Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model

dc.contributor.advisorGodoy Silva, Rubén Daríospa
dc.contributor.advisorGutierrez Triana, José Arturospa
dc.contributor.authorMoreno Cristancho, Camilo Ernestospa
dc.contributor.orcidhttps://orcid.org/0000-0002-0402-0530spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2024-06-07T21:22:53Z
dc.date.available2024-06-07T21:22:53Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa Leucemia Linfoblástica Aguda (LLA) es una neoplasia hematológica que se caracteriza por la proliferación desordenada de células progenitoras de linaje linfoide B o T, siendo comúnmente diagnosticada en la población pediátrica y mostrando agresividad en adultos. A pesar de que Colombia ocupa el tercer lugar mundial en incidencia de LLA, la información sobre perfiles genéticos específicos en su población es insuficiente. En estudios recientes con pacientes adultos colombianos con LLA-B, tanto respondedores como no respondedores al tratamiento quimioterapéutico de inducción, se identificó un perfil con elevada expresión simultánea de los genes IGJ (Immunoglobulin J polypeptide), ID3 (DNA-binding protein inhibitor 3) e ID1 (DNA-binding protein inhibitor 1). Sin embargo, La relevancia funcional de esta firma génica de mal pronóstico en LLA-B, especialmente la del gen IGJ, es desconocida al carecer de información asociada con la quimiorresistencia. En este trabajo, establecimos un modelo celular de LLA-B con la sobreexpresión del gen de mal pronóstico IGJ utilizando la activación transcripcional mediada por CRISPR (IGJ_CRISPRa) para evaluar posibles alteraciones en la actividad metabólica y la resistencia a agentes quimioterapéuticos comúnmente utilizados en el tratamiento de la LLA. El análisis de RT-qPCR de las células IGJ_CRISPRa demostró un aumento sustancial en la expresión del gen endógeno IGJ a las 96, 120 y 144 horas después de la nucleofección, junto con alteraciones menores en la expresión génica de ID3 e ID1. Además, la evaluación de la actividad metabólica y la quimiorresistencia en las células IGJ_CRISPRa reveló un aumento en la actividad metabólica y la resistencia a dexametasona, metotrexato, doxorrubicina, y un aumento moderado en la resistencia a citarabina. Esto sugiere una posible asociación entre el gen IGJ y los mecanismos epigenéticos que alteran la expresión génica y las vías metabólicas. (Texto tomado de la fuente).spa
dc.description.abstractAcute Lymphoblastic Leukemia (ALL) is a hematologic neoplasm characterized by the disordered proliferation of progenitor cells of B or T lymphoid lineage, commonly diagnosed in the pediatric population, and exhibiting aggressiveness in adults. Despite Colombia ranking third globally in ALL incidences, specific genetic profiles in its population are insufficiently documented. Recent studies with Colombian adult patients diagnosed with B-cell ALL identified a profile with simultaneous overexpression of genes IGJ (Immunoglobulin J polypeptide), ID3 (DNA-binding protein inhibitor 3), and ID1 (DNA-binding protein inhibitor 1). However, the functional relevance of this adverse genetic signature in B-cell ALL, especially regarding the IGJ gene, remains unknown due to a lack of information associated with chemoresistance. In this study, we established a B-cell ALL cellular model with overexpression of the poor prognostic gene IGJ using CRISPR-mediated transcriptional activation (IGJ_CRISPRa) to assess potential alterations in metabolic activity and resistance to chemotherapeutic agents commonly used in ALL treatment. RT-qPCR analysis of IGJ_CRISPRa cells demonstrated a substantial increase in the expression of the IGJ endogenous gene at 96, 120, and 144 hours after nucleofection, along with minor alterations in the gene expression of ID3 and ID1. In addition, the evaluation of metabolic activity and chemoresistance in IGJ_CRISPRa cells revealed an increase in metabolic activity and resistance to dexamethasone, methotrexate, doxorubicin, and a moderate increase in resistance to cytarabine. This suggests a potential association between the IGJ gene and epigenetic mechanisms that alter gene expression and metabolic pathways.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.notesTexto en inglésspa
dc.description.researchareaBiotecnologíaspa
dc.format.extentxviii, 83 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86219
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedBiremespa
dc.relation.referencesM. J. Gacha Garay, V. Akle, L. Enciso, and Z. V. Garavito Aguilar, “La leucemia linfoblástica aguda y modelos animales alternativos para su estudio en Colombia,” Revista Colombiana de Cancerología, vol. 21, no. 4, pp. 212–224, Oct. 2017, doi: 10.1016/j.rccan.2016.10.001.spa
dc.relation.referencesA. Miranda-Filho, M. Piñeros, J. Ferlay, I. Soerjomataram, A. Monnereau, and F. Bray, “Epidemiological patterns of leukaemia in 184 countries: a population-based study,” Lancet Haematol, vol. 5, no. 1, pp. e14–e24, Jan. 2018, doi: 10.1016/S2352-3026(17)30232-6.spa
dc.relation.referencesN. Cruz-Rodriguez et al., “High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-Acute lymphoblastic leukemia,” Journal of Experimental and Clinical Cancer Research, vol. 35, no. 1, 2016, doi: 10.1186/s13046-016-0333-zspa
dc.relation.referencesInstituto Nacional del Cáncer, “Estadísticas del cáncer,” Instituto Nacional del Cáncer. Accessed: Nov. 03, 2022. [Online]. Available: https://www.cancer.gov/espanol/cancer/naturaleza/estadisticasspa
dc.relation.referencesOrganización Mundial de la Salud, “Cáncer,” Organización Mundial de la Salud. Accessed: Nov. 03, 2022. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/cancerspa
dc.relation.referencesInternational Agency for Research on Cancer, “Leukaemia Globocan 2020,” 2020. Accessed: Nov. 03, 2022. [Online]. Available: https://gco.iarc.fr/today/data/factsheets/cancers/36-Leukaemia-fact-sheet.pdfspa
dc.relation.referencesU. Bacher, A. Kohlmann, and T. Haferlach, “Gene expression profiling for diagnosis and therapy in acute leukaemia and other haematologic malignancies,” Cancer Treatment Reviews, vol. 36, no. 8. pp. 637–646, Dec. 2010. doi: 10.1016/j.ctrv.2010.05.002.spa
dc.relation.referencesC. Allemani et al., “Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2),” The Lancet, vol. 385, no. 9972, pp. 977–1010, Mar. 2015, doi: 10.1016/S0140-6736(14)62038-9.spa
dc.relation.referencesC. A. Gómez-Mercado, A. M. Segura-Cardona, D. E. Pájaro-Cantillo, and M. Mesa-Largo, “Incidencia y determinantes demográficos de la leucemia linfoide aguda en pacientes con cáncer pediátrico, Antioquia.,” Univ Salud, vol. 22, no. 2, pp. 112–119, May 2020, doi: 10.22267/rus.202202.182.spa
dc.relation.referencesM. P. Curado, T. Pontes, E. Guerra-Yi, and M. De Camargo Cancela Cancela, “Leukemia mortality trends among children, adolescents, and young adults in Latin America.” Rev Panam Salud Publica, vol. 29, no. 2, pp.96-102, 2011 Feb doi: 10.1590/s1020-49892011000200004.spa
dc.relation.referencesS. Chiaretti, G. Zini, and R. Bassan, “Diagnosis and subclassification of acute lymphoblastic leukemia,” Mediterranean Journal of Hematology and Infectious Diseases, vol. 6, no. 1. Universita Cattolica del Sacro Cuore, 2014. doi: 10.4084/mjhid.2014.073.spa
dc.relation.referencesD. A. Arber et al., “The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia,” Blood, vol. 127, no. 20. American Society of Hematology, pp. 2391–2405, May 19, 2016. doi: 10.1182/blood-2016-03-643544.spa
dc.relation.referencesX. Zhang, P. Rastogi, B. Shah, and L. Zhang, “B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy,” Oncotarget, vol. 8, no. 39, pp. 66728-66741, Jul 15, 2017. doi: 10.18632/oncotarget.19271spa
dc.relation.referencesN. Cruz-Rodriguez et al., “Prognostic stratification improvement by integrating ID1/ID3/IGJ gene expression signature and immunophenotypic profile in adult patients with B-ALL,” Journal of Experimental and Clinical Cancer Research, vol. 36, no. 1, Feb. 2017, doi: 10.1186/s13046-017-0506-4.spa
dc.relation.referencesC. A. O’Brien et al., “ID1 and ID3 Regulate the Self-Renewal Capacity of Human Colon Cancer-Initiating Cells through p21,” Cancer Cell, vol. 21, no. 6, pp. 777–792, Jun. 2012, doi: 10.1016/J.CCR.2012.04.036.spa
dc.relation.referencesP. Sharma, D. Patel, and J. Chaudhary, “Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B,” Cancer Med, vol. 1, no. 2, pp. 187–197, 2012, doi: 10.1002/cam4.19.spa
dc.relation.referencesC. Roschger and C. Cabrele, “The Id-protein family in developmental and cancer-associated pathways,” Cell Communication and Signaling, vol. 15, no. 1, p. 7, 2017, doi: 10.1186/s12964-016-0161-y.spa
dc.relation.referencesC. Larsson et al., “Prognostic implications of the expression levels of different immunoglobulin heavy chain-encoding RNAs in early breast cancer,” NPJ Breast Cancer, vol. 6, no. 1, Dec. 2020, doi: 10.1038/s41523-020-0170-2.spa
dc.relation.referencesJ. Padilla, “Evaluación del efecto de la modulación de la firma génica de mal pronóstico ID1/ID3/IGJ en un modelo celular de LLA-B,” Trabajo de Grado para Optar el Título de Magíster en Microbiología, Universidad Industrial de Santander , Bucaramanga.spa
dc.relation.referencesC. del P. Villalba Toquica, P. A. Martínez Silva, and H. Acero, “Caracterización clínico-epidemiológica de los pacientes pediátricos con leucemias agudas en la Clínica Universitaria Colombia. Serie de casos 2011-2014,” Pediatria (Bucur), vol. 49, no. 1, pp. 17–22, Jan. 2016, doi: 10.1016/j.rcpe.2016.01.002.spa
dc.relation.referencesA. M. Vera, C. Pardo, M. C. Duarte, and A. Suárez, “Análisis de la mortalidad por leucemia aguda pediátrica en el instituto nacional de cancerología,” Biomedica, vol. 32, no. 3, pp. 355–364, Sep. 2012, doi: 10.7705/biomedica.v32i3.691.spa
dc.relation.referencesA. Wojtuszkiewicz et al., “Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia,” J Hematol Oncol, vol. 8, no. 1, May 2015, doi: 10.1186/s13045-015-0158-9.spa
dc.relation.referencesR. Pieters and M. L. Den Boer, “Molecular Pharmacodynamics in,” Int J Hematol, vol. 78:402-413, 2003, doi: https://doi.org/10.1007/BF02983812.spa
dc.relation.referencesS. Paul, H. Kantarjian, and E. J. Jabbour, “Adult Acute Lymphoblastic Leukemia,” Mayo Clinic Proceedings, vol. 91, no. 11. Elsevier Ltd, pp. 1645–1666, Nov. 01, 2016. doi: 10.1016/j.mayocp.2016.09.010.spa
dc.relation.referencesNational Cancer Institute, “Chronic Lymphocytic Leukemia Treatment (PDQ®)–Health Professional Version,” National Cancer Institute.spa
dc.relation.referencesA. Gaviria, L. Correa, C. Davila, G. Burgos, and G. Escobar, “Guía de práctica clínica. Para la detección, tratamiento y seguimiento de leucemias linfoblástica y mieloide en población mayor de 18 años. Gobierno de Colombia.,” Instituto Nacional de Cancerologia-ESE Colombia, vol. 34. 2017.spa
dc.relation.referencesD. Dale, “Recuento elevado de glóbulos blancos (leucocitos),” MANUAL MSD Versión para púplico general. Accessed: Oct. 21, 2022. [Online]. Available: https://www.msdmanuals.com/es-co/hogar/trastornos-de-la-sangre/trastornos-de-los-gl%C3%B3bulos-blancos-leucocitos/trastornos-de-los-bas%C3%B3filosspa
dc.relation.referencesM. Vizcaíno, J. E. Lopera, L. Martínez, I. D. los Reyes, and A. Linares, “Guía de atención integral para la detección oportuna, diagnóstico, tratamiento y seguimiento de leucemia linfoide aguda en niños, niñas y adolescentes,” Revista Colombiana de Cancerología, vol. 20, no. 1, pp. 17–27, Jan. 2016, doi: 10.1016/j.rccan.2015.08.003.spa
dc.relation.referencesA. L. Atienza, “PEDIATRÍA INTEGRAL Leucemias. Leucemia linfoblástica aguda,” Madrid, 2016.spa
dc.relation.referencesC. Ma et al., “Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche,” 2020. doi: doi:10.1126/sciadv.aba5536.spa
dc.relation.referencesAmerican Cancer Society, “Tratamiento de la leucemia linfocítica aguda,” American Cancer Society. Accessed: Nov. 10, 2022. [Online]. Available: https://www.cancer.org/content/dam/CRC/PDF/Public/9057.00.pdfspa
dc.relation.referencesC. O. Ramos-Peñafiel et al., “Factores pronósticos de remisión en pacientes con leucemia linfoblástica aguda posterior a primer recaída,” Revista Colombiana de Cancerología, vol. 20, no. 4, pp. 159–166, Oct. 2016, doi: 10.1016/j.rccan.2016.11.001.spa
dc.relation.referencesP. Kaaijk et al., “Cell proliferation is related to in vitro drug resistance in childhood acute leukaemia,” Br J Cancer, vol. 88, no. 5, pp. 775–781, Mar. 2003, doi: 10.1038/sj.bjc.6600787.spa
dc.relation.referencesD. Campana, “Role of Minimal Residual Disease Monitoring in Adult and Pediatric Acute Lymphoblastic Leukemia,” Hematology/Oncology Clinics of North America, vol. 23, no. 5. pp. 1083–1098, Oct. 2009. doi: 10.1016/j.hoc.2009.07.010.spa
dc.relation.referencesH. Inaba and C. H. Pui, “Glucocorticoid use in acute lymphoblastic leukaemia,” The Lancet Oncology, vol. 11, no. 11. pp. 1096–1106, Nov. 2010. doi: 10.1016/S1470-2045(10)70114-5.spa
dc.relation.referencesR. A. Chougule, K. Shah, S. A. Moharram, J. Vallon-Christersson, and J. U. Kazi, “Glucocorticoid-resistant B cell acute lymphoblastic leukemia displays receptor tyrosine kinase activation,” NPJ Genom Med, vol. 4, no. 1, p. 7, 2019, doi: 10.1038/s41525-019-0082-y.spa
dc.relation.referencesJ. M. Nørgaard, L. H. Olesen, and P. Hokland, “Changing picture of cellular drug resistance in human leukemia,” Critical Reviews in Oncology/Hematology, vol. 50, no. 1. pp. 39–49, Apr. 2004. doi: 10.1016/S1040-8428(03)00173-2.spa
dc.relation.referencesJ. Styczynski et al., “Predictive value of multidrug resistance proteins and cellular drug resistance in childhood relapsed acute lymphoblastic leukemia,” J Cancer Res Clin Oncol, vol. 133, no. 11, pp. 875–893, 2007, doi: 10.1007/s00432-007-0274-1.spa
dc.relation.referencesA. Sociedad Española de Oncología., C. SPARC (Organization), and M. Echenique Elizondo, Oncología., vol. 29, no. 6. Ediciones Cutor, 2006. Accessed: Jan. 03, 2024. [Online]. Available: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0378-48352006000600003&lng=es&nrm=iso&tlng=es.spa
dc.relation.referencesC. Song, M. Reeves, and M. Mcgrath, “IKAROS and CK2 regulate expression of BCL-XL and chemosensitivity inhigh-risk B-cell acute lymphoblastic leukemia,” Blood, 2021, doi: 10.1182/blood.2019002655/1729606/blood.2019002655.pdf.spa
dc.relation.referencesH. Nishida et al., “CD9 correlates with cancer stem cell potentials in human B-acute lymphoblastic leukemia cells,” Biochem Biophys Res Commun, vol. 382, no. 1, pp. 57–62, Apr. 2009, doi: 10.1016/J.BBRC.2009.02.123.spa
dc.relation.referencesM. L. Den Boer et al., “A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study,” Lancet Oncol, vol. 10, no. 2, pp. 125–134, Feb. 2009, doi: 10.1016/S1470-2045(08)70339-5.spa
dc.relation.referencesA. Simons et al., “Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia,” Genes Chromosomes Cancer, vol. 50, no. 12, pp. 969–981, Dec. 2011, doi: 10.1002/gcc.20919.spa
dc.relation.referencesC. Song et al., “Epigenetic regulation of gene expression by Ikaros, HDAC1 and Casein Kinase II in leukemia,” Leukemia, vol. 30, no. 6, pp. 1436–1440, 2016, doi: 10.1038/leu.2015.331.spa
dc.relation.referencesG. M. Charles et al., “JAK mutations in high-risk childhood acute lymphoblastic leukemia,” PNAS, Chicago, Nov. 2009. doi: doi: 10.1073/pnas.0811761106.spa
dc.relation.referencesC. G. Mullighan et al., “ Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia ,” New England Journal of Medicine, vol. 360, no. 5, pp. 470–480, Jan. 2009, doi: 10.1056/nejmoa0808253.spa
dc.relation.referencesR. P. Kuiper et al., “High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression,” Leukemia, vol. 21, no. 6, pp. 1258–1266, 2007, doi: 10.1038/sj.leu.2404691.spa
dc.relation.referencesC. K. Gestrich and K. A. Oduro, “Restricted Immunoglobulin Joining Chain (IgJ) Protein Expression in B Lymphoblastic Leukemia (B-ALL) Based on B-ALL Subtype,” Blood, vol. 136, no. Supplement 1, p. 7, Nov. 2020, doi: 10.1182/blood-2020-143201.spa
dc.relation.referencesO. Cristina and L. Camelo, “‘Estudio piloto para la determinación de la expresión de ID1, ID3 e IGJ en Leucemia Linfoblástica Aguda B a partir de muestras de médula ósea,’” 2020. Accessed: Nov. 10, 2022. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/79413/1018417049.2020.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesK. Hoffmann et al., “Prediction of relapse in paediatric pre-B acute lymphoblastic leukaemia using a three-gene risk index,” Br J Haematol, vol. 140, no. 6, pp. 656–664, Mar. 2008, doi: 10.1111/j.1365-2141.2008.06981.x.spa
dc.relation.referencesE. E. Max, W. MCBRIDEt, C. C. Morton, and M. Ann Robinson, “Human J chain gene: Chromosomal localization and associated restriction fragment length polymorphisms,” 1986. doi: https://doi.org/10.1073/pnas.83.15.5592.spa
dc.relation.referencesS. Khan et al., “Role of recombinant DNA technology to improve life,” International Journal of Genomics, vol. 2016. Hindawi Publishing Corporation, 2016. doi: 10.1155/2016/2405954.spa
dc.relation.referencesAmeera Alsadeq et al., “The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system,” Haematologica, vol. 102, no. 2, pp. 346–355, Feb. 2017, doi: 10.3324/haematol.2016.147744.spa
dc.relation.referencesL. Debaize et al., “Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation,” Nucleic Acids Res, vol. 46, no. 21, pp. 11214–11228, Nov. 2018, doi: 10.1093/nar/gky756.spa
dc.relation.referencesV. M. Chávez-Jacobo and V. M. Chávez-Jacobo, “El sistema de edición genética CRISPR/Cas y su uso como antimicrobiano específico,” TIP. Revista especializada en ciencias químico-biológicas, vol. 21, no. 2, 2018, doi: 10.22201/fesz.23958723e.2018.2.5.spa
dc.relation.referencesJ. A. Doudna and E. Charpentier, “The new frontier of genome engineering with CRISPR-Cas9,” Science (1979), vol. 346, no. 6213, p. 1258096, Nov. 2014, doi: 10.1126/science.1258096.spa
dc.relation.referencesL. S. Qi et al., “Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression,” Cell, vol. 152, no. 5, pp. 1173–1183, Feb. 2013, doi: 10.1016/j.cell.2013.02.022.spa
dc.relation.referencesG. Clouse, “CRISPR Activators: A Comparison Between dCas9-VP64, SAM, SunTag, VPR, and More!,” Addgene. Accessed: Nov. 10, 2022. [Online]. Available: https://blog.addgene.org/crispr-activators-dcas9-vp64-sam-suntag-vprspa
dc.relation.referencesA. Chavez et al., “Comparison of Cas9 activators in multiple species,” Nat Methods, vol. 13, no. 7, pp. 563–567, 2016, doi: 10.1038/nmeth.3871.spa
dc.relation.referencesS. Sajwan and M. Mannervik, “Gene activation by dCas9-CBP and the SAM system differ in target preference,” Sci Rep, vol. 9, no. 1, p. 18104, 2019, doi: 10.1038/s41598-019-54179-x.spa
dc.relation.referencesC. Hunt et al., “Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice,” Nat Commun, vol. 12, no. 1, p. 2770, 2021, doi: 10.1038/s41467-021-22932-4.spa
dc.relation.referencesE. M. Czekanska, “Assessment of Cell Proliferation with Resazurin-Based Fluorescent Dye,” in Mammalian Cell Viability: Methods and Protocols, M. J. Stoddart, Ed., Totowa, NJ: Humana Press, 2011, pp. 27–32. doi: 10.1007/978-1-61779-108-6_5.spa
dc.relation.referencesA. R. Fernie, F. Carrari, and L. J. Sweetlove, “Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport,” Curr Opin Plant Biol, vol. 7, no. 3, pp. 254–261, Jun. 2004, doi: 10.1016/J.PBI.2004.03.007.spa
dc.relation.referencesS. Kamiloglu, G. Sari, T. Ozdal, and E. Capanoglu, “Guidelines for cell viability assays,” Food Front, vol. 1, no. 3, pp. 332–349, Sep. 2020, doi: 10.1002/fft2.44.spa
dc.relation.referencesA. Y. Chang, V. W. Chau, J. A. Landas, and Yvonne, “Preparation of calcium competent Escherichia coli and heat-shock transformation,” Vancouver, Jun. 2017.spa
dc.relation.referencesP. Thomas and T. G. Smart, “HEK293 cell line: A vehicle for the expression of recombinant proteins,” J Pharmacol Toxicol Methods, vol. 51, no. 3, pp. 187–200, May 2005, doi: 10.1016/J.VASCN.2004.08.014.spa
dc.relation.referencesM. Jordan and F. M. Wurm, “Co-transfer of multiple plasmids/viruses as an attractive method to introduce several genes in mammalian cells,” New Comprehensive Biochemistry, vol. 38, pp. 337–348, Jan. 2003, doi: 10.1016/S0167-7306(03)38020-2.spa
dc.relation.referencesW. Xu, H. Chang, C. K. Qin, and Y. P. Zhai, “Impact of co-transfection with livin and survivin shRNA expression vectors on biological behavior of HepG2 cells,” Asian Pacific Journal of Cancer Prevention, vol. 14, no. 9, pp. 5467–5472, 2013, doi: 10.7314/APJCP.2013.14.9.5467.spa
dc.relation.referencesA. J. Heidersbach, K. M. Dorighi, J. A. Gomez, A. M. Jacobi, and B. Haley, “A versatile, high-efficiency platform for CRISPR-based gene activation,” Nat Commun, vol. 14, no. 1, p. 902, 2023, doi: 10.1038/s41467-023-36452-w.spa
dc.relation.referencesF. Cardarelli et al., “The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery,” Sci Rep, vol. 6, no. 1, p. 25879, 2016, doi: 10.1038/srep25879.spa
dc.relation.referencesH. Bai, G. M. S. Lester, L. C. Petishnok, and D. A. Dean, “Cytoplasmic transport and nuclear import of plasmid DNA,” Bioscience Reports, vol. 37, no. 6. Portland Press Ltd, Dec. 22, 2017. doi: 10.1042/BSR20160616.spa
dc.relation.referencesM. Aluigi et al., “Nucleofection Is an Efficient Nonviral Transfection Technique for Human Bone Marrow–Derived Mesenchymal Stem Cells,” Stem Cells, vol. 24, no. 2, pp. 454–461, Feb. 2006, doi: 10.1634/stemcells.2005-0198.spa
dc.relation.referencesN. Iversen, B. Birkenes, K. Torsdalen, and S. Djurovic, “Electroporation by nucleofector is the best nonviral transfection technique in human endothelial and smooth muscle cells,” Genet Vaccines Ther, vol. 3, no. 1, p. 2, 2005, doi: 10.1186/1479-0556-3-2.spa
dc.relation.referencesR. Ren et al., “Nucleic acid direct delivery to fibroblasts: a review of nucleofection and applications,” J Biol Eng, vol. 16, no. 1, p. 30, 2022, doi: 10.1186/s13036-022-00309-5.spa
dc.relation.referencesC. Maucksch, B. Connor, and C. Rudolph, “Plasmid DNA Concatemers: Influence of Plasmid Structure on Transfection Efficiency,” in Minicircle and Miniplasmid DNA Vectors, 2013, pp. 59–69. doi: https://doi.org/10.1002/9783527670420.ch5.spa
dc.relation.referencesH. Bruns et al., “A novel immunoregulatory function of beta-2-microglobulin as a promoter of myeloid derived suppressor cell induction,” Leukemia, vol. 33, no. 5, pp. 1282–1287, 2019, doi: 10.1038/s41375-018-0345-0.spa
dc.relation.referencesJ. E. Miller et al., “Design of Beta-2 Microglobulin Adsorbent Protein Nanoparticles,” Biomolecules, vol. 13, no. 7, Jul. 2023, doi: 10.3390/biom13071122.spa
dc.relation.referencesM. Yagi and M. E. Koshland, “Expression of the J chain gene during B cell differentiation is inversely correlated with DNA methylation,” 1981. doi: https://doi.org/10.1073/pnas.78.8.4907.spa
dc.relation.referencesC. D. Castro and M. F. Flajnik, “Putting J Chain Back on the Map: How Might Its Expression Define Plasma Cell Development?,” The Journal of Immunology, vol. 193, no. 7, pp. 3248–3255, Oct. 2014, doi: 10.4049/jimmunol.1400531.spa
dc.relation.referencesJ. Y. Kim, S. K. Park, H. G. Kim, S. J. Cho, J. Kim, and C. J. Kang, “The HSS3/4 enhancer of Crlz1-IgJ locus is another target of EBF in the pre-B cell stage of B cell development,” Immunol Lett, vol. 107, no. 1, pp. 63–70, Sep. 2006, doi: 10.1016/J.IMLET.2006.07.007.spa
dc.relation.referencesJ. H. Lim, H. G. Kim, S. K. Park, and C. J. Kang, “The Promoter of the Immunoglobulin J Chain Gene Receives Its Authentic Enhancer Activity through the Abutting MEF2 and PU.1 Sites in a DNA-Looping Interaction,” J Mol Biol, vol. 390, no. 3, pp. 339–352, Jul. 2009, doi: 10.1016/J.JMB.2009.05.040.spa
dc.relation.referencesZ. X. Chong, S. K. Yeap, and W. Y. Ho, “Transfection types, methods and strategies: A technical review,” PeerJ, vol. 9. PeerJ Inc., Apr. 21, 2021. doi: 10.7717/peerj.11165.spa
dc.relation.referencesM. E. Hystad et al., “Characterization of Early Stages of Human B Cell Development by Gene Expression Profiling,” The Journal of Immunology, vol. 179, no. 6, pp. 3662–3671, Sep. 2007, doi: 10.4049/jimmunol.179.6.3662.spa
dc.relation.referencesJ. J. Wallin, J. L. Rinkenberger, S. Rao, E. R. Gackstetter, M. E. Koshland, and P. Zwollo, “B cell-specific activator protein prevents two activator factors from binding to the immunoglobulin J chain promoter until the antigen-driven stages of B cell development,” Journal of Biological Chemistry, vol. 274, no. 22, pp. 15959–15965, May 1999, doi: 10.1074/jbc.274.22.15959.spa
dc.relation.referencesW. E. Stansfield et al., “The Pathophysiology of Cardiac Hypertrophy and Heart Failure,” Cellular and Molecular Pathobiology of Cardiovascular Disease, pp. 51–78, Jan. 2014, doi: 10.1016/B978-0-12-405206-2.00004-1.spa
dc.relation.referencesS. L. Nutt, C. Thévenin, and M. Busslinger, “Essential Functions of Pax-5 (BSAP) in pro-B Cell Development,” Immunobiology, vol. 198, no. 1–3, pp. 227–235, Dec. 1997, doi: 10.1016/S0171-2985(97)80043-5.spa
dc.relation.referencesM. Wang, Y. Wu, X. Li, M. Dai, and S. Li, “IGJ suppresses breast cancer growth and metastasis by inhibiting EMT via the NF κB signaling pathway,” Int J Oncol, vol. 63, no. 3, Sep. 2023, doi: 10.3892/ijo.2023.5553.spa
dc.relation.referencesB. Sprangers, L. Cosmai, and C. Porta, “Conventional chemotherapy,” Onco-Nephrology, pp. 127-153.e11, Jan. 2020, doi: 10.1016/B978-0-323-54945-5.00025-4.spa
dc.relation.referencesY. Cao et al., “Cyr61 decreases Cytarabine chemosensitivity in acute lymphoblastic leukemia cells via NF-κB pathway activation,” Int J Mol Med, vol. 43, no. 2, pp. 1011–1020, Feb. 2019, doi: 10.3892/ijmm.2018.4018.spa
dc.relation.referencesC. F. Thorn et al., “Doxorubicin pathways: Pharmacodynamics and adverse effects,” Pharmacogenet Genomics, vol. 21, no. 7, pp. 440–446, 2011, doi: 10.1097/FPC.0b013e32833ffb56.spa
dc.relation.referencesY. Yang, W. Dai, Y. Sun, and Z. Zhao, “Long non coding RNA linc00239 promotes malignant behaviors and chemoresistance against doxorubicin partially via activation of the PI3K/Akt/mTOR pathway in acute myeloid leukaemia cells,” Oncol Rep, vol. 41, no. 4, pp. 2311–2320, Apr. 2019, doi: 10.3892/or.2019.6991.spa
dc.relation.referencesT. T. T. Vo et al., “mTORC1 inhibition induces resistance to methotrexate and 6-mercaptopurine in Ph+ and Ph-like B-ALL,” Mol Cancer Ther, vol. 16, no. 9, pp. 1942–1953, Sep. 2017, doi: 10.1158/1535-7163.MCT-17-0024.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicosspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsCadenas J de Inmunoglobulinaspa
dc.subject.decsImmunoglobulin J-Chainseng
dc.subject.decseucemia-Linfoma Linfoblástico de Células Precursorasspa
dc.subject.decsPrecursor Cell Lymphoblastic Leukemia-Lymphomaeng
dc.subject.decsResistencia a Antineoplásicosspa
dc.subject.decsDrug Resistance, Neoplasmeng
dc.subject.proposalLeucemia linfoblástica agudaspa
dc.subject.proposalGenes pronósticos adversosspa
dc.subject.proposalCRISPRaspa
dc.subject.proposalActividad metabólicaspa
dc.subject.proposalQuimioterapia del cáncerspa
dc.subject.proposalAcute lymphoblastic leukemiaeng
dc.subject.proposalAdverse prognostic geneseng
dc.subject.proposalCRISPRaeng
dc.subject.proposalMetabolic activityeng
dc.subject.proposalCancer chemotherapyeng
dc.titleEvaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia modeleng
dc.title.translatedEvaluación del efecto quimiorresistente de la sobreexpresión del gen asociado a mal pronóstico IGJ en un modelo de leucemia linfoblástica aguda de precursores Bspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026587046.2024.pdf
Tamaño:
3.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: