Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+

dc.contributor.advisorGranados Oliveros, Gilmaspa
dc.contributor.authorGómez Piñeros, Brayan Stivenspa
dc.contributor.researchgroupNano-Inorgánicaspa
dc.date.accessioned2024-05-31T18:50:30Z
dc.date.available2024-05-31T18:50:30Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEn diversos países a nivel mundial donde se practican actividades industriales, los iones mercurio (Hg2+), plomo (Pb2+) y arsénico (As3+) altamente tóxicos se liberan incontrolablemente al medio ambiente. Detectar los iones Hg2+, Pb2+ y As3+ con buena sensibilidad y selectividad es de gran importancia. En este trabajo, se reporta por primera vez la obtención de manera fácil y de bajo costo de puntos cuánticos de carbono dopados con nitrógeno (N-CQDs) a partir de cáscaras de chontaduro (Bactris gasipaes), mediante la síntesis en un solo paso asistida por microondas. Estos materiales mostraron alta solubilidad en agua y un rendimiento cuántico de fluorescencia en el visible del 20,5%. Se realizó la modificación de la superficie de los N-CQDs con L-cisteína (N-CQDs/CYS), L-histidina (N-CQDs/HIS) y L-fosfoserina (N-CQDs/FOS), mediante una reacción química (conocida como acoplamiento de amida) entre los grupos amino de los aminoácidos y los grupos carboxilo de los N-CQDs, este acoplamiento fue caracterizado mediante FT-IR y XPS. Las nanopartículas de N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS también exhibieron alta solubilidad en agua, y se caracterizaron mediante UV-VIS y fluorescencia, obteniendo un rendimiento cuántico de fotoluminiscencia (ΦFL) del 25,4 %, 23,0%, 19,9% y una superficie con grupos tiol (de la L-cisteína), grupos imidazol (de la L-histidina) y grupos fosfato (de la L-fosfoserina) correspondientemente. Los N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS detectaron eficientemente los iones Hg2+, Pb2+ y As3+ respectivamente (en medio acuoso) lo cual se comprobó por medio de la disminución de su fluorescencia, reportando para los N-CQDs/CYS una sensibilidad de 4,1x104 M-1 con un límite de detección (LD) de 0.20µM, para los N-CQDs/HIS una sensibilidad de 1,2x104 M-1 con un LD de 0.070µM y para los N-CQDs/FOS una sensibilidad de 3,0x104 M-1 con un LD de 0.34µM. Los N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS evidenciaron una mayor selectividad a los iones Hg2+, Pb2+ y As3+ correspondientemente sin interferentes significativos que los afecten, excepto para los N-CQDs/HIS que tuvieron como interferentes el Cu2+ y el Cd2+. La funcionalización estratégica en la superficie de los N-CQDs con aminoácidos L-cisteína, L-histidina y L-fosfoserina, les brindó una eficiente detección, elevada sensibilidad y selectividad a los N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS. Se realizaron mediciones de fluorescencia resuelta en el tiempo para estudiar la forma en que ocurría el apagado de la fluorescencia, cuando estaban los iones Hg2+ presentes en los N-CQDs/CYS se evidenció un mecanismo de quenching de fluorescencia estático, debido a la formación de un complejo de coordinación no fluorescente en el estado basal entre los iones Hg2+ y el grupo tiolato de los N-CQDs/CYS. Asimismo, la presencia de los iones Pb2+ en los N-CQDs/HIS genera un quenching de fluorescencia estático debido a la formación de un complejo de coordinación entre los iones Pb2+ y el grupo imidazol de los N-CQDs/HIS. Finalmente, la presencia de los iones As3+ en los N-CQDs/FOS generó también un quenching de fluorescencia estático debido a la coordinación de los iones As3+ al grupo fosfato de los N-CQDs/FOS. Los resultados indican que los nuevos materiales N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS, al ser modificados superficialmente dirigieron la selectividad a los iones Hg2+, Pb2+ y As3+ correspondientemente, dotándolos de gran potencial para ser usados en la detección fluorescente de manera selectiva, sensible, de estos iones en medio acuoso de una forma fácil y económica. (Texto tomado de la fuente).spa
dc.description.abstractIn many countries around the world where industrial activities are practiced, highly toxic mercury (Hg2+), lead (Pb2+) and arsenic (As3+) ions are released uncontrollably into the environment. Establishing an effective strategy for the determination of Hg2+, Pb2+ and As3+ with good sensitivity and selectivity is of great importance. In this work, the easy and low-cost preparation of nitrogen-doped carbon quantum dots (N-CQDs) from peach palm peels (Bactris gasipaes) is reported for the first time by using a one-step microwave-assisted synthesis. These materials showed high water solubility and a visible fluorescence quantum yield of 20.5%. The surface of the N-CQDs was modified with L-cysteine (N-CQDs/CYS), L-histidine (N-CQDs/HIS) and L-phosphoserine (N-CQDs/FOS), using a chemical reaction (known as amide coupling) between the amino groups of the amino acids and the carboxyl groups of the N-CQDs. This coupling was characterized by FT-IR and XPS. The N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS nanoparticles also exhibited high water solubility and were characterized by UV-VIS and fluorescence, showing a photoluminescence quantum yield (ΦFL) of 25.4%, 23.0%, 19.9% and a surface with thiol groups (from L-cysteine), imidazole groups (from L-histidine) and phosphate groups (from L-phosphoserine) respectively. The N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS efficiently detected Hg2+, Pb2+ and As3+ ions respectively (in aqueous medium) through the decrease in their fluorescence, reporting for the N-CQDs/CYS a sensitivity of 4.1x104 M-1 with a detection limit (LD) of 0.20µM, for the N-CQDs/HIS a sensitivity of 1.2x104 M-1 with a LD of 0.070µM and for the N-CQDs/FOS a sensitivity of 3.0x104 M-1 with a LD of 0.34µM. The N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS were correspondingly selective for Hg2+, Pb2+ and As3+ ions with no significant interfering agents, except for the N-CQDs/HIS which had Cu2+ and Cd2+ as interfering agents. The strategic functionalization of the N-CQDs surface with L-cysteine, L-histidine and L-phosphoserine amino acids provided N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS with efficient detection, high sensitivity and selectivity. Time-resolved fluorescence measurements were performed to study the way in which fluorescence quenching occurred. When Hg2+ ions were present in the N-CQDs/CYS, a static fluorescence quenching mechanism was evidenced, due to the formation of a non-fluorescent coordination complex in the ground state between the Hg2+ ions and the thiolate group of the N-CQDs/CYS. Likewise, the presence of Pb2+ ions in the N-CQDs/HIS generates a static fluorescence quenching due to the formation of a coordination complex between the Pb2+ ions and the imidazole group of the N-CQDs/HIS. Finally, the presence of As3+ ions in the N-CQDs/FOS also generated a static fluorescence quenching due to the coordination of the As3+ ions to the phosphate group of the N-CQDs/FOS. These results indicate that the new N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS materials which were surface modified, guided the selectivity to the Hg2+, Pb2+ and As3+ ions respectively, providing them great potential to be used in the selective and sensitive fluorescent detection of these ions in aqueous medium in an easy and economical way.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaNanomateriales con aplicación ambientalspa
dc.format.extentxxiv, 93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86194
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.references[1] Duffus JH. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 2002;74:793–807. https://doi.org/10.1351/pac200274050793.spa
dc.relation.references[2] Pandey SK, Singh P, Singh J, Sachan S, Srivastava S, Singh SK. Nanocarbon-based Electrochemical Detection of Heavy Metals. Electroanalysis 2016;28:2472–88. https://doi.org/10.1002/elan.201600173.spa
dc.relation.references[3] Londoño Franco LF, Londoño Muñoz PT, Muñoz Garcia FG. Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal. Biotecnoloía En El Sect Agropecu y Agroindustrial 2016;14:145. https://doi.org/10.18684/bsaa(14)145-153.spa
dc.relation.references[4] Gupta A, Chaudhary A, Mehta P, Dwivedi C, Khan S, Verma NC, et al. Nitrogen-doped, thiol-functionalized carbon dots for ultrasensitive Hg(ii) detection. Chem Commun 2015;51:10750–3. https://doi.org/10.1039/c5cc03019f.spa
dc.relation.references[5] Gupta A, Verma NC, Khan S, Tiwari S, Chaudhary A, Nandi CK. Paper strip based and live cell ultrasensitive lead sensor using carbon dots synthesized from biological media. Sensors Actuators, B Chem 2016;232:107–14. https://doi.org/10.1016/j.snb.2016.03.110.spa
dc.relation.references[6] Radhakrishnan K, Panneerselvam P. Green synthesis of surface-passivated carbon dots from the prickly pear cactus as a fluorescent probe for the dual detection of arsenic(iii) and hypochlorite ions from drinking water. RSC Adv 2018;8:30455–67. https://doi.org/10.1039/c8ra05861j.spa
dc.relation.references[7] Jhonson O. El lado gris de la mineria. 2002:123.spa
dc.relation.references[8] Services H. Toxicological Profile for Mercury. ATSDR’s Toxicol. Profiles, CRC Press; 2002. https://doi.org/10.1201/9781420061888_ch109.spa
dc.relation.references[9] Clifton JC. Mercury Exposure and Public Health. Pediatr Clin North Am 2007;54:237.e1-237.e45. https://doi.org/10.1016/j.pcl.2007.02.005.spa
dc.relation.references[10] Liu Y, Zhou Q, Li J, Lei M, Yan X. Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method. Sensors Actuators, B Chem 2016;237:597–604. https://doi.org/10.1016/j.snb.2016.06.092.spa
dc.relation.references[11] Saikia A, Karak N. Polyaniline nanofiber/carbon dot nanohybrid as an efficient fluorimetric sensor for As (III) in water and effective antioxidant. Mater Today Commun 2018;14:82–9. https://doi.org/10.1016/j.mtcomm.2017.12.020.spa
dc.relation.references[12] Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sensors Actuators, B Chem 2017;242:679–86. https://doi.org/10.1016/j.snb.2016.11.109.spa
dc.relation.references[13] Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 2012;84:5351–7. https://doi.org/10.1021/ac3007939.spa
dc.relation.references[14] John F. Callan FMR. Quantum dot sensors, CRC Press; 2013, p. 230.spa
dc.relation.references[15] Lin YW, Huang CC, Chang HT. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 2011;136:863–71. https://doi.org/10.1039/c0an00652a.spa
dc.relation.references[16] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008;5:763–75. https://doi.org/10.1038/nmeth.1248.spa
dc.relation.references[17] Valizadeh A, Mikaeili H, Samiei M, Farkhani S, Zarghami N, Kouhi M, et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 2012;7:480. https://doi.org/10.1186/1556-276X-7-480.spa
dc.relation.references[18] Gómez Piñeros BS, Granados Oliveros G. CUANTIFICACIÓN DE MERCURIO (II) MEDIANTE PUNTOS CUÁNTICOS DE SELENURO DE CADMIO /SULFURO DE ZINC QUE COMPRENDE ÁCIDO OLÉICO O GLUTATIÓN Y EL MÉTODO DE PREPARACIÓN DE ESTOS. NC2020/0006440, 2020.spa
dc.relation.references[19] Raz J. Carbon quantum dots Synthesis, Properties and Aplications. Springer Nature; 2004. https://doi.org/10.1007/978-3-319-43911-2.spa
dc.relation.references[20] Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: A review. Mater Today Chem 2018;8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003.spa
dc.relation.references[21] Liu W, Li C, Ren Y, Sun X, Pan W, Li Y, et al. Carbon dots: Surface engineering and applications. J Mater Chem B 2016;4:5772–88. https://doi.org/10.1039/c6tb00976j.spa
dc.relation.references[22] Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 2007;129:744–5. https://doi.org/10.1021/ja0669070.spa
dc.relation.references[23] Simões EFC, Leitão JMM, da Silva JCGE. Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 2016;183:1769–77. https://doi.org/10.1007/s00604-016-1807-6.spa
dc.relation.references[24] Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 2009;21:5563–5. https://doi.org/10.1021/cm901593y.spa
dc.relation.references[25] Wee SS, Ng YH, Ng SM. Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta 2013;116:71–6. https://doi.org/10.1016/j.talanta.2013.04.081.spa
dc.relation.references[26] Gu D, Shang S, Yu Q, Shen J. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci 2016;390:38–42. https://doi.org/10.1016/j.apsusc.2016.08.012.spa
dc.relation.references[27] Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron 2016;85:68–75. https://doi.org/10.1016/j.bios.2016.04.089.spa
dc.relation.references[28] Martínez-Girón J, Rodríguez-Rodríguez X, Pinzón-Zárate LX, Ordóñez-Santos LE. Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes Kunth, Arecaceae) obtenida por secado convectivo. Corpoica Cienc y Tecnol Agropecu 2017;18:599–613. https://doi.org/10.21930/rcta.vol18_num3_art:747.spa
dc.relation.references[29] Díaz‐Ortiz Á, Prieto P, de la Hoz A. A Critical Overview on the Effect of Microwave Irradiation in Organic Synthesis. Chem Rec 2019;19:85–97. https://doi.org/10.1002/tcr.201800059.spa
dc.relation.references[30] Chandra S, Das P, Bag S, Laha D, Pramanik P. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 2011;3:1533–40. https://doi.org/10.1039/c0nr00735h.spa
dc.relation.references[31] Ramezani Z, Qorbanpour M, Rahbar N. Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: Application in cell imaging and As3+ determination. Colloids Surfaces A Physicochem Eng Asp 2018;549:58–66. https://doi.org/10.1016/j.colsurfa.2018.04.006.spa
dc.relation.references[32] Li X, Zhang S, Kulinich SA, Liu Y, Zeng H. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 2014;4:1–8. https://doi.org/10.1038/srep04976.spa
dc.relation.references[33] Yan F, Jiang Y, Sun X, Bai Z, Zhang Y, Zhou X. Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta 2018;185. https://doi.org/10.1007/s00604-018-2953-9.spa
dc.relation.references[34] Hu H, He H, Zhang J, Hou X, Wu P. Optical sensing at the nanobiointerface of metal ion-optically-active nanocrystals. Nanoscale 2018;10:5035–46. https://doi.org/10.1039/c8nr00350e.spa
dc.relation.references[35] Parr RG, Pearson RG. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J Am Chem Soc 1983;105:7512–6. https://doi.org/10.1021/ja00364a005.spa
dc.relation.references[36] Pearson RG. Hard and soft acids and bases, HSAB, part I: Fundamental principles. J Chem Educ 1968;45:581–7. https://doi.org/10.1021/ed045p581.spa
dc.relation.references[37] Gao X, Du C, Zhuang Z, Chen W. Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 2016;4:6927–45. https://doi.org/10.1039/c6tc02055k.spa
dc.relation.references[38] Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots - Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014;9:590–603. https://doi.org/10.1016/j.nantod.2014.09.004.spa
dc.relation.references[39] Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J AM CHEM SOC 2004;126:12736–7. https://doi.org/10.1021/ja040082h.spa
dc.relation.references[40] Wang Y, Hu A. Copyright ( C ) by Foxit Software Company , 2005-2008 Carbon quantum dots : synthesis , properties and applications. J Mater Chem C Mater Opt Electron Devices 2014;2:6921–39. https://doi.org/10.1039/C4TC00988F.spa
dc.relation.references[41] Kim JK, Park MJ, Kim SJ, Wang DH, Cho SP, Bae S, et al. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano 2013;7:7207–12. https://doi.org/10.1021/nn402606v.spa
dc.relation.references[42] Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, et al. Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 2017;184:343–68. https://doi.org/10.1007/s00604-016-2043-9.spa
dc.relation.references[43] Guo Y, Wang Z, Shao H, Jiang X. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon N Y 2013;52:583–9. https://doi.org/10.1016/j.carbon.2012.10.028.spa
dc.relation.references[44] Wang Y, Zhuang Q, Ni Y. Facile Microwave-Assisted Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Sulfur-Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chem - A Eur J 2015;21:13004–11. https://doi.org/10.1002/chem.201501723.spa
dc.relation.references[45] Shangguan J, Huang J, He D, He X, Wang K, Ye R, et al. Highly Fe 3+ -Selective Fluorescent Nanoprobe Based on Ultrabright N/P Codoped Carbon Dots and Its Application in Biological Samples. Anal Chem 2017;89:7477–84. https://doi.org/10.1021/acs.analchem.7b01053.spa
dc.relation.references[46] Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem Commun 2012;48:8835–7. https://doi.org/10.1039/c2cc33796g.spa
dc.relation.references[47] Dong W, Zhou S, Dong Y, Wang J, Ge X, Sui L. The preparation of ethylenediamine-modified fluorescent carbon dots and their use in imaging of cells. Luminescence 2015;30:867–71. https://doi.org/10.1002/bio.2834.spa
dc.relation.references[48] Algarra M, Campos BB, Radotić K, Mutavdžić D, Bandosz T, Jiménez-Jiménez J, et al. Luminescent carbon nanoparticles: Effects of chemical functionalization, and evaluation of Ag+ sensing properties. J Mater Chem A 2014;2:8342–51. https://doi.org/10.1039/c4ta00264d.spa
dc.relation.references[49] Liu X, Zhang N, Bing T, Shangguan D. Carbon Dots Based Dual-Emission Silica Nanoparticles as a Ratiometric Nanosensor for Cu 2+. Anal Chem 2014;86:2289–96. https://doi.org/10.1021/ac404236y.spa
dc.relation.references[50] Wang X, Wang D, Guo Y, Yang C, Iqbal A, Liu W, et al. Imidazole derivative-functionalized carbon dots: Using as a fluorescent probe for detecting water and imaging of live cells. Dalt Trans 2015;44:5547–54. https://doi.org/10.1039/c5dt00128e.spa
dc.relation.references[51] Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J Am Chem Soc 2006;128:7756–7. https://doi.org/10.1021/ja062677d.spa
dc.relation.references[52] Jiang H, Chen F, Lagally MG, Denes FS. New Strategy for Synthesis and Functionalization of Carbon Nanoparticles. Langmuir 2010;26:1991–5. https://doi.org/10.1021/la9022163.spa
dc.relation.references[53] Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, et al. Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 2013;138:6551–7. https://doi.org/10.1039/c3an01003a.spa
dc.relation.references[54] Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 2012;66:222–4. https://doi.org/10.1016/j.matlet.2011.08.081.spa
dc.relation.references[55] Zheng Y, Yang D, Wu X, Yan H, Zhao Y, Feng B, et al. A facile approach for the synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC Adv 2015;5:90245–54. https://doi.org/10.1039/c5ra14720d.spa
dc.relation.references[56] Wang ZX, Yu XH, Li F, Kong FY, Lv WX, Fan DH, et al. Preparation of boron-doped carbon dots for fluorometric determination of Pb(II), Cu(II) and pyrophosphate ions. Microchim Acta 2017;184:4775–83. https://doi.org/10.1007/s00604-017-2526-3.spa
dc.relation.references[57] Dou Q, Fang X, Jiang S, Chee PL, Lee TC, Loh XJ. Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Adv 2015;5:46817–22. https://doi.org/10.1039/c5ra07968c.spa
dc.relation.references[58] Ray Chowdhuri A, Tripathy S, Haldar C, Roy S, Sahu SK. Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J Mater Chem B 2015;3:9122–31. https://doi.org/10.1039/c5tb01831e.spa
dc.relation.references[59] Jaiswal A, Ghosh SS, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 2012;48:407–9. https://doi.org/10.1039/c1cc15988g.spa
dc.relation.references[60] Qiao ZA, Wang Y, Gao Y, Li H, Dai T, Liu Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 2010;46:8812–4. https://doi.org/10.1039/c0cc02724c.spa
dc.relation.references[61] Mohapatra S, Sahu S, Sinha N, Bhutia SK. Synthesis of a carbon-dot-based photoluminescent probe for selective and ultrasensitive detection of Hg2+in water and living cells. Analyst 2015;140:1221–8. https://doi.org/10.1039/c4an01386g.spa
dc.relation.references[62] Bandi R, Dadigala R, Gangapuram BR, Guttena V. Green synthesis of highly fluorescent nitrogen – Doped carbon dots from Lantana camara berries for effective detection of lead(II) and bioimaging. J Photochem Photobiol B Biol 2018;178:330–8. https://doi.org/10.1016/j.jphotobiol.2017.11.010.spa
dc.relation.references[63] Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 2013;52:15673–8. https://doi.org/10.1021/ie402421s.spa
dc.relation.references[64] Vargas-Avila G, Jorge A-C. Clasificación y Caracterización de 20 razas de palma de chontaduro (Bactris gasipaes H.B.K) de acuerdo con las propiedades fisico-químicas y bromatológicas del fruto 2000:19.spa
dc.relation.references[65] Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J. Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon N Y 2016;104:169–78. https://doi.org/10.1016/j.carbon.2016.04.003.spa
dc.relation.references[66] Qiao ZA, Wang Y, Gao Y, Li H, Dai T, Liu Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 2010;46:8812–4. https://doi.org/10.1039/c0cc02724c.spa
dc.relation.references[67] Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, et al. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim Acta 2017;184:1899–914. https://doi.org/10.1007/s00604-017-2318-9.spa
dc.relation.references[68] Huang S, Wang L, Zhu F, Su W, Sheng J, Huang C, et al. A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv 2015;5:44587–97. https://doi.org/10.1039/c5ra05519a.spa
dc.relation.references[69] Zhu X, Zhao Z, Chi X, Gao J. Facile, sensitive, and ratiometric detection of mercuric ions using GSH-capped semiconductor quantum dots. Analyst 2013;138:3230. https://doi.org/10.1039/c3an00011g.spa
dc.relation.references[70] Lakowicz JR. Principles of Fluorescence Spectroscopy. Boston, MA: Springer US; 2006. https://doi.org/10.1007/978-0-387-46312-4.spa
dc.relation.references[71] Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2011;2:21. https://doi.org/10.4103/2229-5186.79345.spa
dc.relation.references[72] Liu Y, Liao M, He X, Liu X, Kou X, Xiao D. One-step synthesis of highly luminescent nitrogen-doped carbon dots for selective and sensitive detection of mercury(ii) ions and cellular imaging. Anal Sci 2015;31:971–7. https://doi.org/10.2116/analsci.31.971.spa
dc.relation.references[73] Huang H, Lv JJ, Zhou DL, Bao N, Xu Y, Wang AJ, et al. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv 2013;3:21691–6. https://doi.org/10.1039/c3ra43452d.spa
dc.relation.references[74] Qian ZS, Shan XY, Chai LJ, Chen JR, Feng H. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens Bioelectron 2015;68:225–31. https://doi.org/10.1016/j.bios.2014.12.057.spa
dc.relation.references[75] Zhang Z, Li J, Wang X, Liang A, Jiang Z. Aptamer-mediated N/Ce-doped carbon dots as a fluorescent and resonance Rayleigh scattering dual mode probe for arsenic(III). Microchim Acta 2019;186:3–11. https://doi.org/10.1007/s00604-019-3764-3.spa
dc.relation.references[76] Pooja D, Saini S, Thakur A, Kumar B, Tyagi S, Nayak MK. A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. J Hazard Mater 2017;328:117–26. https://doi.org/10.1016/j.jhazmat.2017.01.015.spa
dc.relation.references[77] Ho TL. The Hard Soft Acids Bases (HSAB) Principle and Organic Chemistry. Chem Rev 1975;75:1–20. https://doi.org/10.1021/cr60293a001.spa
dc.relation.references[78] Liu Y, Jiang L, Li B, Fan X, Wang W, Liu P, et al. Nitrogen doped carbon dots: Mechanism investigation and their application for label free CA125 analysis. J Mater Chem B 2019;7:3053–8. https://doi.org/10.1039/c9tb00021f.spa
dc.relation.references[79] Valeur B, Berberan-Santos MN. Molecular Fluorescence: Principles and Applications, Second Edition. Wiley; 2012. https://doi.org/10.1002/9783527650002.spa
dc.relation.references[80] Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, et al. Photoinduced electron transfers with carbon dots. Chem Commun 2009:3774. https://doi.org/10.1039/b906252a.spa
dc.relation.references[81] Sydorchuk V, Poddubnaya OI, Tsyba MM, Zakutevskyy O, Khyzhun O, Khalameida S, et al. Photocatalytic degradation of dyes using phosphorus-containing activated carbons. Appl Surf Sci 2021;535:147667. https://doi.org/10.1016/j.apsusc.2020.147667.spa
dc.relation.references[82] Leung K, Whaley KB. Surface relaxation in CdSe nanocrystals. J Chem Phys 1999;110:11012. https://doi.org/10.1063/1.479037.spa
dc.relation.references[83] Gao Y, Peng X. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J Am Chem Soc 2015;137:4230–5. https://doi.org/10.1021/JACS.5B01314/ASSET/IMAGES/MEDIUM/JA-2015-013142_0003.GIF.spa
dc.relation.references[84] Barman MK, Patra A. Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. J Photochem Photobiol C Photochem Rev 2018;37:1–22. https://doi.org/10.1016/j.jphotochemrev.2018.08.001.spa
dc.relation.references[85] Kang C, Huang Y, Yang H, Yan XF, Chen ZP. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020;10:2316. https://doi.org/10.3390/nano10112316.spa
dc.relation.references[86] Huang S, Wang L, Huang C, Xie J, Su W, Sheng J, et al. A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensors Actuators, B Chem 2015;221:1215–22. https://doi.org/10.1016/j.snb.2015.07.099.spa
dc.relation.references[87] Qu S, Wang X, Lu Q, Liu X, Wang L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chemie - Int Ed 2012;51:12215–8. https://doi.org/10.1002/anie.201206791.spa
dc.relation.references[88] Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 2017;5:8904–24. https://doi.org/10.1039/C7TB02484C.spa
dc.relation.references[89] Zulfajri M, Dayalan S, Li WY, Chang CJ, Chang YP, Huang GG. Nitrogen-doped carbon dots from averrhoa carambola fruit extract as a fluorescent probe for methyl orange. Sensors (Switzerland) 2019;19:5008. https://doi.org/10.3390/s19225008.spa
dc.relation.references[90] Fiuza T, Gomide G, Campos AFC, Messina F, Depeyrot J. On the Colloidal Stability of Nitrogen-Rich Carbon Nanodots Aqueous Dispersions. C — J Carbon Res 2019;5:74. https://doi.org/10.3390/c5040074.spa
dc.relation.references[91] Granados-Oliveros G, Pineros BSG, Calderon FGO. CdSe/ZnS quantum dots capped with oleic acid and L-glutathione: Structural properties and application in detection of Hg2+. J Mol Struct 2022;1254:132293. https://doi.org/10.1016/J.MOLSTRUC.2021.132293.spa
dc.relation.references[92] Milenković M, Mišović A, Jovanović D, Bijelić AP, Ciasca G, Romanò S, et al. Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. Nanomaterials 2021;11:1879. https://doi.org/10.3390/nano11081879.spa
dc.relation.references[93] Salahinejad M, Sadjadi S, Abdouss M. Investigating fluorescence quenching of cysteine-functionalized carbon quantum dots by heavy metal ions: Experimental and QSPR studies. J Mol Liq 2021;334:116067. https://doi.org/10.1016/j.molliq.2021.116067.spa
dc.relation.references[94] Guerra-López J, González R, Gómez A, Pomés R, Punte G, Della Védova CO. Effects of Nickel on Calcium Phosphate Formation. J Solid State Chem 2000;151:163–9. https://doi.org/10.1006/jssc.1999.8615.spa
dc.relation.references[95] Nguyen KG, Baragau I-A, Gromicova R, Nicolaev A, Thomson SAJ, Rennie A, et al. Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening. Sci Rep 2022;12:13806. https://doi.org/10.1038/s41598-022-16893-x.spa
dc.relation.references[96] Arcudi F, Đorđević L, Prato M. Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogen-Doped Carbon NanoDots. Angew Chemie Int Ed 2016;55:2107–12. https://doi.org/10.1002/anie.201510158.spa
dc.relation.references[97] Dsouza SD, Buerkle M, Brunet P, Maddi C, Padmanaban DB, Morelli A, et al. The importance of surface states in N-doped carbon quantum dots. Carbon N Y 2021;183:1–11. https://doi.org/10.1016/j.carbon.2021.06.088.spa
dc.relation.references[98] Chen X, Jin Q, Wu L, Tung C, Tang X. Synthesis and Unique Photoluminescence Properties of Nitrogen‐Rich Quantum Dots and Their Applications. Angew Chemie Int Ed 2014;53:12542–7. https://doi.org/10.1002/anie.201408422.spa
dc.relation.references[99] Kiciński W, Dyjak S. Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules 2021;26:668. https://doi.org/10.3390/molecules26030668.spa
dc.relation.references[100] Khan WU, Wang D, Zhang W, Tang Z, Ma X, Ding X, et al. High quantum yield green-emitting carbon dots for Fe(III) detection, biocompatible fluorescent ink and cellular imaging. Sci Rep 2017;7:14866. https://doi.org/10.1038/s41598-017-15054-9.spa
dc.relation.references[101] Tang L, Zhu C, Yang Y, Luo J, Song J, Chen H, et al. Amide-decorated carbon dots as sensitive and selective probes for fluorescence enhancement detection of cadmium ion. Spectrochim Acta Part A Mol Biomol Spectrosc 2023;303:123219. https://doi.org/10.1016/j.saa.2023.123219.spa
dc.relation.references[102] Cui X, Wang J, Liu B, Ling S, Long R, Xiong Y. Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands. J Am Chem Soc 2018;140:16514–20. https://doi.org/10.1021/jacs.8b06723.spa
dc.relation.references[103] Ravi S, Zhang S, Lee YR, Kang KK, Kim JM, Ahn JW, et al. EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. J Ind Eng Chem 2018;67:210–8. https://doi.org/10.1016/j.jiec.2018.06.031.spa
dc.relation.references[104] Yoshinaga T, Akiu M, Iso Y, Isobe T. Photoluminescence properties of l-cysteine-derived carbon dots prepared in non-aqueous and aqueous solvents. J Lumin 2020;224:117260. https://doi.org/10.1016/J.JLUMIN.2020.117260.spa
dc.relation.references[105] Dong Y, Pang H, Yang H Bin, Guo C, Shao J, Chi Y, et al. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission. Angew Chemie Int Ed 2013;52:7800–4. https://doi.org/10.1002/anie.201301114.spa
dc.relation.references[106] Kiciński W, Dyjak S. Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules 2021;26:668. https://doi.org/10.3390/molecules26030668.spa
dc.relation.references[107] Wang X, Yan P, Kerns P, Suib S, Loew LM, Zhao J. Voltage-Dependent Photoluminescence of Carbon Dots. J Electrochem Soc 2020;167:147515. https://doi.org/10.1149/1945-7111/abc7e5.spa
dc.relation.references[108] Liu H, Lian P, Zhang Q, Yang Y, Mei Y. The preparation of holey phosphorene by electrochemical assistance. Electrochem Commun 2019;98:124–8. https://doi.org/10.1016/j.elecom.2018.12.007.spa
dc.relation.references[109] Sydorchuk V, Poddubnaya OI, Tsyba MM, Zakutevskyy O, Khyzhun O, Khalameida S, et al. Photocatalytic degradation of dyes using phosphorus-containing activated carbons. Appl Surf Sci 2021;535:147667. https://doi.org/10.1016/j.apsusc.2020.147667.spa
dc.relation.references[110] Liu H, Lian P, Zhang Q, Yang Y, Mei Y. The preparation of holey phosphorene by electrochemical assistance. Electrochem Commun 2019;98:124–8. https://doi.org/10.1016/j.elecom.2018.12.007.spa
dc.relation.references[111] Cade‐Menun BJ, Carter MR, James DC, Liu CW. Phosphorus Forms and Chemistry in the Soil Profile under Long‐Term Conservation Tillage: A Phosphorus‐31 Nuclear Magnetic Resonance Study. J Environ Qual 2010;39:1647–56. https://doi.org/10.2134/jeq2009.0491.spa
dc.relation.references[112] Keizer J. Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots. J Am Chem Soc 1983;105:1494–8. https://doi.org/10.1021/ja00344a013.spa
dc.relation.references[113] Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2011;2:21. https://doi.org/10.4103/2229-5186.79345.spa
dc.relation.references[114] Lou Y, Hao X, Liao L, Zhang K, Chen S, Li Z, et al. Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. Nano Sel 2021;2:1117–45. https://doi.org/10.1002/nano.202000232.spa
dc.relation.references[115] Pearson RG. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 1988;27:734–40. https://doi.org/10.1021/ic00277a030.spa
dc.relation.references[116] Makov G. Chemical hardness in density functional theory. J Phys Chem 1995;99:9337–9. https://doi.org/10.1021/j100023a006.spa
dc.relation.references[117] Zhang D, Zhang F, Liao Y, Wang F, Liu H. Carbon Quantum Dots from Pomelo Peel as Fluorescence Probes for “Turn-Off–On” High-Sensitivity Detection of Fe3+ and L-Cysteine. Molecules 2022;27:4099. https://doi.org/10.3390/molecules27134099.spa
dc.relation.references[118] Yu J, Song N, Zhang Y-K, Zhong S-X, Wang A-J, Chen J. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors Actuators B Chem 2015;214:29–35. https://doi.org/10.1016/j.snb.2015.03.006.spa
dc.relation.references[119] Lu S, Li Z, Fu X, Xie Z, Zheng M. Carbon dots-based fluorescence and UV–vis absorption dual-modal sensors for Ag+ and l-cysteine detection. Dye Pigment 2021;187:109126. https://doi.org/10.1016/j.dyepig.2020.109126.spa
dc.relation.references[120] Kim Y, Kim J. Bioinspired thiol functionalized carbon dots for rapid detection of lead (II) ions in human serum. Opt Mater (Amst) 2020;99:109514. https://doi.org/10.1016/j.optmat.2019.109514.spa
dc.relation.references[121] Orte A, Alvarez-Pez JM, Ruedas-Rama MJ. Fluorescence Lifetime Imaging Microscopy for the Detection of Intracellular pH with Quantum Dot Nanosensors. ACS Nano 2013;7:6387–95. https://doi.org/10.1021/nn402581q.spa
dc.relation.references[122] Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. Wiley; 2005. https://doi.org/10.1002/0470011149.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocBactris gasipaesspa
dc.subject.agrovocBactris gasipaeseng
dc.subject.agrovocIonesspa
dc.subject.agrovocionseng
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalChontadurospa
dc.subject.proposalFluorescenciaspa
dc.subject.proposalPeach palmeng
dc.subject.proposalQuenching estáticospa
dc.subject.proposalPuntos cuánticos de carbonospa
dc.subject.proposalStatic quenchingeng
dc.subject.proposalFluorescenceeng
dc.subject.proposalCarbon quantum dotseng
dc.subject.wikidatapunto cuánticospa
dc.subject.wikidataquantum doteng
dc.titleSíntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+spa
dc.title.translatedSynthesis of carbon quantum dots from peach palm peels: functionalization with biomolecules and application in Hg2+, Pb2+ and As3+ ions detectioneng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013650360.2024.pdf
Tamaño:
3.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: