Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization

dc.contributor.advisorSiachoque Velandia, Astrid
dc.contributor.advisorCardona Molina, Agustin
dc.contributor.authorBotello Díaz, Gladys Eliana
dc.contributor.cvlacBotello Díaz, Gladys Elianaspa
dc.contributor.orcid0000-0001-5896-8709spa
dc.contributor.researchgroupGrupo de Estudios en Geología y Geofísica Egeospa
dc.date.accessioned2024-07-11T17:16:47Z
dc.date.available2024-07-11T17:16:47Z
dc.date.issued2024
dc.descriptionIlustraciones, mapasspa
dc.description.abstractLower Miocene plutons exposed in the Western Cordillera of Colombia record the reinitiation of continental arc magmatism in the Northern Andes after a period of magmatic quiescence between the Late Eocene and Early Miocene. Petrography, U-Pb zircon geochronology, whole-rock geochemistry, mineral chemistry, and zircon Hf isotope data from these plutons are used to reconstruct the Miocene magmatic evolution in the Colombian Andes and understand its relation with the major plate-tectonic reorganization experienced by the NW South American continental margin during the Lower Miocene. We examined a suite of gabbros, granodiorites and tonalites from Danubio, Pance and Tatamá plutons, formed between 21 Ma and 15 Ma. Gabbros present highly positive εHf values (+13.5 and +11.5) with low Th/La and La/Yb ratios, whereas granodiorites and tonalites present lower εHf values (+14.3 to +6.4) and high Th/La, and La/Yb ratios. The results of this contribution suggest a major asthenospheric source metasomatized by oxidized aqueous fluids derived from the subducted components. The compositional diversification of these magmas was controlled by fractional crystallization and possibly by minor assimilation of continental crust at lower crustal levels of the upper plate and by magma mixing processes. Subsequently, these magmas were emplaced in the Cretaceous to Paleogene volcanic and sedimentary rocks in the uppermost crust. The renewed magmatic activity recorded by these plutons can be related to the early stages of the Neogene plate reorganization, which was characterized by the normal to steep subduction of the Farallon Plate remnants. (Tomado de la fuente)eng
dc.description.abstractLos plutones del Mioceno inferior expuestos en la Cordillera Occidental de Colombia registran el reinicio del magmatismo del arco continental en los Andes del Norte después de un período de inactividad magmática entre el Eoceno Tardío y el Mioceno Temprano. La petrografía, la geocronología U-Pb en circón, la geoquímica de roca total, la química mineral y los datos de isótopos de Hf en circón de estos plutones se utilizan para reconstruir la evolución magmática del Mioceno en los Andes colombianos y comprender su relación con la reorganización de placas tectónicas experimentada por el margen continental noroeste de América del Sur durante el Mioceno Inferior. Examinamos un conjunto de gabros, granodioritas y tonalitas de los plutones El Danubio, Pance y Tatamá, formados entre 21 Ma y 15 Ma. Los gabros presentan valores de εHf muy positivos (+13,5 y +11,5) con relaciones Th/La y La/Yb bajas, mientras que las granodioritas y tonalitas presentan valores de εHf más bajos (+14,3 a +6,4) y relaciones Th/La y La/Yb altas. Los resultados de este trabajo sugieren una fuente astenosférica metasomatizada por fluidos acuosos oxidados derivados de los componentes subducidos. La diversificación composicional de estos magmas estuvo controlada por procesos de cristalización fraccionada, así como posiblemente por una asimilación limitada de corteza continental en el nivel inferior de la placa superior y por procesos de mezcla de magma. Posteriormente, estos magmas se emplazaron en rocas volcánicas y sedimentarias del Cretácico al Paleógeno presentes en niveles superiores de la corteza. La renovada actividad magmática registrada por estos plutones puede estar relacionada con las primeras etapas de la reorganización de la placa Neógena, que se caracterizó por la subducción normal a pronunciada de los remanentes de la Placa Farallón.spa
dc.description.curricularareaRecursos Minerales.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería - Recursos Mineralesspa
dc.format.extent105 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86430
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombia sede Medellínspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Mineralesspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlexander, E., & Harrison, M. (2019, December). Do La/Yb and Sr/Y always reflect crustal thickness in magmatic rocks?. In AGU Fall Meeting Abstracts (Vol. 2019, pp. V34B-03).spa
dc.relation.referencesAnderson, A. T. (1976). Magma mixing: petrological process and volcanological tool. Journal of Volcanology and Geothermal Research, 1(1), 3–33. https://doi.org/10.1016/0377-0273(76)90016-0spa
dc.relation.referencesAnderson, J. L., Barth, A. P., Wooden, J. L., & Mazdab, F. (2008). Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69(1), 121–142. https://doi.org/10.2138/rmg.2008.69.4spa
dc.relation.referencesAnnen, C., Blundy, J. D., & Sparks, R. S. J. (2006). The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3), 505–539. https://doi.org/10.1093/petrology/egi084spa
dc.relation.referencesAnnen, C., Blundy, J. D., Leuthold, J., & Sparks, R. S. J. (2015). Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos, 230, 206–221. https://doi.org/10.1016/j.lithos.2015.05.008spa
dc.relation.referencesArculus, R. J. (1994). Aspects of magma genesis in arcs. Lithos, 33(1–3), 189–208. https://doi.org/10.1016/0024-4937(94)90060-4spa
dc.relation.referencesAspden, J. A., McCOURT, W. J., & Brook, M. (1987). Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. Journal of the Geological Society, 144(6), 893–905. https://doi.org/10.1144/gsjgs.144.6.0893spa
dc.relation.referencesBaliani, I., Otamendi, J. E., Tibaldi, A. M., & Cristofolini, E. A. (2012). Geology and Petrology of mafic-ultramafic body from Las Juntas, Valle Fértil, San Juan. Revista de la Asociación Geológica de Argentina, 69 (1), 72-87spa
dc.relation.referencesBarbosa-Espitia, A. A. (2020). The accretion of the Panamá Arc to the northern Andes: Geographic extension, magmatic and exhumation response of the continental margin [Doctoral dissertation, University of Florida]spa
dc.relation.referencesBarbosa-Espitia, Á. A., Kamenov, G. D., Foster, D. A., Restrepo-Moreno, S. A., & Pardo-Trujillo, A. (2019). Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos, 348–349(105185), 105185. https://doi.org/10.1016/j.lithos.2019.105185spa
dc.relation.referencesBarckhausen, U., Ranero, C. R., Cande, S. C., Engels, M., & Weinrebe, W. (2008). Birth of an intraoceanic spreading center. Geology, 36(10), 767. https://doi.org/10.1130/g25056a.1spa
dc.relation.referencesBarth, A. P., Wooden, J. L., Jacobson, C. E., & Economos, R. C. (2013). Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example. Geology, 41(2), 223–226. https://doi.org/10.1130/g33619.1spa
dc.relation.referencesBayona, G., Bustamante, C., Nova, G. & Salazar–Franco, A.M. (2020). Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 171–207. https://doi.org/10.32685/pub.esp.36.2019.05spa
dc.relation.referencesBayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., & Ibañez-Mejia, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth and Planetary Science Letters, 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015spa
dc.relation.referencesBell, E. A., & Kirkpatrick, H. M. (2021). Effects of crustal assimilation and magma mixing on zircon trace element relationships across the Peninsular Ranges Batholith. Chemical Geology, 586(120616), 120616. https://doi.org/10.1016/j.chemgeo.2021.120616spa
dc.relation.referencesBernet, M & Garver, J., (2005). Fission-track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry, 58(1), 205–237. https://doi.org/10.2138/rmg.2005.58.8spa
dc.relation.referencesBernet, M. (2009). A field-based estimate of the zircon fission-track closure temperature. Chemical Geology, 259(3–4), 181–189. https://doi.org/10.1016/j.chemgeo.2008.10.043spa
dc.relation.referencesBissig, T., Leal-Mejía, H., Stevens, R. B., & Hart, C. J. R. (2017). High Sr/Y magma petrogenesis and the link to porphyry mineralization as revealed by garnet-bearing I-type granodiorite porphyries of the middle Cauca Au-cu belt, Colombia. Economic Geology and the Bulletin of the Society of Economic Geologists, 112(3), 551–568. https://doi.org/10.2113/econgeo.112.3.551spa
dc.relation.referencesBorrero, C., Toro, L. M., Alvarán, M., & Castillo, H. (2009). Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruiz volcano, Colombia. Geofisica Internacional, 48(1), 149–169.spa
dc.relation.referencesBorrero, C., Rosero, J. S., Valencia, J. D., & Pardo, A. (2008). La secuencia volcaniclástica de Aranzazu: Registro del impacto del volcanismo en un sistema fluvial Neógeno en la parte media de la Cordillera Central, Colombia. Boletín de Geología, 30, 61-77.spa
dc.relation.referencesBorrero, Carlos, & Toro Toro, L. M. (2016). Vulcanismo de afinidad adaquítica en el Miembro Inferior de la Formación Combia (Mioceno Tardío) al sur de la subcuenca de Amagá, noroccidente de Colombia. Boletín de Geología, 38(1), 87–100. https://doi.org/10.18273/revbol.v38n1-2016005spa
dc.relation.referencesBotero-Garcia, M., Vinasco, C. J., Restrepo-Moreno, S. A., Foster, D. A., & Kamenov, G. D. (2023). Caribbean–South America interactions since the Late Cretaceous: Insights from zircon U–Pb and Lu–Hf isotopic data in sedimentary sequences of the northwestern Andes. Journal of South American Earth Sciences, 123(104231), 104231. https://doi.org/10.1016/j.jsames.2023.104231spa
dc.relation.referencesBourgois, J., Azema, J., Tournon, J. E. A. N., Bellon, H., Calle, B., Parra, E., ... & Origlia, I. (1982). Ages et structures des complexes basiques et ultrabasiques de la facade pacifique entre 3 degrees N et 12 degrees N (Colombie, Panama et Costa Rica). Bulletin de la Société géologique de France, 7(3), 545-554.spa
dc.relation.referencesBouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010spa
dc.relation.referencesBrandon, M. T., Roden-Tice, M. K., & Garver, J. I. (1998). Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin, 110(8), 985–1009. https://doi.org/10.1130/0016- 7606(1998)110<0985:lceotc>2.3.co;2spa
dc.relation.referencesBrenan, J. M., Shaw, H. F., Ryerson, F. J., & Phinney, D. L. (1995). Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59(16), 3331–3350. https://doi.org/10.1016/0016-7037(95)00215-lspa
dc.relation.referencesBrounce, M., Kelley, K. A., Cottrell, E., & Reagan, M. K. (2015). Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology, 43(9), 775–778. https://doi.org/10.1130/g36742.1spa
dc.relation.referencesBrügmann, G. E., Reischmann, T., Naldrett, A. J., and Sutcliffe, R. H. (1997). Roots of an Archean volcanic arc complex: the Lac des Iles area in Ontario, Canada. Precambrian Res. 81, 223–239. doi:10.1016/S0301-9268(96)00036-8spa
dc.relation.referencesBuchs, D. M., Baumgartner, P. O., Baumgartner-Mora, C., Flores, K., & Bandini, A. N. (2011). Upper Cretaceous to Miocene tectonostratigraphy of the Azuero area (Panama) and the discontinuous accretion and subduction erosion along the Middle American margin. Tectonophysics, 512(1–4), 31–46. https://doi.org/10.1016/j.tecto.2011.09.010spa
dc.relation.referencesBuchs, D. M., Coombs, H., Irving, D., Wang, J., Koppers, A., Miranda, R., Coronado, M., Tapia, A., & Pitchford, S. (2019). Volcanic shutdown of the Panama Canal area following breakup of the Farallon plate. Lithos, 334–335, 190–204. https://doi.org/10.1016/j.lithos.2019.02.016spa
dc.relation.referencesBustamante, C. & Bustamante, A. (2019). Two Cretaceous subduction events in the Central Cordillera: Insights from the high P–low T metamorphism. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 485–498. https://doi.org/10.32685/pub.esp.36.2019.14spa
dc.relation.referencesBustamante, C., Cardona, A., Archanjo, C. J., Bayona, G., Lara, M., & Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos, 277, 199–209. https://doi.org/10.1016/j.lithos.2016.11.025spa
dc.relation.referencesBustos Rodríguez, H., Oyola, L. D., Rojas, Y., Alcázar, G. A. P., Balogh, A. G., & Cabri, L. J. (2011). Quantification of refractory gold in grains of pyrite and arsenopyrite from the" El Diamante" gold mine in Nariño-Colombia. Tumbaga, 1(6), 153-164spa
dc.relation.referencesBustos Rodriguez, H., Oyola Lozano, D., Rojas Martínez, Y. A., Pérez Alcázar, G. A., Flege, S., Balogh, A. G., Cabri, L. J., & Tubrett, M. (2008). Mineralogical analysis of auriferous ores from the El Diamante mine, Colombia. Hyperfine Interactions, 175(1–3). https://doi.org/10.1007/s10751-008-9603-2spa
dc.relation.referencesCao, W., Kaus, B. J. P., & Paterson, S. (2016). Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike‐diapir interactions: Numerical simulations. Tectonics, 35(6), 1575–1594. https://doi.org/10.1002/2015tc004076spa
dc.relation.referencesCardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo–Trujillo, A., Schmitt, A.K., Mejía, D. & Arenas, J.C. (2020). Cretaceous record from a Mariana– to an Andean–type margin in the Central Cordillera of the Colombian Andes. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 335–373. https://doi.org/10.32685/pub.esp.36.2019.10spa
dc.relation.referencesCardona, A., León, S., Jaramillo, J. S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., & Echeverri, S. (2018). The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics, 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032spa
dc.relation.referencesCastro, Antonio. (2014). The off-crust origin of granite batholiths. Geoscience Frontiers, 5(1), 63–75. https://doi.org/10.1016/j.gsf.2013.06.006spa
dc.relation.referencesCastro, A., Gerya, T., Garcia-Casco, A., Fernandez, C., Diaz-Alvarado, J., Moreno-Ventas, I., & Low, I. (2010). Melting relations of MORB-sediment melanges in underplated mantle wedge plumes; Implications for the origin of cordilleran-type batholiths. Journal of Petrology, 51(6), 1267–1295. https://doi.org/10.1093/petrology/egq019spa
dc.relation.referencesCastro, A., Rodriguez, C., Fernández, C., Aragón, E., Pereira, M. F., & Molina, J. F. (2021). Secular variations of magma source compositions in the North Patagonian batholith from the Jurassic to Tertiary: Was mélange melting involved? Geosphere, 17(3), 766–785. https://doi.org/10.1130/ges02338.1spa
dc.relation.referencesChang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U‐Pb dating of zircon by LA‐ICP‐MS. Geochemistry, Geophysics, Geosystems: G(3), 7(5). https://doi.org/10.1029/2005gc001100spa
dc.relation.referencesChappell, Bruce W., & Wyborn, D. (2004). Cumulate and cumulative granites and associated rocks. Resource Geology, 54(3), 227–240. https://doi.org/10.1111/j.1751-3928.2004.tb00204.xspa
dc.relation.referencesChauvel, C., Marini, J. C., Plank, T., & Ludden, J. N. (2009). Hf‐Nd input flux in the Izu‐Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 10(1).spa
dc.relation.referencesChayes, F. (1956). Petrographic modal analysis. John Wiley and Sons, New York.spa
dc.relation.referencesClaiborne, L. L., Miller, C. F., & Wooden, J. L. (2010). Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160(4), 511–531. https://doi.org/10.1007/s00410-010-0491-5spa
dc.relation.referencesClass, C., Miller, D. M., Goldstein, S. L., & Langmuir, C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems: G(3), 1(6). https://doi.org/10.1029/1999gc000010spa
dc.relation.referencesCochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., & Chiaradia, M. (2014). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191, 383–402. https://doi.org/10.1016/j.lithos.2013.12.020spa
dc.relation.referencesCopley, A., Weller, O., & Bain, H. (2023). Diapirs of crystal-rich slurry explain granite emplacement temperature and duration. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-40805-2spa
dc.relation.referencesDeer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the Rock-forming minerals. Mineralogical Society of Great Britain and Ireland.spa
dc.relation.referencesDefant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/10.1038/347662a0spa
dc.relation.referencesDickin, A. P. (2018). Radiogenic isotope geology. Cambridge university pressspa
dc.relation.referencesDucea, M. N., Saleeby, J. B., & Bergantz, G. (2015). The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43(1), 299–331. https://doi.org/10.1146/annurev-earth-060614-105049spa
dc.relation.referencesDuque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1), 71–84. https://doi.org/10.1016/0895-9811(90)90019-wspa
dc.relation.referencesEcheverri, S., Cardona, A., Pardo, A., Monsalve, G., Valencia, V. A., Borrero, C., ... & López, S. (2015). Regional provenance from southwestern Colombia fore‐arc and intra‐arc basins: implications for Middle to Late Miocene orogeny in the Northern Andes. Terra Nova, 27(5), 356-363.spa
dc.relation.referencesElliott, T., Plank, T., Zindler, A., White, W., & Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7), 14991–15019. https://doi.org/10.1029/97jb00788spa
dc.relation.referencesErdmann, S., Martel, C., Pichavant, M., & Kushnir, A. (2014). Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology, 167(6). https://doi.org/10.1007/s00410-014-1016-4spa
dc.relation.referencesEvans, K. A., & Frost, B. R. (2021). Deserpentinization in subduction zones as a source of oxidation in arcs: A reality check. Journal of Petrology, 62(3). https://doi.org/10.1093/petrology/egab016spa
dc.relation.referencesEvans, K. A. (2012). The redox budget of subduction zones. Earth-Science Reviews, 113(1–2), 11–32. https://doi.org/10.1016/j.earscirev.2012.03.003spa
dc.relation.referencesEvans, K.-A., & Tomkins, A.-G. (2011). The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308(3–4), 401–409. https://doi.org/10.1016/j.epsl.2011.06.009spa
dc.relation.referencesFarina, F., Stevens, G., Gerdes, A., & Frei, D. (2014). Small-scale Hf isotopic variability in the Peninsula pluton (South Africa): the processes that control inheritance of source 176Hf/177Hf diversity in S-type granites. Contributions to Mineralogy and Petrology, 168(4). https://doi.org/10.1007/s00410-014-1065-8spa
dc.relation.referencesFarris, D. W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S. A., Montes, C., Cardona, A., Mora, A., Speakman, R. J., Glascock, M. D., & Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11), 1007–1010. https://doi.org/10.1130/g32237.1spa
dc.relation.referencesFerry, J. M., & Watson, E. B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4), 429–437. https://doi.org/10.1007/s00410-007-0201-0spa
dc.relation.referencesFisher, C. M., Vervoort, J. D., & DuFrane, S. A. (2014). Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochemistry, Geophysics, Geosystems: G(3), 15(1), 121–139. https://doi.org/10.1002/2013gc004962spa
dc.relation.referencesGehrels, G. (2011). Detrital zircon U‐Pb geochronology: Current methods and new opportunities. In Tectonics of Sedimentary Basins (pp. 45–62). Wiley. https://doi.org/10.1002/9781444347166.ch2spa
dc.relation.referencesGehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems: G(3), 9(3), 1–13. https://doi.org/10.1029/2007gc001805spa
dc.relation.referencesGeldmacher, J., Hanan, B. B., Blichert-Toft, J., Harpp, K., Hoernle, K., Hauff, F., Werner, R., & Kerr, A. C. (2003). Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks. Geochemistry, Geophysics, Geosystems: G(3), 4(7). https://doi.org/10.1029/2002gc000477spa
dc.relation.referencesGeorge, S. W. M., Horton, B. K., Vallejo, C., Jackson, L. J., & Gutierrez, E. G. (2021). Did accretion of the Caribbean oceanic plateau drive rapid crustal thickening in the northern Andes? Geology, 49 (8), 936-940. https://doi.org/10.1130/g48509.1spa
dc.relation.referencesGill, R. (2022). Igneous rocks and processes: a practical guide. John Wiley & Sons.spa
dc.relation.referencesGill, J. B. (2012). Orogenic andesites and plate tectonics. Springer Science & Business Media.spa
dc.relation.referencesGómez, J. & Montes, N.E. (2020). Mapa Geológico de Colombia en Relieve 2020. Escala 1:1 000 000. Servicio Geológico Colombiano. Bogotáspa
dc.relation.referencesGonzález, R., Oncken, O., Faccenna, C., Le Breton, E., Bezada, M., & Mora, A. (2023). Kinematics and convergent tectonics of the northwestern south American plate during the Cenozoic. Geochemistry, Geophysics, Geosystems: G(3), 24(7), 1–32. https://doi.org/10.1029/2022gc010827spa
dc.relation.referencesGonzález, H. (2002). Catálogo de las unidades litoestratigráficas de Colombia, Tonalita de Tatamá (N1tt), Cordillera Occidental. Ingeominas, 1-15.spa
dc.relation.referencesGrocke, S. B., Cottrell, E., de Silva, S., & Kelley, K. A. (2016). The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth and Planetary Science Letters, 440, 92–104. https://doi.org/10.1016/j.epsl.2016.01.026spa
dc.relation.referencesGrove, T., Parman, S., Bowring, S., Price, R., and Baker, M., 2002, The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California: Contributions to Mineralogy and Petrology, 142, (4), p. 375–396, https://doi.org/10.1007/s004100100299.spa
dc.relation.referencesGuo, M., & Korenaga, J. (2023). The combined Hf and Nd isotope evolution of the depleted mantle requires Hadean continental formation. Science Advances, 9(12). https://doi.org/10.1126/sciadv.ade2711spa
dc.relation.referencesHacker, B. R. (2008). H2O subduction beyond arcs. Geochemistry, Geophysics, Geosystems: G(3), 9(3). https://doi.org/10.1029/2007gc001707spa
dc.relation.referencesHao, L.-L., Wang, Q., Kerr, A. C., Huang, F., Xiao, M., Ma, X.-L., Zhang, W.-F., Wang, W.-Y., & Liu, M.-R. (2024). Andesitic arc magmas derived from two contrasting mélange origins: Evidence from central Tibetan dioritic porphyries. Chemical Geology, 121920, 121920. https://doi.org/10.1016/j.chemgeo.2023.121920spa
dc.relation.referencesHarrison, T. M., & Watson, E. B. (1984). The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4spa
dc.relation.referencesHawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., & Welch, M. D. (2012). Nomenclature of the amphibole supergroup. The American Mineralogist, 97(11–12), 2031–2048. https://doi.org/10.2138/am.2012.4276spa
dc.relation.referencesHayden, L. A., & Watson, E. B. (2007). Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258(3–4), 561–568. https://doi.org/10.1016/j.epsl.2007.04.020spa
dc.relation.referencesHildreth, W., & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to mineralogy and petrology, 98, 455-489.spa
dc.relation.referencesHincapié-Gómez, S., Cardona, A., Jiménez, G., Monsalve, G., Ramírez-Hoyos, L., & Bayona, G. (2018). Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the Western Colombian Andes: paleogeographic connections with the Caribbean Plate. Studia Geophysica et Geodaetica, 62(3), 485–511. https://doi.org/10.1007/s11200-016-0678-yspa
dc.relation.referencesHolland, T., & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4), 433–447. https://doi.org/10.1007/bf00310910spa
dc.relation.referencesHoskin, P. W. O. (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1), 27–62. https://doi.org/10.2113/0530027spa
dc.relation.referencesHumphreys, M. C. S., Brooker, R. A., Fraser, D. G., Burgisser, A., Mangan, M. T., & McCammon, C. (2015). Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes. Journal of Petrology, 56(4), 795–814. https://doi.org/10.1093/petrology/egv017spa
dc.relation.referencesIizuka, T., Yamaguchi, T., Itano, K., Hibiya, Y., & Suzuki, K. (2017). What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 274–275, 304–327. https://doi.org/10.1016/j.lithos.2017.01.006spa
dc.relation.referencesIshihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining geology, 27(145), 293-305.spa
dc.relation.referencesJaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330–331, 194–210. https://doi.org/10.1016/j.lithos.2019.02.017spa
dc.relation.referencesJaramillo, Juan S., Zapata, S., Carvalho, M., Cardona, A., Jaramillo, C., Crowley, J. L., Bayona, G., & Caballero-Rodriguez, D. (2022). Diverse magmatic evolutionary trends of the Northern Andes unraveled by Paleocene to early Eocene detrital zircon geochemistry. Geochemistry, Geophysics, Geosystems, 23(9). https://doi.org/10.1029/2021gc010113spa
dc.relation.referencesJanousek, V., Farrow, C., Erban, V., & Moyen, J. F. (2022). Geochemical Data Toolkit for Windows. Available on http://www. gla. ac. uk/gcdkit, 188.spa
dc.relation.referencesJohannes, W., & Holtz, F. (1996). Petrogenesis and experimental petrology of granitic rocks. Springer Berlin Heidelberg.spa
dc.relation.referencesKay, S. M., Mpodozis, C., Ramos, V. A., & Munizaga, F. (1991). Magma source variations for mid–late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S). In Andean Magmatism and Its Tectonic Setting (pp. 113–138). Geological Society of America. https://doi.org/10.1130/spe265-p113spa
dc.relation.referencesKelemen, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L., & Hacker, B. R. (2003). Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In Inside the Subduction Factory. American Geophysical Union. 293–311spa
dc.relation.referencesKemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J. M., Gray, C. M., & Whitehouse, M. J. (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science (New York, N.Y.), 315(5814), 980–983. https://doi.org/10.1126/science.1136154spa
dc.relation.referencesKerr, A. C., Marriner, G. F., Tarney, J., Nivia, A., Saunders, A. D., Thirlwall, M. F., & Sinton, C. W. (1997). Cretaceous basaltic terranes in Western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6), 677–702. https:// doi.org/10.1093/petroj/38.6.677spa
dc.relation.referencesKessel, R., Schmidt, M. W., Ulmer, P., & Pettke, T. (2005). Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437(7059), 724–727. https://doi.org/10.1038/nature03971spa
dc.relation.referencesKirkland, C. L., Smithies, R. H., Taylor, R. J. M., Evans, N., & McDonald, B. (2015). Zircon Th/U ratios in magmatic environs. Lithos, 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021spa
dc.relation.referencesKlein, E. M., & Langmuir, C. H. (1987). Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 92(B8), 8089–8115. https://doi.org/10.1029/jb092ib08p08089spa
dc.relation.referencesLangmuir, C. H., Klein, E. M., & Plank, T. (1992). Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Mantle flow and melt generation at mid-ocean ridges. 71, 183-280spa
dc.relation.referencesLeal-Mejía, H., Shaw, R. P., & Melgarejo i Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. In Geology and Tectonics of Northwestern South America (pp. 253–410). Springer International Publishing. https://doi.org/10.1007/978-3-319-76132-9_5spa
dc.relation.referencesLe Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (Eds.). (2005). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press.spa
dc.relation.referencesLeón, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., & Pardo-Trujillo, A. (2018). Transition from collisional to subduction‐related regimes: An example from Neogene panama‐Nazca‐South America interactions. Tectonics, 37(1), 119–139. https://doi.org/10.1002/2017tc004785spa
dc.relation.referencesLiao, Y., Wei, C., & Rehman, H. U. (2021). Titanium in calcium amphibole: Behavior and thermometry. American Mineralogist, 106(2), 180–191. https://doi.org/10.2138/am-2020-7409spa
dc.relation.referencesLitvak, V. D., Fernández Paz, L., Iannelli, S., Poma, S., & Folguera, A. (2019). Cenozoic arc-related magmatism in the southern Central and North Patagonian Andes. In Andean Tectonics (pp. 573–607). Elsevierspa
dc.relation.referencesLocock, A. J. (2014). An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62, 1–11. https://doi.org/10.1016/j.cageo.2013.09.011spa
dc.relation.referencesLonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404(3–4), 237–264. https://doi.org/10.1016/j.tecto.2005.05.011spa
dc.relation.referencesLoucks, R. R., Fiorentini, M. L., & Henríquez, G. J. (2020). New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, 61(3), 1–29. https://doi.org/10.1093/petrology/egaa034spa
dc.relation.referencesMacpherson, C. G., Dreher, S. T., & Thirlwall, M. F. (2006). Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3–4), 581–593. https://doi.org/10.1016/j.epsl.2005.12.034spa
dc.relation.referencesManduca, C. A., Silver, L. T., & Taylor, H. P. (1992). 87Sr/86Sr and 18O/16O isotopic systematics and geochemistry of granitoid plutons across a steeply-dipping boundary between contrasting lithospheric blocks in western Idaho. Contributions to Mineralogy and Petrology, 109(3), 355–372. https://doi.org/10.1007/bf00283324spa
dc.relation.referencesManning, C. E. (1996). Effect of sediments on aqueous silica transport in subduction zones. Washington DC American Geophysical Union Geophysical Monograph Series, 96, 277-284.spa
dc.relation.referencesMather, B.R., Müller, R.D., Zahirovic, S., Cannon, J., Chin, M., Ilano, L. et al. (2024) Deep time spatio-temporal data analysis using pyGPlates with PlateTectonicTools and GPlately. Geoscience Data Journal, 11, 3–10. Available from: https://doi.org/10.1002/gdj3.185spa
dc.relation.referencesMcCourt, W., Muñoz, U., Villegas, V., (1990). Regional Geology and Gold Potential of the Guapi–Napi Drainage Basin and Upper Timbiqui River. British Geological Survey, Overseas Geology Series. Technical Report WC/90/34Cauca Department, SW Colombia.spa
dc.relation.referencesMcDonough, W. F., & Sun, S.-S. (1995). The composition of the earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4spa
dc.relation.referencesMcGirr, R., Seton, M., & Williams, S. (2021). Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. Geological Society of America Bulletin, 133(3–4), 867–884. https://doi.org/10.1130/b35595.1spa
dc.relation.referencesMeschede, M., & Barckhausen, U. (2001). The relationship of the Cocos and Carnegie ridges: age constraints from paleogeographic reconstructions. International Journal of Earth Sciences, 90, 386-392.spa
dc.relation.referencesMiddlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9spa
dc.relation.referencesMiller, J. S., Matzel, J. E. P., Miller, C. F., Burgess, S. D., & Miller, R. B. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167(1–4), 282–299. https://doi.org/10.1016/j.jvolgeores.2007.04.019spa
dc.relation.referencesMolano, J. C., & Shimazaki, H. (2003). Mineralogía, geoquímica y algunos aspectos genéticos de la mina El Diamante- Nariño (Colombia). Revista Boletín de Geología, 25(40), 105–116. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/3958spa
dc.relation.referencesMolina, J. F., Moreno, J. A., Castro, A., Rodríguez, C., & Fershtater, G. B. (2015). Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232, 286–305. https://doi.org/10.1016/j.lithos.2015.06.027spa
dc.relation.referencesMontes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., Ayala, C., Pérez-Angel, L. C., Rodriguez-Parra, L. A., Ramirez, V., & Niño, H. (2015). Middle Miocene closure of the Central American Seaway. Science (New York, N.Y.), 348(6231), 226–229. https://doi.org/10.1126/science.aaa2815spa
dc.relation.referencesMontes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198(102903), 102903. https://doi.org/10.1016/j.earscirev.2019.102903spa
dc.relation.referencesMora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M. S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.-R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., & Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002spa
dc.relation.referencesMoyen, J.-F., Janoušek, V., Laurent, O., Bachmann, O., Jacob, J.-B., Farina, F., Fiannacca, P., & Villaros, A. (2021). Crustal melting vs. fractionation of basaltic magmas: Part 1, granites and paradigms. Lithos, 402–403(106291), 106291. https://doi.org/10.1016/j.lithos.2021.106291spa
dc.relation.referencesMüller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., et al. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018tc005462spa
dc.relation.referencesMüntener, O., Ewing, T., Baumgartner, L. P., Manzini, M., Roux, T., Pellaud, P., & Allemann, L. (2018). Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks. Contributions to Mineralogy and Petrology, 173(5). https://doi.org/10.1007/s00410-018-1467-0spa
dc.relation.referencesMutch, E. J. F., Blundy, J. D., Tattitch, B. C., Cooper, F. J., & Brooker, R. A. (2016). An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171(85), 1–27. https://doi.org/10.1007/s00410-016-1298-9spa
dc.relation.referencesNachit, H., Ibhi, A., Abia, E. H., & Ben Ohoud, M. (2005). Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus: Geoscience, 337(16), 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002spa
dc.relation.referencesNavarrete, C., Gianni, G., Tassara, S., Zaffarana, C., Likerman, J., Márquez, M., Wostbrock, J., Planavsky, N., Tardani, D., & Perez Frasette, M. (2024). Massive Jurassic slab break-off revealed by a multidisciplinary reappraisal of the Chon Aike silicic large igneous province. Earth-Science Reviews, 249(104651), 104651. https://doi.org/10.1016/j.earscirev.2023.104651spa
dc.relation.referencesNebel, O., Vroon, P. Z., van Westrenen, W., Iizuka, T., & Davies, G. R. (2011). The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia. Earth and Planetary Science Letters, 303(3–4), 240–250. https://doi.org/10.1016/j.epsl.2010.12.053spa
dc.relation.referencesNivia, A. (2001). Mapa geológico del departamento del Valle del Cauca, Memoria explicativa. Ingeominas, 1-148.spa
dc.relation.referencesNielsen, S. G., & Marschall, H. R. (2017). Geochemical evidence for mélange melting in global arcs. Science Advances, 3(4). https://doi.org/10.1126/sciadv.1602402spa
dc.relation.referencesNoda, A. (2016). Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Geological Society of America Bulletin, 128(5–6), 879–895. https://doi.org/10.1130/b31345.1spa
dc.relation.referencesNowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J., & Taylor, R. N. (1998). High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology, 149(3–4), 211–233. https://doi.org/10.1016/s0009-2541(98)00036-9spa
dc.relation.referencesOlierook, H. K. H., Kirkland, C. L., Szilas, K., Hollis, J. A., Gardiner, N. J., Steenfelt, A., Jiang, Q., Yakymchuk, C., Evans, N. J., & McDonald, B. J. (2020). Differentiating between inherited and autocrystic zircon in granitoids. Journal of Petrology, 61(8), 1–26. https://doi.org/10.1093/petrology/egaa081spa
dc.relation.referencesPardo-Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time. Tectonics, 6(3), 233–248. https://doi.org/10.1029/tc006i003p00233spa
dc.relation.referencesPasschier, C. W., & Trouw, R. A. (2005). Microtectonics. Springer Science & Business Media.spa
dc.relation.referencesPaterson, S. R., Okaya, D., Memeti, V., Economos, R., & Miller, R. B. (2011). Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: Combined field, geochronologic, and thermal modeling studies. Geosphere, 7(6), 1439–1468. https://doi.org/10.1130/ges00696.1spa
dc.relation.referencesPeacock, S. M., & Wang, K. (1999). Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science (New York, N.Y.), 286(5441), 937–939. https://doi.org/10.1126/science.286.5441.937spa
dc.relation.referencesPeacock, S. M. (2003). Thermal structure and metamorphic evolution of subducting slabs. Geophysical Monograph-American Geophysical Union, 138, 7-22.spa
dc.relation.referencesPearce, J. A., Stern, R. J., Bloomer, S. H., & Fryer, P. (2005). Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components. Geochemistry, geophysics, geosystems, 6(7).spa
dc.relation.referencesPearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983. https://doi.org/10.1093/petrology/25.4.956spa
dc.relation.referencesPeccerillo, A., & Taylor, S. R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81. https://doi.org/10.1007/bf00384745spa
dc.relation.referencesPitcher, W. S. (1997). The nature and origin of granite. Springer Science & Business Mediaspa
dc.relation.referencesPlank, T. (2014). The chemical composition of subducting sediments. In Treatise on Geochemistry. Elseiver, 607–629spa
dc.relation.referencesPlank, Terry, & Langmuir, C. H. (1988). An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 90(4), 349–370. https://doi.org/10.1016/0012-821x(88)90135-5spa
dc.relation.referencesProfeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1), 1–7. https://doi.org/10.1038/srep17786spa
dc.relation.referencesPutirka, K. (2016). Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. The American Mineralogist, 101(4), 841–858. https://doi.org/10.2138/am-2016-5506spa
dc.relation.referencesPutirka, K., Johnson, M., Kinzler, R., Longhi, J., & Walker, D. (1996). Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology, 123(1), 92–108. https://doi.org/10.1007/s004100050145spa
dc.relation.referencesRanero, C. R., Phipps Morgan, J., McIntosh, K., & Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956), 367–373. https://doi.org/10.1038/nature01961spa
dc.relation.referencesReiners, P. W., Carlson, R. W., Renne, P. R., Cooper, K. M., Granger, D. E., McLean, N. M., & Schoene, B. (2018). Geochronology and thermochronology. John Wiley & Sons.spa
dc.relation.referencesRestrepo, M., Bustamante, C., Cardona, A., Beltrán-Triviño, A., Bustamante, A., Chavarría, L., & Valencia, V. A. (2021). Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes. Journal of South American Earth Sciences, 111, 103439. https://doi.org/10.1016/j.jsames.2021.103439spa
dc.relation.referencesRidolfi, F. (2021). Amp-TB2: An updated model for calcic amphibole thermobarometry. Minerals (Basel, Switzerland), 11(3), 324. https://doi.org/10.3390/min11030324spa
dc.relation.referencesRidolfi, F., Renzulli, A., & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1), 45–66. https://doi.org/10.1007/s00410-009-0465-7spa
dc.relation.referencesRodríguez, G., & Zapata, G. (2006). Los conglomerados de tatamá, una nueva unidad paleógena de la zona central de la cordillera occidental de colombia. Boletín de Ciencias de la Tierra, (19), 43-55.spa
dc.relation.referencesRodríguez, G., Correa–Martínez, A.M., Zapata–Villada, J.P. & Obando–Erazo, G. (2019). Fragments of a Permian arc on the western margin of the Neoproterozoic basement of Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales. 205–239. https://doi.org/10.32685/pub.esp.35.2019.10spa
dc.relation.referencesRudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In Treatise on Geochemistry. Elsevier, 1-64spa
dc.relation.referencesRuprecht, P., Bergantz, G. W., Cooper, K. M., & Hildreth, W. (2012). The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. Journal of Petrology, 53(4), 801-840.spa
dc.relation.referencesRollinson, H., & Pease, V. (2021). Using Geochemical Data: To understand geological processes. Cambridge University Press.spa
dc.relation.referencesScarrow, J. H., Schmitt, A. K., Barclay, J., Horstwood, M. S. A., Bloore, A. J., & Christopher, T. E. (2021). Zircon as a tracer of plumbing processes in an active magmatic system: insights from mingled magmas of the 2010 dome collapse, Montserrat, Lesser Antilles Arc, Caribbean. Journal of Volcanology and Geothermal Research, 420(107390), 107390. https://doi.org/10.1016/j.jvolgeores.2021.107390spa
dc.relation.referencesSchaltegger, U., Schmitt, A. K., & Horstwood, M. S. A. (2015). U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology, 402, 89–110. https://doi.org/10.1016/j.chemgeo.2015.02.028spa
dc.relation.referencesSchiller, D., & Finger, F. (2019). Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions. Contributions to Mineralogy and Petrology, 174(6), 1–16. https://doi.org/10.1007/s00410-019-1585-3spa
dc.relation.referencesSchoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., & Bowring, S. A. (2006). Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochimica et Cosmochimica Acta, 70(2), 426–445. https://doi.org/10.1016/j.gca.2005.09.007spa
dc.relation.referencesSisson, T. W., & Grove, T. L. (1993). Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113(2), 143–166. https://doi.org/10.1007/bf00283225spa
dc.relation.referencesShand, S.J. (1943) Eruptive Rocks. 2nd Edition, John Wiley, New York.spa
dc.relation.referencesSisson, T. W., Ratajeski, K., Hankins, W. B., & Glazner, A. F. (2005). Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148(6), 635–661. https://doi.org/10.1007/s00410-004-0632-9spa
dc.relation.referencesSláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005spa
dc.relation.referencesSomoza, R., & Ghidella, M. E. (2005). Convergencia en el margen occidental de América del Sur durante el Cenozoico: subducción de las placas de Nazca, Farallón y Aluk. Revista de la Asociación Geológica Argentina, 60(4), 797-809.spa
dc.relation.referencesSpikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75Ma). Gondwana Research: International Geoscience Journal, 27(1), 95–139. https://doi.org/10.1016/j.gr.2014.06.004spa
dc.relation.referencesStern, C. R. (2020). The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Research: International Geoscience Journal, 88, 220–249. https://doi.org/10.1016/j.gr.2020.08.006spa
dc.relation.referencesStern, C. R. (2011). Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Research: International Geoscience Journal, 20(2–3), 284–308. https://doi.org/10.1016/j.gr.2011.03.006spa
dc.relation.referencesStern, R. J. (2002). Subduction zones. Reviews of Geophysics (Washington, D.C.: 1985), 40(4). https://doi.org/10.1029/2001rg000108spa
dc.relation.referencesStreckeisen, A. (1974). Classification and nomenclature of plutonic rocks recommendations of the IUGS subcommission on the systematics of Igneous Rocks. Geologische Rundschau: Zeitschrift Für Allgemeine Geologie, 63(2), 773–786. https://doi.org/10.1007/bf01820841spa
dc.relation.referencesSun, P., Wang, Q., Hao, L.-L., Dan, W., Ou, Q., Jiang, Z.-Q., & Tang, G.-J. (2021). A mélange contribution to arc magmas recorded by Nd–Hf isotopic decoupling: An example from the southern Qiangtang Block, central Tibet. Journal of Asian Earth Sciences, 221(104931), 104931. https://doi.org/10.1016/j.jseaes.2021.104931spa
dc.relation.referencesTang, M., Ji, W.-Q., Chu, X., Wu, A., & Chen, C. (2020). Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1), 76–80. https://doi.org/10.1130/g47745.1spa
dc.relation.referencesTischendorf, G., Rieder, M., Förster, H.-J., Gottesmann, B., & Guidotti, C. V. (2004). A new graphical presentation and subdivision of potassium micas. Mineralogical Magazine, 68(4), 649–667. https://doi.org/10.1180/0026461046840210spa
dc.relation.referencesTistl, M., Burgath, K. P., Höhndorf, A., Kreuzer, H., Muñoz, R., & Salinas, R. (1994). Origin and emplacement of Tertiary ultramafic complexes in northwest Colombia: Evidence from geochemistry and K-Ar, Sm-Nd and Rb-Sr isotopes. Earth and Planetary Science Letters, 126(1–3), 41–59. https://doi.org/10.1016/0012-821x(94)90241-0spa
dc.relation.referencesToro Toro, L. M., Borrero-Peña, C. A., & Ayala Carmona, L. F. (2010). Petrografía y geoquímica de las rocas ancestrales del volcán Nevado del Ruiz. Boletín de Geología, 32(1), 95-105.spa
dc.relation.referencesTrenkamp, R., Kellogg, J. N., Freymueller, J. T., & Mora, H. P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2), 157–171. https://doi.org/10.1016/s0895-9811(02)00018-4spa
dc.relation.referencesTurekian, K. K., & Holland, H. D. (2013). Treatise on geochemistry. Newnes.spa
dc.relation.referencesTurner, S. J., & Langmuir, C. H. (2022). Sediment and ocean crust both melt at subduction zones. Earth and Planetary Science Letters, 584(117424), 117424. https://doi.org/10.1016/j.epsl.2022.117424spa
dc.relation.referencesUlmer, P., & Trommsdorff, V. (1995). Serpentine stability to mantle depths and subduction-related magmatism. Science (New York), 268(5212), 858–861. https://doi.org/10.1126/science.268.5212.858spa
dc.relation.referencesVerdugo, G. & Aspdend, J. A. (1984). Reseña explicativa del mapa geológico preliminar, Plancha 299, Jamundí - Escala 1:100.000. Ingeominas, 1-20.spa
dc.relation.referencesVermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9 (5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001spa
dc.relation.referencesVernon, R. H. (2018). A practical guide to rock microstructure. Cambridge university press.spa
dc.relation.referencesVervoort, J. D., Plank, T., & Prytulak, J. (2011). The Hf–Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta, 75(20), 5903–5926. https://doi.org/10.1016/j.gca.2011.07.046spa
dc.relation.referencesVillagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos, (160–161), 228–249. https://doi.org/10.1016/j.lithos.2012.12.008spa
dc.relation.referencesVinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/j.jsames.2006.07.007spa
dc.relation.referencesWagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., & Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616–6623. https://doi.org/10.1002/2017gl073981spa
dc.relation.referencesWang, X., Hou, T., Wang, M., Zhang, C., Zhang, Z., Pan, R., Marxer, F., & Zhang, H. (2021a). A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European Journal of Mineralogy, 33(5), 621–637. https://doi.org/10.5194/ejm-33-621-2021spa
dc.relation.referencesWang, Z., Zheng, X., Meng, G., Tang, H., & Fang, T. (2021b). Petrology, geochemical characteristics, tectonic setting, and implications for chromite and PGE mineralization of the Hongshishan Alaskan-type complex in the Beishan orogenic collage, north west China. Frontiers in earth science, 9. https://doi.org/10.3389/feart.2021.663760spa
dc.relation.referencesWegner, W., Worner, G., Harmon, R. S., & Jicha, B. R. (2011). Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geological Society of America Bulletin, 123(3–4), 703–724. https://doi.org/10.1130/b30109.1spa
dc.relation.referencesWeber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., & Valencia, V. A. (2015). Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia – Evidence of subduction initiation beneath the Colombian Caribbean Plateau. Journal of South American Earth Sciences, 62, 257–274. https://doi.org/10.1016/j.jsames.2015.04.002spa
dc.relation.referencesWeinberg, R. F., Vernon, R. H., & Schmeling, H. (2021). Processes in mushes and their role in the differentiation of granitic rocks. Earth-Science Reviews, 220(103665), 103665. https://doi.org/10.1016/j.earscirev.2021.103665spa
dc.relation.referencesWhalen, J. B., & Hildebrand, R. S. (2019). Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos, 348–349(105179), 1-19. https://doi.org/10.1016/j.lithos.2019.105179spa
dc.relation.referencesWhattam, S. A., & Stern, R. J. (2016). Arc magmatic evolution and the construction of continental crust at the Central American Volcanic Arc system. International Geology Review, 58(6), 653–686. https://doi.org/10.1080/00206814.2015.1103668spa
dc.relation.referencesWhite, W. M., & Klein, E. M. (2014). Composition of the oceanic crust. In Treatise on Geochemistry (pp. 457–496). Elsevierspa
dc.relation.referencesWhitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. The American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371spa
dc.relation.referencesWieser, P. E., Kent, A. J. R., Till, C. B., Donovan, J., Neave, D. A., Blatter, D. L., & Krawczynski, M. J. (2023). Barometers behaving badly I: Assessing the influence of analytical and experimental uncertainty on clinopyroxene thermobarometry calculations at crustal conditions. Journal of Petrology, 64(2). https://doi.org/10.1093/petrology/egac126spa
dc.relation.referencesWilliams, I.S., 1998. U-Th-Pb geocronology by ion microprobe. In: McKibben, M.A., Shanks III, W.C., Ridley, W.I. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology. (7), 1–3spa
dc.relation.referencesZapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., & Castañeda, J. P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research: International Geoscience Journal, 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008spa
dc.relation.referencesZapata, G. (2001). Geología y geoquímica de la plancha 204 Pueblo Rico, Memoria explicativa. Ingeominas, 1-68.spa
dc.relation.referencesZhang, Y., Gazel, E., Gaetani, G. A., & Klein, F. (2021). Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48). https://doi.org/10.1126/sciadv.abj2515spa
dc.relation.referencesZheng, Y.-F. (2019). Subduction zone geochemistry. Geoscience Frontiers, 10(4), 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003spa
dc.relation.referencesZheng, Y.-F., Xia, Q.-X., Chen, R.-X., & Gao, X.-Y. (2011). Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews, 107(3–4), 342–374. https://doi.org/10.1016/j.earscirev.2011.04.004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::552 - Petrologíaspa
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.lembPetrogénesis - Colombia
dc.subject.lembEstatigrafía - Mioceno - Colombia
dc.subject.lembMagmatismo - América
dc.subject.lembGeoquímica - Colombia
dc.subject.proposalLower Miocene magmatismeng
dc.subject.proposalNeogene subductioneng
dc.subject.proposalgeochemistryeng
dc.subject.proposalZircon Hf isotopyeng
dc.subject.proposalmineral chemistryeng
dc.subject.proposalMagmatismo Mioceno Inferiorspa
dc.subject.proposalSubducción Neógenaspa
dc.subject.proposalGeoquímicaspa
dc.subject.proposalIsotopía Lu-Hf en circónspa
dc.subject.proposalQuímica mineralspa
dc.titlePetrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organizationeng
dc.title.translatedPetrogénesis del plutonismo Mioceno Inferior expuesto en la Cordillera Occidental de Colombia, y su relación con la reorganización de la subducción Neógenaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameGrupo de Estudios en Geología y Geofísicaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017255225.2024.pdf
Tamaño:
6.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Minerales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: