Correlation between Electrochemical Impedance Spectroscopy and LCR parameter meter in the corrosion processes of steel-reinforced mortars
dc.contributor.advisor | Velásquez Salazar, Abilo Andrés | |
dc.contributor.advisor | Arias Jaramillo, Yhan Paul | |
dc.contributor.author | Bolaños Ortiz, Juan Diego | |
dc.contributor.orcid | Bolaños Ortiz, Juan Diego [0009-0003-6182-744X] | |
dc.contributor.orcid | Velásquez Salazar, Abilo Andrés [0000-0002-4035-7958] | |
dc.contributor.orcid | Arias Jaramillo, Yhan Paul [0000-0002-8988-6295] | |
dc.date.accessioned | 2025-09-12T15:19:17Z | |
dc.date.available | 2025-09-12T15:19:17Z | |
dc.date.issued | 2025-07-30 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | This document investigates the correlation between electrochemical impedance spectroscopy (EIS) and LCR meter parameters using impedances. To this end, 18 cylindrical mortar specimens measuring 5cmx10cm, each containing a smooth ½-inch steel reinforcing bar, were constructed following a 2x3 factorial design with 3 replicas. These specimens underwent accelerated corrosion processes such as the impressed current method (6 and 12 hours) and carbonation chamber exposure (15 and 30 days), with some specimens subjected to both methods. EIS was used to measure the specimens, with results adjusted by the chosen equivalent circuit. Additionally, resistance, capacitance, and impedance properties were measured in series and parallel at frequencies of 100Hz, 120Hz, 1kHz, 10kHz, and 100kHz using the LCR meter, ANOVA and Tukey's post-hoc tests were conducted to select the most representative parameters for corrosion detection. A linear relationship was observed between the Rct parameter of EIS and the 100Hz impedance of the LCR meter for specimens subjected to the impressed current method. Specimens exposed to carbonation chamber exhibited variable behaviors that did not correlate with both techniques, likely because the carbonation front had not yet depassivated the reinforcing steel. The combined actions of both factors had an inverse effect; chloride penetration reduced the mortar coating's total impedance, while carbonation densified it, increasing its resistivity. (Tomado de la fuente) | eng |
dc.description.abstract | En este documento se investigó la existencia de una correlación entre la técnica de espectroscopía de impedancia electroquímica (EIS) y los parámetros del medidor LCR utilizando impedancias. Para esto se construyeron 18 probetas de mortero cilíndricas de 5cmx10cm con una varilla de acero de refuerzo lisa de ½ pulgada en su interior siguiendo un diseño factorial 2x3 con 3 réplicas. Estas probetas fueron sometidas a procesos de corrosión acelerada como el método de corriente impresa (6 y 12 horas), la cámara de carbonatación (15 y 30 días) y otras probetas sometidas a ambos métodos. Las probetas fueron medidas con la técnica EIS y sus resultados ajustados por el circuito equivalente elegido. Se midió las propiedades de resistencia, capacitancia e impedancia tanto en serie como en paralelo para las frecuencias de 100Hz, 120Hz, 1kHz, 10kHz y 100kHz con el medidor LCR, sus resultados pasaron por análisis de varianza ANOVA y comparación de medias Tukey, para escoger los parámetros que sean más representativos en la detección de la corrosión. Luego de correlacionar los resultados de ambas técnicas se nota una relación lineal para el parámetro Rct de la EIS y la impedancia a 100Hz del medidor LCR para las probetas sometidas a corriente impresa. Las probetas sometidas a cámara de carbonatación presentan comportamientos variables en los que no se puede correlacionar ambas técnicas, esto debido a que se cree que el frente de carbonatación aún no ha llegado a despasivar al acero de refuerzo. Las acciones combinadas de ambos factores tuvieron un efecto inverso, pues por una parte la penetración de cloruros hace que el recubrimiento de mortero baje su impedancia total, pero la carbonatación densifica a este haciendo que su resistividad suba. | spa |
dc.description.curriculararea | Materiales Y Nanotecnología.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | |
dc.format.extent | 93 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88738 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Minas | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review. Cement and Concrete Composites, 25(4–5), 459–471. https://doi.org/10.1016/S0958-9465(02)00086-0 | |
dc.relation.references | Ahmad, S. (2009). Techniques for inducing accelerated corrosion of steel in concrete. | |
dc.relation.references | Allum Corporation. (n.d.). REFERENCE ELECTRODE. https://www.allumcorp.com/reference-electrode1/ | |
dc.relation.references | Andringa, M. M., Puryear, J. M., Neikirk, D. P., & Wood, S. L. (2006). Low-cost wireless corrosion and conductivity sensors (M. Tomizuka, C.-B. Yun, & V. Giurgiutiu, Eds.; p. 61740X). https://doi.org/10.1117/12.658836 | |
dc.relation.references | Andringa, M. M., Puryear, J. M., Neikirk, D. P., & Wood, S. L. (2007). In situ measurement of conductivity and temperature during concrete curing using passive wireless sensors (M. Tomizuka, C.-B. Yun, & V. Giurgiutiu, Eds.; p. 65293M). https://doi.org/10.1117/12.715182 | |
dc.relation.references | Aperador, W., Delgado, A., & Vera, E. (2011). Monitoreo mediante EIS del acero embebido en un concreto de escoria activada alcalinamente expuesto a carbonatación. Revista Ingeniería de Construcción, 26(1), 81–94. https://doi.org/10.4067/S0718-50732011000100005 | |
dc.relation.references | Bansal, T., & Talakokula, V. (2021). Deterioration of structural parameters due to corrosion in prestressed concrete identified by smart probe-based piezo sensor. Engineering Research Express, 3(1). https://doi.org/10.1088/2631- 8695/abded9 | |
dc.relation.references | Bansal, T., Talakokula, V., Rama Jyosyula, S. K., Vicente, R., & Ascensão, G. (2022). Embedded Piezo-Sensor-Based Automatic Performance Monitoring of Chloride-Induced Corrosion in Alkali-Activated Concrete. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912917 | |
dc.relation.references | Callow, L. M., Richardson, J. A., & Dawson, J. L. (1976). Corrosion Monitoring using Polarisation Resistance Measurements: I. Techniques and correlations. British Corrosion Journal, 11(3), 123–131. https://doi.org/10.1179/000705976798319937 | |
dc.relation.references | Carino, N. J. (1999). Nondestructive Techniques to Investigate Corrosion Status in Concrete Structures. Journal of Performance of Constructed Facilities, 13(3), 96–106. https://doi.org/10.1061/(ASCE)0887-3828(1999)13:3(96) | |
dc.relation.references | Chen, B., Wu, K., & Yao, W. (2004). Conductivity of carbon fiber reinforced cement-based composites. Cement and Concrete Composites, 26(4), 291–297. https://doi.org/10.1016/S0958-9465(02)00138-5 | |
dc.relation.references | Chen, W., & Dong, X. (2012). Modification of the wavelength-strain coefficient of FBG for the prediction of steel bar corrosion embedded in concrete. Optical Fiber Technology, 18(1), 47–50. https://doi.org/10.1016/j.yofte.2011.11.004 | |
dc.relation.references | Christensen, B. J., Coverdale, T., Olson, R. A., Ford, S. J., Garboczi, E. J., Jennings, H. M., & Mason, T. O. (1994). Impedance Spectroscopy of Hydrating Cement-Based Materials: Measurement, Interpretation, and Application. Journal of the American Ceramic Society, 77(11), 2789–2804. https://doi.org/10.1111/j.1151-2916.1994.tb04507.x | |
dc.relation.references | Colburn, A. W., Levey, K. J., O’Hare, D., & Macpherson, J. V. (2021). Lifting the lid on the potentiostat: a beginner’s guide to understanding electrochemical circuitry and practical operation. In Physical Chemistry Chemical Physics (Vol. 23, Issue 14, pp. 8100–8117). Royal Society of Chemistry. https://doi.org/10.1039/d1cp00661d | |
dc.relation.references | Demircilioğlu, E., Teomete, E., Schlangen, E., & Baeza, F. J. (2019). Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete. Construction and Building Materials, 224, 420–427. https://doi.org/10.1016/j.conbuildmat.2019.07.091 | |
dc.relation.references | Dhouibi-Hachani, L., Triki, E., Grandet, J., & Raharinaivo, A. (1996). Comparing the steel-concrete interface state and its electrochemical impedance. Cement and Concrete Research, 26(2), 253–266. https://doi.org/10.1016/0008- 8846(95)00214-6 | |
dc.relation.references | Dimov, D., Amit, I., Gorrie, O., Barnes, M. D., Townsend, N. J., Neves, A. I. S., Withers, F., Russo, S., & Craciun, M. F. (2018). Ultrahigh Performance Nanoengineered Graphene-Concrete Composites for Multifunctional Applications. Advanced Functional Materials, 28(23), 1705183. https://doi.org/10.1002/adfm.201705183 | |
dc.relation.references | Elsener, B., Klinghofer, O., Frolund, T., Rislund, E., Schiegg, Y., & Bohni, H. (1997). Assessment of reinforcement corrosion by means of galvanostatic pulse technique. | |
dc.relation.references | Feliu, S., & Andrade, M. (1989). Manual inspección de obras dañadas por corrosión de armaduras. | |
dc.relation.references | Feliu, V., González, J. A., Andrade, C., & Feliu, S. (1998). Equivalent circuit for modelling the steel-concrete interface. I. experimental evidence and theoretical predictions. Corrosion Science, 40(6), 975–993. https://doi.org/10.1016/S0010-938X(98)00036-5 | |
dc.relation.references | Feng, W., Tarakbay, A., Ali Memon, S., Tang, W., & Cui, H. (2021). Methods of accelerating chloride-induced corrosion in steel-reinforced concrete: A comparative review. Construction and Building Materials, 289, 123165. https://doi.org/10.1016/j.conbuildmat.2021.123165 | |
dc.relation.references | Gamry instruments. (n.d.). Reference Electrodes. Retrieved March 26, 2023, from https://www.gamry.com/cells-andaccessories/electrodes/reference-electrodes/ | |
dc.relation.references | Gómez, K. C. (2014). Comportamiento Electroquímico del Acero de Refuerzo en el Hormigón con Adición de Escoria de Cobre bajo un ambiente salino. | |
dc.relation.references | Gonzalez, F. J. A., & J. M. Vidales. (2007). Corrosión en las estructuras de hormigón armado: Fundamentos, medida, diagnosis y prevención (Vol. 30). Editorial CSIC-CSIC Press. https://books.google.es/books?hl=es&lr=&id=yAwuGIg7O1wC&oi=fnd&pg=PA17&dq=onzalez,+F.+J.+A.+and+J.+M. +Vidales+(2007).+%22Corrosion+en+las+estructuras+de+hormigon++armado,+fundamentos,+medida,+diagnosis+y +prevencion.%22+(Consejo+superior+de++investigaciones+cientificas,+Espa%C3%B1a+).&ots=Yz6qmXbFj4&sig=y 6em-dcOaTOjviFY4vSKdtMggQ8#v=onepage&q&f=false | |
dc.relation.references | González, J. (1989). Control de la corrosión: estudio y medida por técnicas electroquímicas. | |
dc.relation.references | Gowers, K. R., Millard, S. G., Gill, J. S., & Gill, R. P. (1994). Programmable Linear Polarisation Meter for Determination of Corrosion Rate of Reinforcement in Concrete Structures. British Corrosion Journal, 29(1), 25–32. https://doi.org/10.1179/000705994798267999 | |
dc.relation.references | Hioki E.E. Corporation. (2021). LCR meter measurement principles. https://www.hioki.com/sg-en/learning/usage/lcrmeters_1.html | |
dc.relation.references | John, D. G., Searson, P. C., & Dawson, J. L. (1981). Use of AC Impedance Technique in Studies on Steel in Concrete in Immersed Conditions. British Corrosion Journal, 16(2), 102–106. https://doi.org/10.1179/000705981798275002 | |
dc.relation.references | Kobayashi, K., & Banthia, N. (2011). Corrosion detection in reinforced concrete using induction heating and infrared thermography. Journal of Civil Structural Health Monitoring, 1(1–2), 25–35. https://doi.org/10.1007/s13349-010-0002- 4 | |
dc.relation.references | Li, G. Y., Wang, P. M., & Zhao, X. (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites, 29(5), 377–382. https://doi.org/10.1016/j.cemconcomp.2006.12.011 | |
dc.relation.references | Linares, D., & Sánchez, M. (2003). Construction, operation and performance of a chamber for tests of accelerated carbonation. In Rev. Téc. Ing. Univ. Zulia (Vol. 26, Issue 1). | |
dc.relation.references | Llorens, M., Serrrano, Á., & Valcuende, M. (2019). Sensores para la Determinación de la Durabilidad de Construcciones de Hormigón Armado. Revista Ingeniería de Construcción, 34(1), 81–98. https://doi.org/10.4067/S0718- 50732019000100081 | |
dc.relation.references | Loveday, D., Peterson, P., & Rodgers, B. (2004a). Evaluation of Organic Coatings with Electrochemical Impedance Spectroscopy Part 1: Fundamentals of Electrochemical Impedance Spectroscopy. | |
dc.relation.references | Loveday, D., Peterson, P., & Rodgers, B. (2004b). Evaluation of Organic Coatings with Electrochemical Impedance Spectroscopy Part 2: Application of EIS to Coatings. www.coatingstech.org | |
dc.relation.references | Mansfeld, F. (1976). The Polarization Resistance Technique for Measuring Corrosion Currents. In Advances in Corrosion Science and Technology (pp. 163–262). Springer US. https://doi.org/10.1007/978-1-4684-8986-6_3 | |
dc.relation.references | Martínez, I., & Andrade, C. (2008). Application of EIS to cathodically protected steel: Tests in sodium chloride solution and in chloride contaminated concrete. Corrosion Science, 50(10), 2948–2958. https://doi.org/10.1016/j.corsci.2008.07.012 | |
dc.relation.references | Meoni, A., D’Alessandro, A., Downey, A., García-Macías, E., Rallini, M., Materazzi, A., Torre, L., Laflamme, S., CastroTriguero, R., & Ubertini, F. (2018). An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures. Sensors, 18(3), 831. https://doi.org/10.3390/s18030831 | |
dc.relation.references | Newton, C. J., & Sykes, J. M. (1988). A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corrosion Science, 28(11), 1051–1074. https://doi.org/10.1016/0010-938X(88)90101-1 | |
dc.relation.references | Nóvoa, X. R. (2016). Electrochemical aspects of the steel‐concrete system. A review. Journal of Solid State Electrochemistry, 20(8), 2113–2125. https://doi.org/10.1007/s10008-016-3238-z | |
dc.relation.references | Obando, A. (2013). Propuesta de procedimientos de las técnicas: ruido electroquímico, resistencia a la polarización e impedancia electroquímica usadas en la medición de la corrosión del refuerzo en el concreto reforzado. | |
dc.relation.references | Ocampo, L. M. (2022a). Cinética electroquímica. Guía de clase para la materia Fundamentos de Corrosión. | |
dc.relation.references | Ocampo, L. M. (2022b). Corrosión En Concreto. Guía de clase para la materia Fundamentos de Corrosión. | |
dc.relation.references | Page, C. L., & Treadaway, K. W. J. (1982). Aspects of the electrochemistry of steel in concrete. Nature, 297(5862), 109– 115. https://doi.org/10.1038/297109a0 | |
dc.relation.references | Poursaee, A., & Hansson, C. M. (2008). Galvanostatic pulse technique with the current confinement guard ring: The laboratory and finite element analysis. Corrosion Science, 50(10), 2739–2746. https://doi.org/10.1016/j.corsci.2008.07.017 | |
dc.relation.references | Pullar-Strecker, P. (1987). Corrosion Damaged Concrete: Assessment and Repair: Co published with CIRIA. | |
dc.relation.references | Rahman, S. A., Ismail, M., Noor, N. M., & Bakhtiar, H. (2012). EMBEDDED CAPACITOR SENSOR FOR MONITORING CORROSION OF REINFORCEMENT IN CONCRETE (Vol. 7). | |
dc.relation.references | Ramón, J. E. (2018). Sistema de Sensores Embebidos para Monitorizar la Corrosión de Estructuras de Hormigón Armado. Fundamento, Metodología y Aplicaciones. [Universitat Politècnica de València]. https://doi.org/10.4995/Thesis/10251/111823 | |
dc.relation.references | Ribeiro, D. V., Souza, C. A. C., & Abrantes, J. C. C. (2015). Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista IBRACON de Estruturas e Materiais, 8(4), 529–546. https://doi.org/10.1590/S1983-41952015000400007 | |
dc.relation.references | Rodríguez, P., Ramírez, E., & González, J. A. (1994). Methods for studying corrosion in reinforced concrete. Magazine of Concrete Research, 46(167), 81–90. https://doi.org/10.1680/macr.1994.46.167.81 | |
dc.relation.references | Saavedra, R. M. (2014). SIMULACIÓN MEDIANTE CIRCUITOS EQUIVALENTES DE LA IMPEDANCIA ELECTROQUÍMICA DE ARMADURAS DE ACERO INOXIDABLE EN MORTERO. | |
dc.relation.references | Sansalone, M. J., & Streett, W. B. (1997). Impact-echo. nondestructive evaluation of concrete and masonry. | |
dc.relation.references | Screening Eagle. (n.d.). Profometer Corrosion. Retrieved April 4, 2023, from https://www.screeningeagle.com/es/products/profometer-corrosion | |
dc.relation.references | Sharma, S., & Mukherjee, A. (2010). Longitudinal Guided Waves for Monitoring Chloride Corrosion in Reinforcing Bars in Concrete. Structural Health Monitoring, 9(6), 555–567. https://doi.org/10.1177/1475921710365415 | |
dc.relation.references | Sohn, H., Park, G., Wait, J. R., Limback, N. P., & Farrar, C. R. (2004). Wavelet-based active sensing for delamination detection in composite structures. Smart Materials and Structures, 13(1), 153–160. https://doi.org/10.1088/0964- 1726/13/1/017 | |
dc.relation.references | Song, G. (2000). Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cement and Concrete Research, 30(11), 1723–1730. https://doi.org/10.1016/S0008-8846(00)00400-2 | |
dc.relation.references | Song, G., & Shayan, A. (1998). Corrosion of steel in concrete: causes, detection and prediction: a state-of-the-art review. | |
dc.relation.references | Song, H.-W., & Saraswathy, V. (2007). Corrosion Monitoring of Reinforced Concrete Structures - A Review. | |
dc.relation.references | Stern, M., & Geaby, A. L. (1957). Electrochemical Polarization: I . A Theoretical Analysis of the Shape of Polarization Curves. Journal of The Electrochemical Society, 104(1), 56. https://doi.org/10.1149/1.2428496 | |
dc.relation.references | Wells, D. (1970). An acoustic apparatus to record emissions from concrete under strain. Nuclear Engineering and Design, 12(1), 80–88. https://doi.org/10.1016/0029-5493(70)90135-4 | |
dc.relation.references | Wen, S., & Chung, D. D. L. (2007). Piezoresistivity-based strain sensing in carbon fiber reinforced cement. | |
dc.relation.references | Wolynec, S. (2003). Técnicas eletroquímicas em corrosão (Vol. 49). | |
dc.relation.references | Zaki, A., Chai, H., Aggelis, D., & Alver, N. (2015). Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique. Sensors, 15(8), 19069–19101. https://doi.org/10.3390/s150819069 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales | |
dc.subject.ddc | 690 - Construcción de edificios::691 - Materiales de construcción | |
dc.subject.lemb | Espectroscopía de impedancia | |
dc.subject.lemb | Corrosión del acero | |
dc.subject.lemb | Hormigón armado | |
dc.subject.lemb | Materiales resistentes a la corrosión | |
dc.subject.proposal | Electrochemical Impedance Spectroscopy | eng |
dc.subject.proposal | LCR meter | eng |
dc.subject.proposal | Corrosion Detection | eng |
dc.subject.proposal | Accelerated Corrosion | eng |
dc.subject.proposal | Espectroscopía de Impedancia Electroquímica | spa |
dc.subject.proposal | Medidor LCR | spa |
dc.subject.proposal | Detección de Corrosión | spa |
dc.subject.proposal | Corrosión Acelerada | spa |
dc.subject.proposal | Electrochemical Impedance Spectroscopy | eng |
dc.subject.proposal | LCR meter | eng |
dc.subject.proposal | Corrosion Detection | eng |
dc.subject.proposal | Accelerated Corrosion | eng |
dc.title | Correlation between Electrochemical Impedance Spectroscopy and LCR parameter meter in the corrosion processes of steel-reinforced mortars | eng |
dc.title.translated | Correlación entre la Espectroscoía de Impedancia Electroquímica y los parámetros del medidor LCR en los procesos de corrosión del acero de refuerzo en morteros | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
- Tamaño:
- 5.92 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: