Una propuesta para estimar el costo de las rentas vitalicias, con base en ecuaciones diferenciales estocásticas fraccionales para mesadas pensionales y tasas de interés variables
dc.contributor.advisor | Salazar Uribe, Juan Carlos | |
dc.contributor.author | Agudelo Torres, Gabriel Alberto | |
dc.contributor.orcid | Agudelo Torres, Gabriel Alberto [0000-0002-5381-4636] | spa |
dc.date.accessioned | 2025-06-10T13:33:14Z | |
dc.date.available | 2025-06-10T13:33:14Z | |
dc.date.issued | 2025-06-06 | |
dc.description.abstract | Proveer a la población de un país o una región de rentas vitalicias o temporales durante la vejez es un tema relevante de política económica y social que ha sido abordado de diversas formas a través del tiempo. El costo de dichos productos financieros viene determinado directamente por el monto de la reserva actuarial que las entidades pagadoras deben constituir y su estimación supone generalmente utilizar tasas de interés constantes y pagos que se incrementan periódicamente con un índice de inflación. Además, se asume que los mercados financieros son eficientes y que no existe la posibilidad de aprovechar la volatilidad en el precio de los activos y de las tasas de interés para reducir dicha reserva. En este trabajo se propone un modelo estadístico-financiero para estimar el costo de las rentas vitalicias, con base en ecuaciones diferenciales estocásticas fraccionales para el modelamiento de la tasa de interés y del precio del activo al cual está atado el incremento en los pagos. De este modo se elimina el supuesto de mercados eficientes y se estructura una cobertura dinámica del riesgo de mercado que permite disminuir el monto de la reserva actuarial y por lo tanto el costo de la renta. Se ilustra con datos reales de mercados financieros. (Tomado de la fuente) | spa |
dc.description.abstract | Providing the population of a country or region with whole life or temporary annuities during old age is a major concern in economic and social policy, and has been addressed in various ways over time. The cost of such financial products is directly determined by the amount of the actuarial reserve that paying institutions are required to hold, and its estimation typically relies on the assumption of constant interest rates and payments indexed to inflation. Moreover, it is generally assumed that financial markets are efficient, and that there is no opportunity to leverage the volatility of asset prices and interest rates to reduce the reserve requirement. This thesis proposes a statistical-financial model for estimating the cost of life annuities, based on fractional stochastic differential equations to model both the interest rate and the price of the asset to which payment adjustments are linked. This framework relaxes the assumption of market efficiency and introduces a dynamic market risk hedging strategy that enables a reduction in the actuarial reserve and, consequently, in the cost of the annuity. The model is illustrated using real-world financial market data. | eng |
dc.description.curriculararea | Estadística.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Estadística | spa |
dc.format.extent | 156 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88215 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Doctorado en Ciencias - Estadística | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Aalen, O. (1978). Nonparametric inference for a family of counting processes. The Annals of Statistics, 6(4):701–726. | spa |
dc.relation.references | Adekoya, O. B. (2020). Persistence and efficiency of oecd stock markets: linear and nonlinear fractional integration approaches. Empirical Economics, 61(3):1–19. | spa |
dc.relation.references | Alos, E., Le´on, J. A., and Nualart, D. (2001). Stochastic stratonovich calculus fbm for fractional brownian motion with hurst parameter less than 1/2. Taiwanese Journal of Mathematics, 5(3):609–632. | spa |
dc.relation.references | Alvarez-Ramirez, J. and Rodriguez, E. (2021). A singular value decomposition entropy approach for testing stock market efficiency. Physica A: Statistical Mechanics and its Applications, 583:126337. | spa |
dc.relation.references | Arias, E. and Xu, J. (2022). National vital statistics reports. U.S. Department of Health and Human Services, 71(1):15–50. | spa |
dc.relation.references | Bachelier, L. (1900). Theory of speculation: The origins of modern finance. Francia: Gauthier-Villars. | spa |
dc.relation.references | Bader, L. N. and Gold, J. (2003). Reinventing pension actuarial science. In Pension Forum, volume 15, pages 1–13. | spa |
dc.relation.references | Barabási, A.-L. and Vicsek, T. (1991). Multifractality of self-affine fractals. Physical Review A, 44(4):2730. | spa |
dc.relation.references | Barunik, J. and Kristoufek, L. (2010). On hurst exponent estimation under heavy-tailed distributions. Physica A: Statistical Mechanics and Its Applications, 389(18):3844–3855. | spa |
dc.relation.references | Belfadli, R., Es-Sebaiy, K., and Ouknine, Y. (2011). Parameter estimation for fractional ornstein-uhlenbeck processes: non-ergodic case. arXiv preprint arXiv:1102.5491. | spa |
dc.relation.references | Beran, J., Sherman, R., Taqqu, M. S., and Willinger, W. (1995). Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on Communications, 43(2/3/4):1566– 1579. | spa |
dc.relation.references | Berk, J. and DeMarzo, P. (2011). Corporate Finance, global ed. | spa |
dc.relation.references | Black, F. (1980). The tax consequences of long-run pension policy. Financial Analysts Journal, 36(4):21–28. | spa |
dc.relation.references | Black, F., Derman, E., and Toy, W. (1990). A one-factor model of interest rates and its application to treasury bond options. Financial Analysts Journal, 46(1):33–39. | spa |
dc.relation.references | Black, F. and Karasinski, P. (1991). Bond and option pricing when short rates are lognormal. Financial Analysts Journal, 47(4):52–59. | spa |
dc.relation.references | Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–654. | spa |
dc.relation.references | Bowers, N., Gerber, H., Hickman, J., Jones, D., and Nesbitt, C. (1997). Actuarial mathematics. Society of Actuaries. | spa |
dc.relation.references | Brandao-Marques, L., Casiraghi, M., Gelos, G., Kamber, G., and Meeks, R. (2021). Negative interest rate policies: A survey. Annual Review of Economics, 16. | spa |
dc.relation.references | Breslow, N. (1974). Covariance analysis of censored survival data. Biometrics, pages 89–99. | spa |
dc.relation.references | Breslow, N. E. (1972). Contribution to discussion of paper by dr cox. J. Roy. Statist. Soc., Ser. B, 34:216–217. | spa |
dc.relation.references | Brock, W., Lakonishok, J., and LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5):1731–1764. | spa |
dc.relation.references | Cadoni, M., Melis, R., and Trudda, A. (2017). Pension funds rules: Paradoxes in risk control. Finance Research Letters, 22:20–29. | spa |
dc.relation.references | Campillo-Navarro, A. (2013). Estudio del movimiento browniano fraccionario. Master’s thesis, Universidad Aut´onoma Metropolitana, M´exico. | spa |
dc.relation.references | Chen, A. (2011). A risk-based model for the valuation of pension insurance. Insurance: Mathematics and Economics, 49(3):401–409. | spa |
dc.relation.references | Chen, A. and Uzelac, F. (2014). A risk-based premium: What does it mean for db plan sponsors? Insurance: Mathematics and Economics, 54:1–11. | spa |
dc.relation.references | Cheridito, P. and Nualart, D. (2005). Stochastic integral of divergence type with respect to fractional brownian motion with hurst parameter H ∈ (0, 1 2 ). In Annales de l’IHP Probabilit´es et statistiques, volume 41, pages 1049–1081. | spa |
dc.relation.references | Cochran, S. J., DeFina, R. H., and Mills, L. O. (1993). International evidence on the predictability of stock returns. Financial Review, 28(2):159–180. | spa |
dc.relation.references | Cootner, P. H. (1964). Comments on the variation of certain speculative prices. The Random Character of Stock Market Prices, pages 333–37. | spa |
dc.relation.references | Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2):187–202. | spa |
dc.relation.references | Cox, J. (1975). Notes on option pricing i: Constant elasticity of variance diffusions. Unpublished note, Stanford University, Graduate School of Business. | spa |
dc.relation.references | Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1980). An analysis of variable rate loan contracts. The Journal of Finance, 35(2):389–403. | spa |
dc.relation.references | Cox, J. C., Ingersoll Jr, J. E., and Ross, S. A. (1985). An intertemporal general equilibrium model of asset prices. Econometrica: Journal of the Econometric Society, pages 363–384. | spa |
dc.relation.references | De Bondt, W. F. and Thaler, R. (1985). Does the stock market overreact? The Journal of Finance, 40(3):793–805. | spa |
dc.relation.references | Di Matteo, T. (2007). Multi-scaling in finance. Quantitative Finance, 7(1):21–36. | spa |
dc.relation.references | Di Matteo, T., Aste, T., and Dacorogna, M. M. (2005). Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development. Journal of Banking & Finance, 29(4):827–851. | spa |
dc.relation.references | Dickey, D. A. and Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: journal of the Econometric Society, pages 1057– 1072. | spa |
dc.relation.references | Dickson, D. C., Hardy, M. R., and Waters, H. R. (2019). Actuarial mathematics for life contingent risks. Cambridge University Press. | spa |
dc.relation.references | Dieker, T. (2004). Simulation of fractional Brownian motion. PhD thesis, Masters Thesis, Department of Mathematical Sciences, University of Twente. | spa |
dc.relation.references | Dothan, L. U. (1978). On the term structure of interest rates. Journal of Financial Economics, 6(1):59–69. | spa |
dc.relation.references | Duncan, T. E., Hu, Y., and Pasik-Duncan, B. (2000). Stochastic calculus for fractional brownian motion i. theory. SIAM Journal on Control and Optimization, 38(2):582–612. | spa |
dc.relation.references | Eke, A., Herman, P., Kocsis, L., and Kozak, L. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1):R1. | spa |
dc.relation.references | El Machkouri, M., Es-Sebaiy, K., and Ouknine, Y. (2016). Least squares estimator for nonergodic ornstein–uhlenbeck processes driven by gaussian processes. Journal of the Korean Statistical Society, 45(3):329–341. | spa |
dc.relation.references | Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1):34– 105. | spa |
dc.relation.references | Fleming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis. John Wiley & Sons. | spa |
dc.relation.references | Gardiner, C. W. (1985). Handbook of Stochastic Methods, volume 3. Springer Berlin. | spa |
dc.relation.references | Gjessing, H., Holden, H., Lindstrøm, T., Ubøe, J., and Zhang, T. (1993). The wick product. Frontiers in Pure and Applied Probability, 1:29–67. | spa |
dc.relation.references | Gómez-Águila, A. and Sánchez-Granero, M. (2021). A theoretical framework for the tta algorithm. Physica A: Statistical Mechanics and its Applications, 582:126288. | spa |
dc.relation.references | Greenwood, M. (1926). The natural duration of cancer (report on public health and medical subjects no 33). London: Her Majesty’s Stationery Office. | spa |
dc.relation.references | Guan, G. and Liang, Z. (2016). Optimal management of dc pension plan under loss aversion and value-at-risk constraints. Insurance: Mathematics and Economics, 69:224–237. | spa |
dc.relation.references | Halley, E. (1693). An estimate of the degrees of mortality of mankind, drawn from curious tables of the births and funerals at the city of breslaw, with an attempt to ascertain the price of annuities on lives. Philos. Trans, 17:596–610. | spa |
dc.relation.references | Harrison, J. M. and Sharpe, W. F. (2008). Optimal funding and asset allocation fules for defined-benefit pension plans. University of Chicago Press. | spa |
dc.relation.references | Hastings, W. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97–109. | spa |
dc.relation.references | Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena, 31(2):277–283. | spa |
dc.relation.references | Hirsa, A. and Neftci, S. N. (2013). An Introduction to the Mathematics of Financial Derivatives. Academic Press. | spa |
dc.relation.references | Ho, T. S. and Lee, S.-B. (1986). Term structure movements and pricing interest rate contingent claims. the Journal of Finance, 41(5):1011–1029. | spa |
dc.relation.references | Hu, Y. and Nualart, D. (2010). Parameter estimation for fractional ornstein–uhlenbeck processes. Statistics & Probability Letters, 80(11-12):1030–1038. | spa |
dc.relation.references | Hu, Y. and Øksendal, B. (2003). Fractional white noise calculus and applications to finance. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6(01):1–32. | spa |
dc.relation.references | Hull, J. and White, A. (1990). Pricing interest-rate-derivative securities. The Review of Financial Studies, 3(4):573–592. | spa |
dc.relation.references | Hull, J. C. (2019). Options, Futures and Other Derivatives. Pearson. | spa |
dc.relation.references | Hurst, H. E. (1956). Methods of using long-term storage in reservoirs. Proceedings of the Institution of Civil Engineers, 5(5):519–543. | spa |
dc.relation.references | Itˆo, K. (1951). On stochastic differential equations. Number 4. American Mathematical Soc. | spa |
dc.relation.references | Jarcho, S. (1972). The contributions of Casper Neumann and Edmund Halley to demography. Bulletin of the New York Academy of Medicine, 48(7):978. | spa |
dc.relation.references | Jizba, P. and Korbel, J. (2013). Methods and techniques for multifractal spectrum estimation in financial time series. Proceedings ASMDA. | spa |
dc.relation.references | Johnston, H. W. (1903). The private life of the Romans. Scott, Foresman. | spa |
dc.relation.references | Jordan, C. W. (1991). Life contingencies, (Chicago: The Society of Actuaries). | spa |
dc.relation.references | Kalra, R. and Jain, G. (1997). A continuous-time model to determine the intervention policy for pbgc. Journal of Banking & Finance, 21(8):1159–1177. | spa |
dc.relation.references | Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., and Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1-4):87–114. | spa |
dc.relation.references | Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282):457–481. | spa |
dc.relation.references | Karadagli, E. C. and Donmez, M. G. (2012). A nonlinear analysis of weak form efficiency of stock index futures markets in cce emerging economies. International Research Journal of Finance and Economics, 95:61–71. | spa |
dc.relation.references | Kaur, I., Ramanathan, T., and Naik-Nimbalkar, U. (2011). Parameter estimation of a process driven by fractional brownian motion: An estimating function approach. Technical report, Technical Report, 2011, see https://www. academia. edu/2249664 . . . . | spa |
dc.relation.references | Kroese, D. P. and Botev, Z. I. (2015). Spatial process simulation. In Stochastic Geometry, Spatial Statistics and Random Fields, pages 369–404. Springer. | spa |
dc.relation.references | Lawless, J. F. (2011). Statistical Models and Methods for Lifetime Data. John Wiley & Sons. | spa |
dc.relation.references | Lee, N., Choi, W., and Pae, Y. (2021). Market efficiency in foreign exchange market. Economics Letters, page 109931. | spa |
dc.relation.references | Levy, P. (1925). Calcul des probabilites. gautier-villars, paris. Calcul Des Probabilites. Gautier-Villars, Paris. | spa |
dc.relation.references | Lévy, P. (1953). Random Functions: General Theory with Special Reference to Laplacian Random Functions, volume 1. University of California Press. | spa |
dc.relation.references | Lewin, C. (2001). The creation of actuarial science. Zentralblatt f¨ur Didaktik der Mathematik, 33(2):61–66. | spa |
dc.relation.references | Li, D., Rong, X., and Zhao, H. (2016). Time-consistent investment strategy for dc pension plan with stochastic salary under cev model. Journal of Systems Science and complexity, 29(2):428–454. | spa |
dc.relation.references | Li, P., Wang, W., Xie, L., and Yang, Z. (2021). Premium valuation of the pension benefit guaranty corporation with regime switching. Mathematical Problems in Engineering, 2021. | spa |
dc.relation.references | Lin, H., Lo, I., and Qiao, R. (2021). Macroeconomic news announcements and market efficiency: Evidence from the us treasury market. Journal of Banking & Finance, 133:106252. | spa |
dc.relation.references | Lin, S. (1995). Stochastic analysis of fractional brownian motions. Stochastics: An International Journal of Probability and Stochastic Processes, 55(1-2):121–140. | spa |
dc.relation.references | Lo, A. W. and MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. The Review of Financial Studies, 1(1):41–66. | spa |
dc.relation.references | Loan, A. (1991). Institutional bases of the spontaneous order: Surety and assurance. Humane Studies Review, 7(1):92. | spa |
dc.relation.references | Lotfalinezhad, H. and Maleki, A. (2020). Tta, a new approach to estimate hurst exponent with less estimation error and computational time. Physica A: Statistical Mechanics and its Applications, 553:124093. | spa |
dc.relation.references | Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business, 36(4):394–419. | spa |
dc.relation.references | Mandelbrot, B. B. (1971). When can price be arbitraged efficiently? a limit to the validity of the random walk and martingale models. The Review of Economics and Statistics, pages 225–236. | spa |
dc.relation.references | Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional brownian motions, fractional noises and applications. SIAM Review, 10(4):422–437. | spa |
dc.relation.references | Mandelbrot, B. B. and Wallis, J. R. (1969). Robustness of the rescaled range r/s in the measurement of noncyclic long run statistical dependence. Water Resources Research, 5(5):967–988. | spa |
dc.relation.references | Marcus, A. J. (2007). Corporate Pension Policy and the Value of PBGC Insurance. University of Chicago Press. | spa |
dc.relation.references | Meeker, W. Q., Escobar, L. A., and Pascual, F. G. (2022). Statistical methods for reliability data. John Wiley & Sons. | spa |
dc.relation.references | Merton, R. C. (1973a). An intertemporal capital asset pricing model. Econometrica: Journal of the Econometric Society, pages 867–887. | spa |
dc.relation.references | Merton, R. C. (1973b). Theory of rational option pricing. The Bell Journal of Economics and Management Science, pages 141–183. | spa |
dc.relation.references | Miller Jr, R. G. (1983). What price kaplan-meier? Biometrics, 39(4):1077–1081. | spa |
dc.relation.references | Molyneux, P., Reghezza, A., and Xie, R. (2019). Bank margins and profits in a world of negative rates. Journal of Banking & Finance, 107:105613. | spa |
dc.relation.references | Mood, A. M. (1950). Introduction to the Theory of Statistics. McGraw-hill. | spa |
dc.relation.references | Mudholkar, G. S., Srivastava, D. K., and Kollia, G. D. (1996). A generalization of the weibull distribution with application to the analysis of survival data. Journal of the American Statistical Association, 91(436):1575–1583. | spa |
dc.relation.references | Necula, C. (2002). Option pricing in a fractional brownian motion environment. Available at SSRN 1286833. | spa |
dc.relation.references | Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technology, 1(1):27–52. | spa |
dc.relation.references | Nualart, D. (2006). The Malliavin calculus and related topics, volume 1995. Springer. | spa |
dc.relation.references | Nucera, F., Lucas, A., Schaumburg, J., and Schwaab, B. (2017). Do negative interest rates make banks less safe? Economics Letters, 159:112–115. | spa |
dc.relation.references | Nwozo, C. R. and Nkeki, C. I. (2011). Optimal investment and portfolio strategies with minimum guarantee and inflation protection for a defined contribution pension scheme. Studies in Mathematical Sciences, 2(2):78–89. | spa |
dc.relation.references | Obata, N. (1996). Wick product of white noise operators and its application to quantum stochastic differential equations (quantum stochastic analysis and related fields). Instituto de Investigaci´on de An´alisis Matem´atico, 957:167–185. | spa |
dc.relation.references | OECD (2021). Pension markets in focus 2021. https://www.oecd.org/en/publications/ pensions-market-in-focus-2021_a70e4160-en.html. Accedido el: 04-10-2022. | spa |
dc.relation.references | Osborne, M. F. (1959). Brownian motion in the stock market. Operations Research, 7(2):145– 173. | spa |
dc.relation.references | Pareto, V. (1896). Cours d´ ´ Economie Politique, volume 1. F. Rouge. | spa |
dc.relation.references | Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review e, 49(2):1685. | spa |
dc.relation.references | Peng, C.-K., Havlin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: an Interdisciplinary Journal of Nonlinear Science, 5(1):82–87. | spa |
dc.relation.references | Peters, E. E. (1996). Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility. John Wiley & Sons. | spa |
dc.relation.references | Regnault, J. (1863). Calcul des Chances et Philosophie de la Bourse. librairie Castel. | spa |
dc.relation.references | Rendleman, R. J. and Bartter, B. J. (1980). The pricing of options on debt securities. Journal of Financial and Quantitative Analysis, 15(1):11–24. | spa |
dc.relation.references | Rosenblatt, M. (1952). Remarks on a multivariate transformation. The annals of mathematical statistics, 23(3):470–472. | spa |
dc.relation.references | Russell, T. and Thaler, R. (1985). The relevance of quasi rationality in competitive markets. The American Economic Review, 75(5):1071–1082. | spa |
dc.relation.references | Ryu, I., Jang, H., Kim, D., and Ahn, K. (2021). Market efficiency of US REITs: A revisit. Chaos, Solitons & Fractals, 150:111070. | spa |
dc.relation.references | Salazar-Uribe, J. C., Garc´ıa-Cruz, E. K., Gaviria-Pe˜na, C., and Guar´ın-Escudero, V. (2020). Introducci´on al An´alisis de Supervivencia Avanzada. Editorial Bonaventuriano. | spa |
dc.relation.references | Samorodnitsky, G., Taqqu, M. S., and Linde, R. (1996). Stable non-gaussian random processes: stochastic models with infinite variance. Bulletin of the London Mathematical Society, 28(134):554–555. | spa |
dc.relation.references | Samuelson, P. and Merton, R. C. (1969). A complete model of warrant pricing that maximizes utility. IMR; Industrial Management Review (pre-1986), 10(2):17. | spa |
dc.relation.references | Samuelson, P. A. (1965). Rational theory of warrant pricing. Industrial Management Review, 6:13–32. | spa |
dc.relation.references | Sharpe, W. F. (1976). Corporate pension funding policy. Journal of Financial Economics, 3(3):183–193. | spa |
dc.relation.references | Siameti, P., Chronopoulos, D. K., and Dotsis, G. (2025). Negative rates and bank profit and cost efficiency: evidence for eurozone. The European Journal of Finance, 31(1):14–30. | spa |
dc.relation.references | Sims, E. and Wu, J. C. (2021). Evaluating central banks’ tool kit: Past, present, and future. Journal of Monetary Economics, 118:135–160. | spa |
dc.relation.references | Skorokhod, A. V. (1975). On a generalization of stochastic integral. Teoriya Veroyatnostei I Ee Primeneniya, 20(2):223–238. | spa |
dc.relation.references | Sottinen, T. (2001). Fractional brownian motion, random walks and binary market models. Finance and Stochastics, 5(3):343–355. | spa |
dc.relation.references | Sprenkle, C. M. (1961). Warrant prices as indicators of expectations and preferences. Yale Economic Essays, 1(2):179–232. | spa |
dc.relation.references | Taqqu, M. (1975). Weak convergence to fractional brownian motion and to the rosenblatt process. Advances in Applied Probability, 7(2):249–249. | spa |
dc.relation.references | Taqqu, M. S., Teverovsky, V., and Willinger, W. (1995). Estimators for long-range dependence: an empirical study. Fractals, 3(04):785–798. | spa |
dc.relation.references | Tepper, I. (1981). Taxation and corporate pension policy. The Journal of Finance, 36(1):1– 13. | spa |
dc.relation.references | Treynor, J. L. (1972). Risk and reward in corporate pension funds. Financial Analysts Journal, 28(1):80–84. | spa |
dc.relation.references | Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2):177–188. | spa |
dc.relation.references | Veillette, M. S. and Taqqu, M. S. (2013). Properties and numerical evaluation of the rosenblatt distribution. Bernoulli, 19(3):982–1005. | spa |
dc.relation.references | Venegas, F. (2010). Riesgos Financieros y Econ´omicos. Productos Derivados y Decisiones Econ´omicas Bajo Incertidumbre. Cengage Learning Editores, SA De CV. | spa |
dc.relation.references | Venegas-Mart´ınez, F., Medina Hurtado, S., Jaramillo, J. A., and Ram´ırez Atehort´ua, F. H. (2008). Riesgos Financieros y Econ´omicos. Universidad de Medell´ın. | spa |
dc.relation.references | Weyl, H. (1917). Bemerkungen zum begriff des differentialquotienten gebrochener ordnung. Vierteljschr. Naturforsch. Gesellsch. Zurich, 62(1–2):296–302. | spa |
dc.relation.references | Wiener, N. (1923). Differential-space. Journal of Mathematics and Physics, 2(1-4):131–174. | spa |
dc.relation.references | Wu, J. C. and Xia, F. D. (2020). Negative interest rate policy and the yield curve. Journal of Applied Econometrics, 35(6):653–672. | spa |
dc.relation.references | Xiao, W. and Yu, J. (2019a). Asymptotic theory for estimating drift parameters in the fractional vasicek model. Econometric Theory, 35(1):198–231. | spa |
dc.relation.references | Xiao, W. and Yu, J. (2019b). Asymptotic theory for rough fractional vasicek models. Economics Letters, 177:26–29. | spa |
dc.relation.references | Young, L. C. (1936). An inequality of the h¨older type, connected with stieltjes integration. Acta Mathematica, 67:251–282. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 330 - Economía::331 - Economía laboral | spa |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.lemb | Pensiones a la vejez - Costos | |
dc.subject.lemb | Ecuaciones diferenciales estocásticas | |
dc.subject.lemb | Análisis estocástico | |
dc.subject.lemb | Pensiones anuales | |
dc.subject.proposal | Rentas vitalicias y temporales | spa |
dc.subject.proposal | Estadística | spa |
dc.subject.proposal | Índice de persistencia | spa |
dc.subject.proposal | Modelo de Vasicek | spa |
dc.subject.proposal | Ecuaciones diferenciales estocásticas fraccionales | spa |
dc.subject.proposal | Whole life and temporary annuities | eng |
dc.subject.proposal | Fractional stochastic differential equations | eng |
dc.subject.proposal | Statistics | eng |
dc.subject.proposal | Persistence index | eng |
dc.subject.proposal | Vasicek model | eng |
dc.title | Una propuesta para estimar el costo de las rentas vitalicias, con base en ecuaciones diferenciales estocásticas fraccionales para mesadas pensionales y tasas de interés variables | spa |
dc.title.translated | A proposal to estimate the cost of life annuities based on fractional stochastic differential equations for variable pension payments and variable interest rates | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 8163782.2025.pdf
- Tamaño:
- 1.7 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: