Correlation between Electrochemical Impedance Spectroscopy and LCR parameter meter in the corrosion processes of steel-reinforced mortars

dc.contributor.advisorVelásquez Salazar, Abilo Andrés
dc.contributor.advisorArias Jaramillo, Yhan Paul
dc.contributor.authorBolaños Ortiz, Juan Diego
dc.contributor.orcidBolaños Ortiz, Juan Diego [0009-0003-6182-744X]
dc.contributor.orcidVelásquez Salazar, Abilo Andrés [0000-0002-4035-7958]
dc.contributor.orcidArias Jaramillo, Yhan Paul [0000-0002-8988-6295]
dc.date.accessioned2025-09-12T15:19:17Z
dc.date.available2025-09-12T15:19:17Z
dc.date.issued2025-07-30
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractThis document investigates the correlation between electrochemical impedance spectroscopy (EIS) and LCR meter parameters using impedances. To this end, 18 cylindrical mortar specimens measuring 5cmx10cm, each containing a smooth ½-inch steel reinforcing bar, were constructed following a 2x3 factorial design with 3 replicas. These specimens underwent accelerated corrosion processes such as the impressed current method (6 and 12 hours) and carbonation chamber exposure (15 and 30 days), with some specimens subjected to both methods. EIS was used to measure the specimens, with results adjusted by the chosen equivalent circuit. Additionally, resistance, capacitance, and impedance properties were measured in series and parallel at frequencies of 100Hz, 120Hz, 1kHz, 10kHz, and 100kHz using the LCR meter, ANOVA and Tukey's post-hoc tests were conducted to select the most representative parameters for corrosion detection. A linear relationship was observed between the Rct parameter of EIS and the 100Hz impedance of the LCR meter for specimens subjected to the impressed current method. Specimens exposed to carbonation chamber exhibited variable behaviors that did not correlate with both techniques, likely because the carbonation front had not yet depassivated the reinforcing steel. The combined actions of both factors had an inverse effect; chloride penetration reduced the mortar coating's total impedance, while carbonation densified it, increasing its resistivity. (Tomado de la fuente)eng
dc.description.abstractEn este documento se investigó la existencia de una correlación entre la técnica de espectroscopía de impedancia electroquímica (EIS) y los parámetros del medidor LCR utilizando impedancias. Para esto se construyeron 18 probetas de mortero cilíndricas de 5cmx10cm con una varilla de acero de refuerzo lisa de ½ pulgada en su interior siguiendo un diseño factorial 2x3 con 3 réplicas. Estas probetas fueron sometidas a procesos de corrosión acelerada como el método de corriente impresa (6 y 12 horas), la cámara de carbonatación (15 y 30 días) y otras probetas sometidas a ambos métodos. Las probetas fueron medidas con la técnica EIS y sus resultados ajustados por el circuito equivalente elegido. Se midió las propiedades de resistencia, capacitancia e impedancia tanto en serie como en paralelo para las frecuencias de 100Hz, 120Hz, 1kHz, 10kHz y 100kHz con el medidor LCR, sus resultados pasaron por análisis de varianza ANOVA y comparación de medias Tukey, para escoger los parámetros que sean más representativos en la detección de la corrosión. Luego de correlacionar los resultados de ambas técnicas se nota una relación lineal para el parámetro Rct de la EIS y la impedancia a 100Hz del medidor LCR para las probetas sometidas a corriente impresa. Las probetas sometidas a cámara de carbonatación presentan comportamientos variables en los que no se puede correlacionar ambas técnicas, esto debido a que se cree que el frente de carbonatación aún no ha llegado a despasivar al acero de refuerzo. Las acciones combinadas de ambos factores tuvieron un efecto inverso, pues por una parte la penetración de cloruros hace que el recubrimiento de mortero baje su impedancia total, pero la carbonatación densifica a este haciendo que su resistividad suba.spa
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.format.extent93 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88738
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.relation.indexedLaReferencia
dc.relation.referencesAhmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review. Cement and Concrete Composites, 25(4–5), 459–471. https://doi.org/10.1016/S0958-9465(02)00086-0
dc.relation.referencesAhmad, S. (2009). Techniques for inducing accelerated corrosion of steel in concrete.
dc.relation.referencesAllum Corporation. (n.d.). REFERENCE ELECTRODE. https://www.allumcorp.com/reference-electrode1/
dc.relation.referencesAndringa, M. M., Puryear, J. M., Neikirk, D. P., & Wood, S. L. (2006). Low-cost wireless corrosion and conductivity sensors (M. Tomizuka, C.-B. Yun, & V. Giurgiutiu, Eds.; p. 61740X). https://doi.org/10.1117/12.658836
dc.relation.referencesAndringa, M. M., Puryear, J. M., Neikirk, D. P., & Wood, S. L. (2007). In situ measurement of conductivity and temperature during concrete curing using passive wireless sensors (M. Tomizuka, C.-B. Yun, & V. Giurgiutiu, Eds.; p. 65293M). https://doi.org/10.1117/12.715182
dc.relation.referencesAperador, W., Delgado, A., & Vera, E. (2011). Monitoreo mediante EIS del acero embebido en un concreto de escoria activada alcalinamente expuesto a carbonatación. Revista Ingeniería de Construcción, 26(1), 81–94. https://doi.org/10.4067/S0718-50732011000100005
dc.relation.referencesBansal, T., & Talakokula, V. (2021). Deterioration of structural parameters due to corrosion in prestressed concrete identified by smart probe-based piezo sensor. Engineering Research Express, 3(1). https://doi.org/10.1088/2631- 8695/abded9
dc.relation.referencesBansal, T., Talakokula, V., Rama Jyosyula, S. K., Vicente, R., & Ascensão, G. (2022). Embedded Piezo-Sensor-Based Automatic Performance Monitoring of Chloride-Induced Corrosion in Alkali-Activated Concrete. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912917
dc.relation.referencesCallow, L. M., Richardson, J. A., & Dawson, J. L. (1976). Corrosion Monitoring using Polarisation Resistance Measurements: I. Techniques and correlations. British Corrosion Journal, 11(3), 123–131. https://doi.org/10.1179/000705976798319937
dc.relation.referencesCarino, N. J. (1999). Nondestructive Techniques to Investigate Corrosion Status in Concrete Structures. Journal of Performance of Constructed Facilities, 13(3), 96–106. https://doi.org/10.1061/(ASCE)0887-3828(1999)13:3(96)
dc.relation.referencesChen, B., Wu, K., & Yao, W. (2004). Conductivity of carbon fiber reinforced cement-based composites. Cement and Concrete Composites, 26(4), 291–297. https://doi.org/10.1016/S0958-9465(02)00138-5
dc.relation.referencesChen, W., & Dong, X. (2012). Modification of the wavelength-strain coefficient of FBG for the prediction of steel bar corrosion embedded in concrete. Optical Fiber Technology, 18(1), 47–50. https://doi.org/10.1016/j.yofte.2011.11.004
dc.relation.referencesChristensen, B. J., Coverdale, T., Olson, R. A., Ford, S. J., Garboczi, E. J., Jennings, H. M., & Mason, T. O. (1994). Impedance Spectroscopy of Hydrating Cement-Based Materials: Measurement, Interpretation, and Application. Journal of the American Ceramic Society, 77(11), 2789–2804. https://doi.org/10.1111/j.1151-2916.1994.tb04507.x
dc.relation.referencesColburn, A. W., Levey, K. J., O’Hare, D., & Macpherson, J. V. (2021). Lifting the lid on the potentiostat: a beginner’s guide to understanding electrochemical circuitry and practical operation. In Physical Chemistry Chemical Physics (Vol. 23, Issue 14, pp. 8100–8117). Royal Society of Chemistry. https://doi.org/10.1039/d1cp00661d
dc.relation.referencesDemircilioğlu, E., Teomete, E., Schlangen, E., & Baeza, F. J. (2019). Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete. Construction and Building Materials, 224, 420–427. https://doi.org/10.1016/j.conbuildmat.2019.07.091
dc.relation.referencesDhouibi-Hachani, L., Triki, E., Grandet, J., & Raharinaivo, A. (1996). Comparing the steel-concrete interface state and its electrochemical impedance. Cement and Concrete Research, 26(2), 253–266. https://doi.org/10.1016/0008- 8846(95)00214-6
dc.relation.referencesDimov, D., Amit, I., Gorrie, O., Barnes, M. D., Townsend, N. J., Neves, A. I. S., Withers, F., Russo, S., & Craciun, M. F. (2018). Ultrahigh Performance Nanoengineered Graphene-Concrete Composites for Multifunctional Applications. Advanced Functional Materials, 28(23), 1705183. https://doi.org/10.1002/adfm.201705183
dc.relation.referencesElsener, B., Klinghofer, O., Frolund, T., Rislund, E., Schiegg, Y., & Bohni, H. (1997). Assessment of reinforcement corrosion by means of galvanostatic pulse technique.
dc.relation.referencesFeliu, S., & Andrade, M. (1989). Manual inspección de obras dañadas por corrosión de armaduras.
dc.relation.referencesFeliu, V., González, J. A., Andrade, C., & Feliu, S. (1998). Equivalent circuit for modelling the steel-concrete interface. I. experimental evidence and theoretical predictions. Corrosion Science, 40(6), 975–993. https://doi.org/10.1016/S0010-938X(98)00036-5
dc.relation.referencesFeng, W., Tarakbay, A., Ali Memon, S., Tang, W., & Cui, H. (2021). Methods of accelerating chloride-induced corrosion in steel-reinforced concrete: A comparative review. Construction and Building Materials, 289, 123165. https://doi.org/10.1016/j.conbuildmat.2021.123165
dc.relation.referencesGamry instruments. (n.d.). Reference Electrodes. Retrieved March 26, 2023, from https://www.gamry.com/cells-andaccessories/electrodes/reference-electrodes/
dc.relation.referencesGómez, K. C. (2014). Comportamiento Electroquímico del Acero de Refuerzo en el Hormigón con Adición de Escoria de Cobre bajo un ambiente salino.
dc.relation.referencesGonzalez, F. J. A., & J. M. Vidales. (2007). Corrosión en las estructuras de hormigón armado: Fundamentos, medida, diagnosis y prevención (Vol. 30). Editorial CSIC-CSIC Press. https://books.google.es/books?hl=es&lr=&id=yAwuGIg7O1wC&oi=fnd&pg=PA17&dq=onzalez,+F.+J.+A.+and+J.+M. +Vidales+(2007).+%22Corrosion+en+las+estructuras+de+hormigon++armado,+fundamentos,+medida,+diagnosis+y +prevencion.%22+(Consejo+superior+de++investigaciones+cientificas,+Espa%C3%B1a+).&ots=Yz6qmXbFj4&sig=y 6em-dcOaTOjviFY4vSKdtMggQ8#v=onepage&q&f=false
dc.relation.referencesGonzález, J. (1989). Control de la corrosión: estudio y medida por técnicas electroquímicas.
dc.relation.referencesGowers, K. R., Millard, S. G., Gill, J. S., & Gill, R. P. (1994). Programmable Linear Polarisation Meter for Determination of Corrosion Rate of Reinforcement in Concrete Structures. British Corrosion Journal, 29(1), 25–32. https://doi.org/10.1179/000705994798267999
dc.relation.referencesHioki E.E. Corporation. (2021). LCR meter measurement principles. https://www.hioki.com/sg-en/learning/usage/lcrmeters_1.html
dc.relation.referencesJohn, D. G., Searson, P. C., & Dawson, J. L. (1981). Use of AC Impedance Technique in Studies on Steel in Concrete in Immersed Conditions. British Corrosion Journal, 16(2), 102–106. https://doi.org/10.1179/000705981798275002
dc.relation.referencesKobayashi, K., & Banthia, N. (2011). Corrosion detection in reinforced concrete using induction heating and infrared thermography. Journal of Civil Structural Health Monitoring, 1(1–2), 25–35. https://doi.org/10.1007/s13349-010-0002- 4
dc.relation.referencesLi, G. Y., Wang, P. M., & Zhao, X. (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites, 29(5), 377–382. https://doi.org/10.1016/j.cemconcomp.2006.12.011
dc.relation.referencesLinares, D., & Sánchez, M. (2003). Construction, operation and performance of a chamber for tests of accelerated carbonation. In Rev. Téc. Ing. Univ. Zulia (Vol. 26, Issue 1).
dc.relation.referencesLlorens, M., Serrrano, Á., & Valcuende, M. (2019). Sensores para la Determinación de la Durabilidad de Construcciones de Hormigón Armado. Revista Ingeniería de Construcción, 34(1), 81–98. https://doi.org/10.4067/S0718- 50732019000100081
dc.relation.referencesLoveday, D., Peterson, P., & Rodgers, B. (2004a). Evaluation of Organic Coatings with Electrochemical Impedance Spectroscopy Part 1: Fundamentals of Electrochemical Impedance Spectroscopy.
dc.relation.referencesLoveday, D., Peterson, P., & Rodgers, B. (2004b). Evaluation of Organic Coatings with Electrochemical Impedance Spectroscopy Part 2: Application of EIS to Coatings. www.coatingstech.org
dc.relation.referencesMansfeld, F. (1976). The Polarization Resistance Technique for Measuring Corrosion Currents. In Advances in Corrosion Science and Technology (pp. 163–262). Springer US. https://doi.org/10.1007/978-1-4684-8986-6_3
dc.relation.referencesMartínez, I., & Andrade, C. (2008). Application of EIS to cathodically protected steel: Tests in sodium chloride solution and in chloride contaminated concrete. Corrosion Science, 50(10), 2948–2958. https://doi.org/10.1016/j.corsci.2008.07.012
dc.relation.referencesMeoni, A., D’Alessandro, A., Downey, A., García-Macías, E., Rallini, M., Materazzi, A., Torre, L., Laflamme, S., CastroTriguero, R., & Ubertini, F. (2018). An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures. Sensors, 18(3), 831. https://doi.org/10.3390/s18030831
dc.relation.referencesNewton, C. J., & Sykes, J. M. (1988). A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corrosion Science, 28(11), 1051–1074. https://doi.org/10.1016/0010-938X(88)90101-1
dc.relation.referencesNóvoa, X. R. (2016). Electrochemical aspects of the steel‐concrete system. A review. Journal of Solid State Electrochemistry, 20(8), 2113–2125. https://doi.org/10.1007/s10008-016-3238-z
dc.relation.referencesObando, A. (2013). Propuesta de procedimientos de las técnicas: ruido electroquímico, resistencia a la polarización e impedancia electroquímica usadas en la medición de la corrosión del refuerzo en el concreto reforzado.
dc.relation.referencesOcampo, L. M. (2022a). Cinética electroquímica. Guía de clase para la materia Fundamentos de Corrosión.
dc.relation.referencesOcampo, L. M. (2022b). Corrosión En Concreto. Guía de clase para la materia Fundamentos de Corrosión.
dc.relation.referencesPage, C. L., & Treadaway, K. W. J. (1982). Aspects of the electrochemistry of steel in concrete. Nature, 297(5862), 109– 115. https://doi.org/10.1038/297109a0
dc.relation.referencesPoursaee, A., & Hansson, C. M. (2008). Galvanostatic pulse technique with the current confinement guard ring: The laboratory and finite element analysis. Corrosion Science, 50(10), 2739–2746. https://doi.org/10.1016/j.corsci.2008.07.017
dc.relation.referencesPullar-Strecker, P. (1987). Corrosion Damaged Concrete: Assessment and Repair: Co published with CIRIA.
dc.relation.referencesRahman, S. A., Ismail, M., Noor, N. M., & Bakhtiar, H. (2012). EMBEDDED CAPACITOR SENSOR FOR MONITORING CORROSION OF REINFORCEMENT IN CONCRETE (Vol. 7).
dc.relation.referencesRamón, J. E. (2018). Sistema de Sensores Embebidos para Monitorizar la Corrosión de Estructuras de Hormigón Armado. Fundamento, Metodología y Aplicaciones. [Universitat Politècnica de València]. https://doi.org/10.4995/Thesis/10251/111823
dc.relation.referencesRibeiro, D. V., Souza, C. A. C., & Abrantes, J. C. C. (2015). Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista IBRACON de Estruturas e Materiais, 8(4), 529–546. https://doi.org/10.1590/S1983-41952015000400007
dc.relation.referencesRodríguez, P., Ramírez, E., & González, J. A. (1994). Methods for studying corrosion in reinforced concrete. Magazine of Concrete Research, 46(167), 81–90. https://doi.org/10.1680/macr.1994.46.167.81
dc.relation.referencesSaavedra, R. M. (2014). SIMULACIÓN MEDIANTE CIRCUITOS EQUIVALENTES DE LA IMPEDANCIA ELECTROQUÍMICA DE ARMADURAS DE ACERO INOXIDABLE EN MORTERO.
dc.relation.referencesSansalone, M. J., & Streett, W. B. (1997). Impact-echo. nondestructive evaluation of concrete and masonry.
dc.relation.referencesScreening Eagle. (n.d.). Profometer Corrosion. Retrieved April 4, 2023, from https://www.screeningeagle.com/es/products/profometer-corrosion
dc.relation.referencesSharma, S., & Mukherjee, A. (2010). Longitudinal Guided Waves for Monitoring Chloride Corrosion in Reinforcing Bars in Concrete. Structural Health Monitoring, 9(6), 555–567. https://doi.org/10.1177/1475921710365415
dc.relation.referencesSohn, H., Park, G., Wait, J. R., Limback, N. P., & Farrar, C. R. (2004). Wavelet-based active sensing for delamination detection in composite structures. Smart Materials and Structures, 13(1), 153–160. https://doi.org/10.1088/0964- 1726/13/1/017
dc.relation.referencesSong, G. (2000). Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cement and Concrete Research, 30(11), 1723–1730. https://doi.org/10.1016/S0008-8846(00)00400-2
dc.relation.referencesSong, G., & Shayan, A. (1998). Corrosion of steel in concrete: causes, detection and prediction: a state-of-the-art review.
dc.relation.referencesSong, H.-W., & Saraswathy, V. (2007). Corrosion Monitoring of Reinforced Concrete Structures - A Review.
dc.relation.referencesStern, M., & Geaby, A. L. (1957). Electrochemical Polarization: I . A Theoretical Analysis of the Shape of Polarization Curves. Journal of The Electrochemical Society, 104(1), 56. https://doi.org/10.1149/1.2428496
dc.relation.referencesWells, D. (1970). An acoustic apparatus to record emissions from concrete under strain. Nuclear Engineering and Design, 12(1), 80–88. https://doi.org/10.1016/0029-5493(70)90135-4
dc.relation.referencesWen, S., & Chung, D. D. L. (2007). Piezoresistivity-based strain sensing in carbon fiber reinforced cement.
dc.relation.referencesWolynec, S. (2003). Técnicas eletroquímicas em corrosão (Vol. 49).
dc.relation.referencesZaki, A., Chai, H., Aggelis, D., & Alver, N. (2015). Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique. Sensors, 15(8), 19069–19101. https://doi.org/10.3390/s150819069
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcción
dc.subject.lembEspectroscopía de impedancia
dc.subject.lembCorrosión del acero
dc.subject.lembHormigón armado
dc.subject.lembMateriales resistentes a la corrosión
dc.subject.proposalElectrochemical Impedance Spectroscopyeng
dc.subject.proposalLCR metereng
dc.subject.proposalCorrosion Detectioneng
dc.subject.proposalAccelerated Corrosioneng
dc.subject.proposalEspectroscopía de Impedancia Electroquímicaspa
dc.subject.proposalMedidor LCRspa
dc.subject.proposalDetección de Corrosiónspa
dc.subject.proposalCorrosión Aceleradaspa
dc.subject.proposalElectrochemical Impedance Spectroscopyeng
dc.subject.proposalLCR metereng
dc.subject.proposalCorrosion Detectioneng
dc.subject.proposalAccelerated Corrosioneng
dc.titleCorrelation between Electrochemical Impedance Spectroscopy and LCR parameter meter in the corrosion processes of steel-reinforced mortarseng
dc.title.translatedCorrelación entre la Espectroscoía de Impedancia Electroquímica y los parámetros del medidor LCR en los procesos de corrosión del acero de refuerzo en morterosspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Materiales y Procesos
Tamaño:
5.92 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: