump mid-flight. Nature, 570(7760):200–204, 2019.spa
dc.relation.referencesS. L. Choudhury and F. Grossmann. Quantum approach to the thermalization of the toppling pencil interacting with a finite bath. Physical Review A, 105(2):022201, 2022.spa
dc.relation.referencesJ. Maldacena, S. H. Shenker, and D. Stanford. A bound on chaos. Journal of High Energy Physics, 2016(8):1–17, 2016.spa
dc.relation.referencesD. J. Luitz and Y. B. Lev. Information propagation in isolated quantum systems. Physical Review B, 96(2):020406, 2017.spa
dc.relation.referencesJ. Rammensee, J. D. Urbina, and K. Richter. Many-body quantum interference and the saturation of out-of-time-order correlators. Physical Review Letters, 121(12): 124101, 2018.spa
dc.relation.referencesB. Swingle. Unscrambling the physics of out-of-time-order correlators. Nature Physics, 14(10):988–990, 2018.spa
dc.relation.referencesR. C. Ge, M. Gong, C. F. Li, J. S. Xu, and G. C. Guo. Quantum correlation and classical correlation dynamics in the spin-boson model. Physical Review A, 81(6): 064103, 2010.spa
dc.relation.referencesH. Ollivier, D. Poulin, and W. H. Zurek. Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A - Atomic, Molecular, and Optical Physics, 72(4):1–19, 2005. ISSN 10502947. doi: 10.1103/PhysRevA.72.042113.spa
dc.relation.referencesF. Haake and D. F. Walls. Overdamped and amplifying meters in the quantum theory of measurement. Physical Review A, 36(2):730–739, 1987. ISSN 10502947. doi: 10.1103/PhysRevA.36.730.spa
dc.relation.referencesR. B. Griffiths. What quantum measurements measure. Physical Review A, 96(3): 1–20, 2017. ISSN 24699934. doi: 10.1103/PhysRevA.96.032110.spa
dc.relation.referencesM. Hannout, S. Hoyt, A. Kryowonos, and A. Widom. Quantum measurement theory and the Stern–Gerlach experiment. American Journal of Physics, 66(5):377–379, 1998.spa
dc.relation.referencesM. Werther and F. Grossmann. Apoptosis of moving nonorthogonal basis functions in many-particle quantum dynamics. Physical Review B, 101(17):174315, 2020.spa
dc.relation.referencesC. Duan, Z. Tang, J. Cao, and J. Wu. Zero-temperature localization in a sub-ohmic spin-boson model investigated by an extended hierarchy equation of motion. Physical Review B, 95(21):214308, 2017.spa
dc.relation.referencesY. Aharonov, D. Z. Albert, and L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Physical review letters, 60(14):1351, 1988.spa
dc.relation.referencesC. E. Shannon. A mathematical theory of communication. The Bell system technical journal, 27(3):379–423, 1948.spa
dc.relation.referencesJ. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral. Classical and quantum correlations under decoherence. Physical Review A, 80(4):044102, 2009.spa
dc.relation.referencesW. Gerlach and O. Stern. Der experimentelle nachweis der richtungsquantelung im magnetfeld. Zeitschrift für Physik, 9(1):349–352, 1922.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.lembFormas (matemáticas)spa
dc.subject.lembForms (mathematics)eng
dc.subject.proposalRandomnesseng
dc.subject.proposalQuantum measurementeng
dc.subject.proposalUnitary time-evolutioneng
dc.subject.proposalSpin-boson modeleng
dc.subject.proposalAletoriedadspa
dc.subject.proposalMedición cuánticaspa
dc.subject.proposalEvolución temporal unitariaspa
dc.subject.proposalSistema espín-bosonspa
dc.titleQuantum randomness and quantum measurement in a unitary settingeng
dc.title.translatedAletoriedad cuántica y medición cuántica desde un enfoque unitariospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030576470.2023.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: