Una propuesta para estimar el costo de las rentas vitalicias, con base en ecuaciones diferenciales estocásticas fraccionales para mesadas pensionales y tasas de interés variables

dc.contributor.advisorSalazar Uribe, Juan Carlos
dc.contributor.authorAgudelo Torres, Gabriel Alberto
dc.contributor.orcidAgudelo Torres, Gabriel Alberto [0000-0002-5381-4636]spa
dc.date.accessioned2025-06-10T13:33:14Z
dc.date.available2025-06-10T13:33:14Z
dc.date.issued2025-06-06
dc.description.abstractProveer a la población de un país o una región de rentas vitalicias o temporales durante la vejez es un tema relevante de política económica y social que ha sido abordado de diversas formas a través del tiempo. El costo de dichos productos financieros viene determinado directamente por el monto de la reserva actuarial que las entidades pagadoras deben constituir y su estimación supone generalmente utilizar tasas de interés constantes y pagos que se incrementan periódicamente con un índice de inflación. Además, se asume que los mercados financieros son eficientes y que no existe la posibilidad de aprovechar la volatilidad en el precio de los activos y de las tasas de interés para reducir dicha reserva. En este trabajo se propone un modelo estadístico-financiero para estimar el costo de las rentas vitalicias, con base en ecuaciones diferenciales estocásticas fraccionales para el modelamiento de la tasa de interés y del precio del activo al cual está atado el incremento en los pagos. De este modo se elimina el supuesto de mercados eficientes y se estructura una cobertura dinámica del riesgo de mercado que permite disminuir el monto de la reserva actuarial y por lo tanto el costo de la renta. Se ilustra con datos reales de mercados financieros. (Tomado de la fuente)spa
dc.description.abstractProviding the population of a country or region with whole life or temporary annuities during old age is a major concern in economic and social policy, and has been addressed in various ways over time. The cost of such financial products is directly determined by the amount of the actuarial reserve that paying institutions are required to hold, and its estimation typically relies on the assumption of constant interest rates and payments indexed to inflation. Moreover, it is generally assumed that financial markets are efficient, and that there is no opportunity to leverage the volatility of asset prices and interest rates to reduce the reserve requirement. This thesis proposes a statistical-financial model for estimating the cost of life annuities, based on fractional stochastic differential equations to model both the interest rate and the price of the asset to which payment adjustments are linked. This framework relaxes the assumption of market efficiency and introduces a dynamic market risk hedging strategy that enables a reduction in the actuarial reserve and, consequently, in the cost of the annuity. The model is illustrated using real-world financial market data.eng
dc.description.curricularareaEstadística.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Estadísticaspa
dc.format.extent156 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88215
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAalen, O. (1978). Nonparametric inference for a family of counting processes. The Annals of Statistics, 6(4):701–726.spa
dc.relation.referencesAdekoya, O. B. (2020). Persistence and efficiency of oecd stock markets: linear and nonlinear fractional integration approaches. Empirical Economics, 61(3):1–19.spa
dc.relation.referencesAlos, E., Le´on, J. A., and Nualart, D. (2001). Stochastic stratonovich calculus fbm for fractional brownian motion with hurst parameter less than 1/2. Taiwanese Journal of Mathematics, 5(3):609–632.spa
dc.relation.referencesAlvarez-Ramirez, J. and Rodriguez, E. (2021). A singular value decomposition entropy approach for testing stock market efficiency. Physica A: Statistical Mechanics and its Applications, 583:126337.spa
dc.relation.referencesArias, E. and Xu, J. (2022). National vital statistics reports. U.S. Department of Health and Human Services, 71(1):15–50.spa
dc.relation.referencesBachelier, L. (1900). Theory of speculation: The origins of modern finance. Francia: Gauthier-Villars.spa
dc.relation.referencesBader, L. N. and Gold, J. (2003). Reinventing pension actuarial science. In Pension Forum, volume 15, pages 1–13.spa
dc.relation.referencesBarabási, A.-L. and Vicsek, T. (1991). Multifractality of self-affine fractals. Physical Review A, 44(4):2730.spa
dc.relation.referencesBarunik, J. and Kristoufek, L. (2010). On hurst exponent estimation under heavy-tailed distributions. Physica A: Statistical Mechanics and Its Applications, 389(18):3844–3855.spa
dc.relation.referencesBelfadli, R., Es-Sebaiy, K., and Ouknine, Y. (2011). Parameter estimation for fractional ornstein-uhlenbeck processes: non-ergodic case. arXiv preprint arXiv:1102.5491.spa
dc.relation.referencesBeran, J., Sherman, R., Taqqu, M. S., and Willinger, W. (1995). Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on Communications, 43(2/3/4):1566– 1579.spa
dc.relation.referencesBerk, J. and DeMarzo, P. (2011). Corporate Finance, global ed.spa
dc.relation.referencesBlack, F. (1980). The tax consequences of long-run pension policy. Financial Analysts Journal, 36(4):21–28.spa
dc.relation.referencesBlack, F., Derman, E., and Toy, W. (1990). A one-factor model of interest rates and its application to treasury bond options. Financial Analysts Journal, 46(1):33–39.spa
dc.relation.referencesBlack, F. and Karasinski, P. (1991). Bond and option pricing when short rates are lognormal. Financial Analysts Journal, 47(4):52–59.spa
dc.relation.referencesBlack, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–654.spa
dc.relation.referencesBowers, N., Gerber, H., Hickman, J., Jones, D., and Nesbitt, C. (1997). Actuarial mathematics. Society of Actuaries.spa
dc.relation.referencesBrandao-Marques, L., Casiraghi, M., Gelos, G., Kamber, G., and Meeks, R. (2021). Negative interest rate policies: A survey. Annual Review of Economics, 16.spa
dc.relation.referencesBreslow, N. (1974). Covariance analysis of censored survival data. Biometrics, pages 89–99.spa
dc.relation.referencesBreslow, N. E. (1972). Contribution to discussion of paper by dr cox. J. Roy. Statist. Soc., Ser. B, 34:216–217.spa
dc.relation.referencesBrock, W., Lakonishok, J., and LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5):1731–1764.spa
dc.relation.referencesCadoni, M., Melis, R., and Trudda, A. (2017). Pension funds rules: Paradoxes in risk control. Finance Research Letters, 22:20–29.spa
dc.relation.referencesCampillo-Navarro, A. (2013). Estudio del movimiento browniano fraccionario. Master’s thesis, Universidad Aut´onoma Metropolitana, M´exico.spa
dc.relation.referencesChen, A. (2011). A risk-based model for the valuation of pension insurance. Insurance: Mathematics and Economics, 49(3):401–409.spa
dc.relation.referencesChen, A. and Uzelac, F. (2014). A risk-based premium: What does it mean for db plan sponsors? Insurance: Mathematics and Economics, 54:1–11.spa
dc.relation.referencesCheridito, P. and Nualart, D. (2005). Stochastic integral of divergence type with respect to fractional brownian motion with hurst parameter H ∈ (0, 1 2 ). In Annales de l’IHP Probabilit´es et statistiques, volume 41, pages 1049–1081.spa
dc.relation.referencesCochran, S. J., DeFina, R. H., and Mills, L. O. (1993). International evidence on the predictability of stock returns. Financial Review, 28(2):159–180.spa
dc.relation.referencesCootner, P. H. (1964). Comments on the variation of certain speculative prices. The Random Character of Stock Market Prices, pages 333–37.spa
dc.relation.referencesCox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2):187–202.spa
dc.relation.referencesCox, J. (1975). Notes on option pricing i: Constant elasticity of variance diffusions. Unpublished note, Stanford University, Graduate School of Business.spa
dc.relation.referencesCox, J. C., Ingersoll, J. E., and Ross, S. A. (1980). An analysis of variable rate loan contracts. The Journal of Finance, 35(2):389–403.spa
dc.relation.referencesCox, J. C., Ingersoll Jr, J. E., and Ross, S. A. (1985). An intertemporal general equilibrium model of asset prices. Econometrica: Journal of the Econometric Society, pages 363–384.spa
dc.relation.referencesDe Bondt, W. F. and Thaler, R. (1985). Does the stock market overreact? The Journal of Finance, 40(3):793–805.spa
dc.relation.referencesDi Matteo, T. (2007). Multi-scaling in finance. Quantitative Finance, 7(1):21–36.spa
dc.relation.referencesDi Matteo, T., Aste, T., and Dacorogna, M. M. (2005). Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development. Journal of Banking & Finance, 29(4):827–851.spa
dc.relation.referencesDickey, D. A. and Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: journal of the Econometric Society, pages 1057– 1072.spa
dc.relation.referencesDickson, D. C., Hardy, M. R., and Waters, H. R. (2019). Actuarial mathematics for life contingent risks. Cambridge University Press.spa
dc.relation.referencesDieker, T. (2004). Simulation of fractional Brownian motion. PhD thesis, Masters Thesis, Department of Mathematical Sciences, University of Twente.spa
dc.relation.referencesDothan, L. U. (1978). On the term structure of interest rates. Journal of Financial Economics, 6(1):59–69.spa
dc.relation.referencesDuncan, T. E., Hu, Y., and Pasik-Duncan, B. (2000). Stochastic calculus for fractional brownian motion i. theory. SIAM Journal on Control and Optimization, 38(2):582–612.spa
dc.relation.referencesEke, A., Herman, P., Kocsis, L., and Kozak, L. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1):R1.spa
dc.relation.referencesEl Machkouri, M., Es-Sebaiy, K., and Ouknine, Y. (2016). Least squares estimator for nonergodic ornstein–uhlenbeck processes driven by gaussian processes. Journal of the Korean Statistical Society, 45(3):329–341.spa
dc.relation.referencesFama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1):34– 105.spa
dc.relation.referencesFleming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis. John Wiley & Sons.spa
dc.relation.referencesGardiner, C. W. (1985). Handbook of Stochastic Methods, volume 3. Springer Berlin.spa
dc.relation.referencesGjessing, H., Holden, H., Lindstrøm, T., Ubøe, J., and Zhang, T. (1993). The wick product. Frontiers in Pure and Applied Probability, 1:29–67.spa
dc.relation.referencesGómez-Águila, A. and Sánchez-Granero, M. (2021). A theoretical framework for the tta algorithm. Physica A: Statistical Mechanics and its Applications, 582:126288.spa
dc.relation.referencesGreenwood, M. (1926). The natural duration of cancer (report on public health and medical subjects no 33). London: Her Majesty’s Stationery Office.spa
dc.relation.referencesGuan, G. and Liang, Z. (2016). Optimal management of dc pension plan under loss aversion and value-at-risk constraints. Insurance: Mathematics and Economics, 69:224–237.spa
dc.relation.referencesHalley, E. (1693). An estimate of the degrees of mortality of mankind, drawn from curious tables of the births and funerals at the city of breslaw, with an attempt to ascertain the price of annuities on lives. Philos. Trans, 17:596–610.spa
dc.relation.referencesHarrison, J. M. and Sharpe, W. F. (2008). Optimal funding and asset allocation fules for defined-benefit pension plans. University of Chicago Press.spa
dc.relation.referencesHastings, W. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97–109.spa
dc.relation.referencesHiguchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena, 31(2):277–283.spa
dc.relation.referencesHirsa, A. and Neftci, S. N. (2013). An Introduction to the Mathematics of Financial Derivatives. Academic Press.spa
dc.relation.referencesHo, T. S. and Lee, S.-B. (1986). Term structure movements and pricing interest rate contingent claims. the Journal of Finance, 41(5):1011–1029.spa
dc.relation.referencesHu, Y. and Nualart, D. (2010). Parameter estimation for fractional ornstein–uhlenbeck processes. Statistics & Probability Letters, 80(11-12):1030–1038.spa
dc.relation.referencesHu, Y. and Øksendal, B. (2003). Fractional white noise calculus and applications to finance. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6(01):1–32.spa
dc.relation.referencesHull, J. and White, A. (1990). Pricing interest-rate-derivative securities. The Review of Financial Studies, 3(4):573–592.spa
dc.relation.referencesHull, J. C. (2019). Options, Futures and Other Derivatives. Pearson.spa
dc.relation.referencesHurst, H. E. (1956). Methods of using long-term storage in reservoirs. Proceedings of the Institution of Civil Engineers, 5(5):519–543.spa
dc.relation.referencesItˆo, K. (1951). On stochastic differential equations. Number 4. American Mathematical Soc.spa
dc.relation.referencesJarcho, S. (1972). The contributions of Casper Neumann and Edmund Halley to demography. Bulletin of the New York Academy of Medicine, 48(7):978.spa
dc.relation.referencesJizba, P. and Korbel, J. (2013). Methods and techniques for multifractal spectrum estimation in financial time series. Proceedings ASMDA.spa
dc.relation.referencesJohnston, H. W. (1903). The private life of the Romans. Scott, Foresman.spa
dc.relation.referencesJordan, C. W. (1991). Life contingencies, (Chicago: The Society of Actuaries).spa
dc.relation.referencesKalra, R. and Jain, G. (1997). A continuous-time model to determine the intervention policy for pbgc. Journal of Banking & Finance, 21(8):1159–1177.spa
dc.relation.referencesKantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., and Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1-4):87–114.spa
dc.relation.referencesKaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282):457–481.spa
dc.relation.referencesKaradagli, E. C. and Donmez, M. G. (2012). A nonlinear analysis of weak form efficiency of stock index futures markets in cce emerging economies. International Research Journal of Finance and Economics, 95:61–71.spa
dc.relation.referencesKaur, I., Ramanathan, T., and Naik-Nimbalkar, U. (2011). Parameter estimation of a process driven by fractional brownian motion: An estimating function approach. Technical report, Technical Report, 2011, see https://www. academia. edu/2249664 . . . .spa
dc.relation.referencesKroese, D. P. and Botev, Z. I. (2015). Spatial process simulation. In Stochastic Geometry, Spatial Statistics and Random Fields, pages 369–404. Springer.spa
dc.relation.referencesLawless, J. F. (2011). Statistical Models and Methods for Lifetime Data. John Wiley & Sons.spa
dc.relation.referencesLee, N., Choi, W., and Pae, Y. (2021). Market efficiency in foreign exchange market. Economics Letters, page 109931.spa
dc.relation.referencesLevy, P. (1925). Calcul des probabilites. gautier-villars, paris. Calcul Des Probabilites. Gautier-Villars, Paris.spa
dc.relation.referencesLévy, P. (1953). Random Functions: General Theory with Special Reference to Laplacian Random Functions, volume 1. University of California Press.spa
dc.relation.referencesLewin, C. (2001). The creation of actuarial science. Zentralblatt f¨ur Didaktik der Mathematik, 33(2):61–66.spa
dc.relation.referencesLi, D., Rong, X., and Zhao, H. (2016). Time-consistent investment strategy for dc pension plan with stochastic salary under cev model. Journal of Systems Science and complexity, 29(2):428–454.spa
dc.relation.referencesLi, P., Wang, W., Xie, L., and Yang, Z. (2021). Premium valuation of the pension benefit guaranty corporation with regime switching. Mathematical Problems in Engineering, 2021.spa
dc.relation.referencesLin, H., Lo, I., and Qiao, R. (2021). Macroeconomic news announcements and market efficiency: Evidence from the us treasury market. Journal of Banking & Finance, 133:106252.spa
dc.relation.referencesLin, S. (1995). Stochastic analysis of fractional brownian motions. Stochastics: An International Journal of Probability and Stochastic Processes, 55(1-2):121–140.spa
dc.relation.referencesLo, A. W. and MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. The Review of Financial Studies, 1(1):41–66.spa
dc.relation.referencesLoan, A. (1991). Institutional bases of the spontaneous order: Surety and assurance. Humane Studies Review, 7(1):92.spa
dc.relation.referencesLotfalinezhad, H. and Maleki, A. (2020). Tta, a new approach to estimate hurst exponent with less estimation error and computational time. Physica A: Statistical Mechanics and its Applications, 553:124093.spa
dc.relation.referencesMandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business, 36(4):394–419.spa
dc.relation.referencesMandelbrot, B. B. (1971). When can price be arbitraged efficiently? a limit to the validity of the random walk and martingale models. The Review of Economics and Statistics, pages 225–236.spa
dc.relation.referencesMandelbrot, B. B. and Van Ness, J. W. (1968). Fractional brownian motions, fractional noises and applications. SIAM Review, 10(4):422–437.spa
dc.relation.referencesMandelbrot, B. B. and Wallis, J. R. (1969). Robustness of the rescaled range r/s in the measurement of noncyclic long run statistical dependence. Water Resources Research, 5(5):967–988.spa
dc.relation.referencesMarcus, A. J. (2007). Corporate Pension Policy and the Value of PBGC Insurance. University of Chicago Press.spa
dc.relation.referencesMeeker, W. Q., Escobar, L. A., and Pascual, F. G. (2022). Statistical methods for reliability data. John Wiley & Sons.spa
dc.relation.referencesMerton, R. C. (1973a). An intertemporal capital asset pricing model. Econometrica: Journal of the Econometric Society, pages 867–887.spa
dc.relation.referencesMerton, R. C. (1973b). Theory of rational option pricing. The Bell Journal of Economics and Management Science, pages 141–183.spa
dc.relation.referencesMiller Jr, R. G. (1983). What price kaplan-meier? Biometrics, 39(4):1077–1081.spa
dc.relation.referencesMolyneux, P., Reghezza, A., and Xie, R. (2019). Bank margins and profits in a world of negative rates. Journal of Banking & Finance, 107:105613.spa
dc.relation.referencesMood, A. M. (1950). Introduction to the Theory of Statistics. McGraw-hill.spa
dc.relation.referencesMudholkar, G. S., Srivastava, D. K., and Kollia, G. D. (1996). A generalization of the weibull distribution with application to the analysis of survival data. Journal of the American Statistical Association, 91(436):1575–1583.spa
dc.relation.referencesNecula, C. (2002). Option pricing in a fractional brownian motion environment. Available at SSRN 1286833.spa
dc.relation.referencesNelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technology, 1(1):27–52.spa
dc.relation.referencesNualart, D. (2006). The Malliavin calculus and related topics, volume 1995. Springer.spa
dc.relation.referencesNucera, F., Lucas, A., Schaumburg, J., and Schwaab, B. (2017). Do negative interest rates make banks less safe? Economics Letters, 159:112–115.spa
dc.relation.referencesNwozo, C. R. and Nkeki, C. I. (2011). Optimal investment and portfolio strategies with minimum guarantee and inflation protection for a defined contribution pension scheme. Studies in Mathematical Sciences, 2(2):78–89.spa
dc.relation.referencesObata, N. (1996). Wick product of white noise operators and its application to quantum stochastic differential equations (quantum stochastic analysis and related fields). Instituto de Investigaci´on de An´alisis Matem´atico, 957:167–185.spa
dc.relation.referencesOECD (2021). Pension markets in focus 2021. https://www.oecd.org/en/publications/ pensions-market-in-focus-2021_a70e4160-en.html. Accedido el: 04-10-2022.spa
dc.relation.referencesOsborne, M. F. (1959). Brownian motion in the stock market. Operations Research, 7(2):145– 173.spa
dc.relation.referencesPareto, V. (1896). Cours d´ ´ Economie Politique, volume 1. F. Rouge.spa
dc.relation.referencesPeng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review e, 49(2):1685.spa
dc.relation.referencesPeng, C.-K., Havlin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: an Interdisciplinary Journal of Nonlinear Science, 5(1):82–87.spa
dc.relation.referencesPeters, E. E. (1996). Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility. John Wiley & Sons.spa
dc.relation.referencesRegnault, J. (1863). Calcul des Chances et Philosophie de la Bourse. librairie Castel.spa
dc.relation.referencesRendleman, R. J. and Bartter, B. J. (1980). The pricing of options on debt securities. Journal of Financial and Quantitative Analysis, 15(1):11–24.spa
dc.relation.referencesRosenblatt, M. (1952). Remarks on a multivariate transformation. The annals of mathematical statistics, 23(3):470–472.spa
dc.relation.referencesRussell, T. and Thaler, R. (1985). The relevance of quasi rationality in competitive markets. The American Economic Review, 75(5):1071–1082.spa
dc.relation.referencesRyu, I., Jang, H., Kim, D., and Ahn, K. (2021). Market efficiency of US REITs: A revisit. Chaos, Solitons & Fractals, 150:111070.spa
dc.relation.referencesSalazar-Uribe, J. C., Garc´ıa-Cruz, E. K., Gaviria-Pe˜na, C., and Guar´ın-Escudero, V. (2020). Introducci´on al An´alisis de Supervivencia Avanzada. Editorial Bonaventuriano.spa
dc.relation.referencesSamorodnitsky, G., Taqqu, M. S., and Linde, R. (1996). Stable non-gaussian random processes: stochastic models with infinite variance. Bulletin of the London Mathematical Society, 28(134):554–555.spa
dc.relation.referencesSamuelson, P. and Merton, R. C. (1969). A complete model of warrant pricing that maximizes utility. IMR; Industrial Management Review (pre-1986), 10(2):17.spa
dc.relation.referencesSamuelson, P. A. (1965). Rational theory of warrant pricing. Industrial Management Review, 6:13–32.spa
dc.relation.referencesSharpe, W. F. (1976). Corporate pension funding policy. Journal of Financial Economics, 3(3):183–193.spa
dc.relation.referencesSiameti, P., Chronopoulos, D. K., and Dotsis, G. (2025). Negative rates and bank profit and cost efficiency: evidence for eurozone. The European Journal of Finance, 31(1):14–30.spa
dc.relation.referencesSims, E. and Wu, J. C. (2021). Evaluating central banks’ tool kit: Past, present, and future. Journal of Monetary Economics, 118:135–160.spa
dc.relation.referencesSkorokhod, A. V. (1975). On a generalization of stochastic integral. Teoriya Veroyatnostei I Ee Primeneniya, 20(2):223–238.spa
dc.relation.referencesSottinen, T. (2001). Fractional brownian motion, random walks and binary market models. Finance and Stochastics, 5(3):343–355.spa
dc.relation.referencesSprenkle, C. M. (1961). Warrant prices as indicators of expectations and preferences. Yale Economic Essays, 1(2):179–232.spa
dc.relation.referencesTaqqu, M. (1975). Weak convergence to fractional brownian motion and to the rosenblatt process. Advances in Applied Probability, 7(2):249–249.spa
dc.relation.referencesTaqqu, M. S., Teverovsky, V., and Willinger, W. (1995). Estimators for long-range dependence: an empirical study. Fractals, 3(04):785–798.spa
dc.relation.referencesTepper, I. (1981). Taxation and corporate pension policy. The Journal of Finance, 36(1):1– 13.spa
dc.relation.referencesTreynor, J. L. (1972). Risk and reward in corporate pension funds. Financial Analysts Journal, 28(1):80–84.spa
dc.relation.referencesVasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2):177–188.spa
dc.relation.referencesVeillette, M. S. and Taqqu, M. S. (2013). Properties and numerical evaluation of the rosenblatt distribution. Bernoulli, 19(3):982–1005.spa
dc.relation.referencesVenegas, F. (2010). Riesgos Financieros y Econ´omicos. Productos Derivados y Decisiones Econ´omicas Bajo Incertidumbre. Cengage Learning Editores, SA De CV.spa
dc.relation.referencesVenegas-Mart´ınez, F., Medina Hurtado, S., Jaramillo, J. A., and Ram´ırez Atehort´ua, F. H. (2008). Riesgos Financieros y Econ´omicos. Universidad de Medell´ın.spa
dc.relation.referencesWeyl, H. (1917). Bemerkungen zum begriff des differentialquotienten gebrochener ordnung. Vierteljschr. Naturforsch. Gesellsch. Zurich, 62(1–2):296–302.spa
dc.relation.referencesWiener, N. (1923). Differential-space. Journal of Mathematics and Physics, 2(1-4):131–174.spa
dc.relation.referencesWu, J. C. and Xia, F. D. (2020). Negative interest rate policy and the yield curve. Journal of Applied Econometrics, 35(6):653–672.spa
dc.relation.referencesXiao, W. and Yu, J. (2019a). Asymptotic theory for estimating drift parameters in the fractional vasicek model. Econometric Theory, 35(1):198–231.spa
dc.relation.referencesXiao, W. and Yu, J. (2019b). Asymptotic theory for rough fractional vasicek models. Economics Letters, 177:26–29.spa
dc.relation.referencesYoung, L. C. (1936). An inequality of the h¨older type, connected with stieltjes integration. Acta Mathematica, 67:251–282.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc330 - Economía::331 - Economía laboralspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembPensiones a la vejez - Costos
dc.subject.lembEcuaciones diferenciales estocásticas
dc.subject.lembAnálisis estocástico
dc.subject.lembPensiones anuales
dc.subject.proposalRentas vitalicias y temporalesspa
dc.subject.proposalEstadísticaspa
dc.subject.proposalÍndice de persistenciaspa
dc.subject.proposalModelo de Vasicekspa
dc.subject.proposalEcuaciones diferenciales estocásticas fraccionalesspa
dc.subject.proposalWhole life and temporary annuitieseng
dc.subject.proposalFractional stochastic differential equationseng
dc.subject.proposalStatisticseng
dc.subject.proposalPersistence indexeng
dc.subject.proposalVasicek modeleng
dc.titleUna propuesta para estimar el costo de las rentas vitalicias, con base en ecuaciones diferenciales estocásticas fraccionales para mesadas pensionales y tasas de interés variablesspa
dc.title.translatedA proposal to estimate the cost of life annuities based on fractional stochastic differential equations for variable pension payments and variable interest rateseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
8163782.2025.pdf
Tamaño:
1.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: