En 5 día(s), 16 hora(s) y 9 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Evaluación experimental y modelado de propagación de grietas en un acero de fase dual

dc.contributor.advisorRodríguez Baracaldo, Rodolfospa
dc.contributor.advisorNarváez Tovar, Carlos Albertospa
dc.contributor.authorPérez Velásquez, Cristian Camilospa
dc.contributor.researchgroupInnovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM)spa
dc.date.accessioned2020-12-14T14:33:27Zspa
dc.date.available2020-12-14T14:33:27Zspa
dc.date.issued2018-11-06spa
dc.description.abstractCurrently dual phase steel are used in manufacture auto parts due to their good mechanical properties, which allow manufacture pieces more lightweight and therefore reduce the fuel consumption. However, the influence of their microstructure, which depends of a lot of factors like the chemical composition, on properties like fracture toughness or the crack propagation resistance haven´t had a large develop. Thus is convenient continue studying these properties, which allow estimate the final limit of use of a piece through structural integrity analysis. This document presents the study of influence of the dual phase steel microstructure on fracture toughness and fatigue crack propagation resistance. For this it was compared dual phase steels with different microstructures, mainly due to martensite content. Was performed an experimental analysis of the mechanical properties through tension, fracture toughness and crack propagation tests. Moreover it was used ABAQUS software to evaluate the material during the cracks propagation from experimental results, using the extended finite elements XFEM. The results shown that an increase of martensite phase on the dual phase steel microstructure decrease the fatigue crack velocity and increase their mechanical strengthspa
dc.description.abstractActualmente el uso de aceros de fase dual se evidencia en gran parte en la fabricación de partes para el sector automotriz debido a sus buenas propiedades mecánicas, las cuales permiten la fabricación de piezas más livianas y al final una reducción en el consumo de combustible. Sin embargo la influencia de su microestructura, la cual depende altamente de la composición química del material inicial, sobre propiedades como la tenacidad de fractura o la resistencia a la propagación de grietas no ha tenido un gran desarrollo. Haciendo conveniente continuar el estudio de estas propiedades, las cuales permiten estimar el límite final de servicio de una pieza mediante análisis de integridad estructural. En este trabajo se presenta el estudio de la influencia de la microestructura de los aceros de fase dual en su tenacidad a la fractura y su resistencia a la propagación de grietas por fatiga. Para esto se compararon dos aceros de fase dual con una microestructura diferente, principalmente debida a la cantidad de martensita presente. Se realizó un análisis experimental de las propiedades del material mediante el uso de ensayos de tensión, ensayos de tenacidad de fractura y ensayos de propagación de grietas por fatiga usando probetas tipo CT. Además se usó el software ABAQUS para el estudio del material ante la propagación de grietas a partir de resultados experimentales al emplear el método de los elementos finitos extendidos (XFEM). Los resultados obtenidos evidencian que el aumento de la fase martensita en la microestructura del acero de fase dual aumenta su resistencia mecánicas y su resistencia a la propagación de grietas por fatiga.spa
dc.description.additionalLínea de Investigación: Ingeniería de Materiales y Proceso de Manufacturaspa
dc.description.degreelevelMaestríaspa
dc.format.extent148spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78706
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesC. E. Inglis, “Stresses in a plate due to the presence of cracks and sharp corners,” Trans. I.N.A., vol. XLIV. p. 15, 1913.spa
dc.relation.referencesA. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 221, no. 582–593. pp. 163–198, 1921.spa
dc.relation.referencesH. M. Westergaard, “Bearing pressures and cracks,” Journal of Applied Mechanics, vol. 61. pp. A49–A53, 1939.spa
dc.relation.referencesG. R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,” Journal of Applied Mechanics, vol. 24, no. September. pp. 361–364, 1957.spa
dc.relation.referencesD. M. Tracey, “Finite elements for determination of crack tip elastic stress intensity factors.,” Eng. Fract. Mech., vol. 3, no. 3, pp. 255–265, 1971.spa
dc.relation.referencesZ. Xiulin and M. A. Hirt, “Fatigue crack propagation in steels,” Eng. Fract. Mech., vol. 18, no. 5, pp. 965–973, 1983.spa
dc.relation.referencesP. A. Wawrzynek and A. R. Ingraffea, “Interactive finite element analysis of fracture processes: An integrated approach,” Theor. Appl. Fract. Mech., vol. 8, no. 2, pp. 137–150, 1987.spa
dc.relation.referencesR. O. Ritchie, “Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids,” Int. J. Fract., vol. 100, pp. 55–83, 1999spa
dc.relation.referencesJ.-H. Kim and G. H. Paulino, “Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading,” Int. J. Mech. Mater. Des., vol. 1, no. 1, pp. 63–94, 2004spa
dc.relation.referencesA. M. Alshoaibi, M. S. a. Hadi, and a. K. Ariffin, “An adaptive finite element procedure for crack propagation analysis,” J. Zhejiang Univ. Sci. A, vol. 8, no. 2, pp. 228–236, 2007.spa
dc.relation.referencesH. Zhang and A. Fatemi, “Short fatigue crack growth from a blunt notch in plate specimens,” Int. J. Fract., vol. 170, no. 1, pp. 1–11, 2011.spa
dc.relation.referencesG. Gruben, O. S. S. Hopperstad, and T. Børvik, “Simulation of ductile crack propagation in dual-phase steel,” Int. J. Fract., vol. 180, no. 1, pp. 1–22, 2012.spa
dc.relation.referencesA. Riccio, U. Caruso, A. Raimondo, and A. Sellitto, “Robustness of XFEM Method for the Simulation of Cracks Propagation in Fracture Mechanics Problems,” no. 2001, 2016.spa
dc.relation.referencesC. H. Pham, D. K. Phan, M. T. Huynh, and G. J. Hancock, “Fracture Toughness of G450 Sheet Steels at Ambient Temperature Subjected to Tension,” ISTRUC, vol. 1039, pp. 1–8, 2016.spa
dc.relation.referencesC. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design,” Annu. Rev. Mater. Res., vol. 45, no. 1, p. 150504161757009, 2014.spa
dc.relation.referencesP. Tsipouridis, “Mechanical properties of Dual-Phase steels,” p. 122, 2006.spa
dc.relation.referencesY. Granbom, Structure and mechanical properties of dual phase steels – An experimental and theoretical analysis. 2010.spa
dc.relation.referencesQ. Lai, O. Bouaziz, M. Gouné, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, and T. Pardoen, “Damage and fracture of dual-phase steels: Influence of martensite volume fraction,” Mater. Sci. Eng. A, vol. 646, pp. 322–331, 2015.spa
dc.relation.referencesY. Hayami, Sathiro. Furukawa, Takashi. Takeoka, “Method For Producing a Steel Sheet with Dual Phase Structure Composed of Ferrite and Rapidly Cooled Transformed Phases,” 1977.spa
dc.relation.referencesV. L. de la Concepción, H. N. Lorusso, and H. G. Svoboda, “Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels,” Procedia Mater. Sci., vol. 8, pp. 1047–1056, 2015.spa
dc.relation.referencesM. K. Manoj, V. Pancholi, and S. K. Nath, “Mechanical Properties and Fracture Behavior of Medium Carbon Dual Phase Steels,” vol. 2, no. 4, 2014.spa
dc.relation.referencesM. Pouranvari, “Work Hardening Behavior of Fe-0.1 C Dual Phase Steel,” BHM Berg-und Hüttenmännische Monatshefte, vol. 157, no. 1, pp. 44–47, 2012.spa
dc.relation.referencesJ. Zhang, H. Di, Y. Deng, and R. D. K. Misra, “Materials Science & Engineering A Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite – ferrite dual phase steel,” Mater. Sci. Eng. A, vol. 627, pp. 230–240, 2015.spa
dc.relation.referencesM. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, “Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite / martensite dual-phase steels and the effect of aging,” Acta Mater., vol. 59, no. 2, pp. 658–670, 2011.spa
dc.relation.referencesN. Saeidi, F. Ashra, and B. Niroumand, “Materials Science & Engineering A Development of a new ultra fi ne grained dual phase steel and examination of the effect of grain size on tensile deformation behavior,” vol. 599, pp. 145–149, 2014.spa
dc.relation.referencesM. Kuna, Finite Elements in Fracture Mechanics. 2013.spa
dc.relation.referencesT. L. Anderson, Fracture Mechanics: Fundamentals and Applications. 2005.spa
dc.relation.referencesM. E. Hernández, A. H., Espejo, Mecánica de Fractura y Análisis de Falla. 2002spa
dc.relation.referencesASTM Int., “Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC E399,” pp. 1–33, 2015.spa
dc.relation.referencesJ. Bris and L. Llanes, “Evaluación de la tenacidad de fractura en aceros sinterizados de alta densidad,” 2006.spa
dc.relation.referencesJ. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” J. Appl. Mech., vol. 35, no. 2, p. 379, 1968.spa
dc.relation.referencesJ. L. Arana and J. J. Gonzales, Mecanica de Fractura. 2002.spa
dc.relation.referencesX.-K. Zhu and J. A. Joyce, “Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization,” Eng. Fract. Mech., vol. 85, pp. 1–46, 2012.spa
dc.relation.referencesJ. Begley and J. Landes, “The J integral as a fracture criterion,” Astm Stp 514, pp. 1–23, 1972.spa
dc.relation.referencesJ. R. Rice, P. C. Paris, and J. G. Merkle, “Some Further Results of J-Integral Analysis and Estimates,” in Progress in Flaw Growth and Fracture Toughness Testing, 1973, pp. 231–245.spa
dc.relation.referencesASTM Int., “Standard Test Method for Measurement of Fracture Toughness E1820,” no. April 2000, pp. 1–56, 2001.spa
dc.relation.referencesP. Taylor and A. A. Jaoude, “Systems Science & Control Engineering : An Open Analytic and linear prognostic model for a vehicle suspension system subject to fatigue,” no. January, pp. 37–41, 2015.spa
dc.relation.referencesP. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” 1963.spa
dc.relation.referencesASTM Int., “Standard Test Method for Measurement of Fatigue Crack Growth Rates E647,” vol. i, pp. 1–48, 2016.spa
dc.relation.referencesV. B. Dutta, S. Suresh, and R. O. Ritchie, “Fatigue Crack Propagation in Dual-Phase Steels " Effects of Ferritic-Martensitic Microstructures on Crack Path Morphology,” vol. 15, no. June, pp. 1193–1207, 1984.spa
dc.relation.referencesS. Li, Y. Kang, and S. Kuang, “Effects of microstructure on fatigue crack growth behavior in cold-rolled dual phase steels,” Mater. Sci. Eng. A, vol. 612, pp. 153–161, 2014spa
dc.relation.referencesA. R. Ingraffea, “Chapter 0: Computational Fracture Mechanics,” no. 2002, 2007.spa
dc.relation.referencesR. D. Cook, “Finite Element Modeling for Stress Analysis.” Jhon Wiley & Sons, Inc., p. 320, 1995spa
dc.relation.referencesR. D. Henshell and K. G. Shaw, “Crack tip finite elements are unnecessary,” Int. J. Numer. Methods Eng., vol. 9, no. 3, pp. 495–507, 1975.spa
dc.relation.referencesR. S. Barsoum, “On the use of isoparametric finite elements in linear fracture mechanics,” Int. J. Numer. Methods Eng., vol. 10, no. 1, pp. 25–37, 1976.spa
dc.relation.referencesI. Milne, Comprehensive Structural Integrity: Fracture of Materials from Nano to Macro. 2003spa
dc.relation.referencesS. K. Chan, I. S. Tuba, and W. K. Wilson, “On the finite element method in linear fracture mechanics,” Eng. Fract. Mech., vol. 2, no. 1, pp. 1–17, 1970.spa
dc.relation.referencesD. M. Parks, “A stiffness derivative finite element technique for determination of crack tip stress intensity factors,” Int. J. Fract., vol. 10, no. 4, pp. 487–502, 1974.spa
dc.relation.referencesT. K. Hellen, “On the method of virtual crack extensions,” Int. J. Numer. Methods Eng., vol. 9, no. 1, pp. 187–207, 1975.spa
dc.relation.referencesE. F. Rybicki and M. F. Kanninen, “A finite element calculation of stress intensity factors by a modified crack closure integral,” Eng. Fract. Mech., vol. 9, no. 4, pp. 931–938, 1977.spa
dc.relation.referencesT. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” Int. J. Numer. Methods Eng., vol. 45, no. 5, pp. 601–620, 1999spa
dc.relation.referencesN. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” Int. J. Numer. Methods Eng., vol. 46, no. 1, pp. 131–150, 1999.spa
dc.relation.referencesJ. M. Melenk and I. Babuška, “The partition of unity finite element method: Basic theory and applications,” Comput. Methods Appl. Mech. Eng., vol. 139, no. 1–4, pp. 289–314, 1996.spa
dc.relation.referencesZ. Zhuang, Z. Liu, and B. Cheng, Extended Finite Element Method. 2014.spa
dc.relation.referencesS. Mohanty, S. Majumdar, and K. Natesan, “Modeling of Steam Generator Tube Rupture Usin Extended Finite Element Method,” 2013spa
dc.relation.referencesD. Montgomery, “Diseño y análisis de experimentos,” Limusa Wiley. pp. 21–692, 2004.spa
dc.relation.referencesE. Menendez. and L. O. Jamed., “Una propuesta para el cálculo de la potencia en el anova,” vol. 27, no. 2, pp. 194–205, 2006.spa
dc.relation.referencesK. W. Andrews, “Empirical formulae for the calculation of some triansformation temperatures,” Journal of the iron and steel Institute, no. July. pp. 721–727, 1965.spa
dc.relation.referencesASTM Int., “Preparation of Metallographic Specimens E3,” Area, vol. 03, no. July, pp. 1–17, 2001.spa
dc.relation.referencesASTM Int., “Standard Test Methods for Tension Testing of Metallic Materials E8,” Astm, no. C, pp. 1–27, 2009.spa
dc.relation.referencesY. J. Chao, J. D. Ward, and R. G. Sands, “Charpy impact energy, fracture toughness and ductile-brittle transition temperature of dual-phase 590 Steel,” Mater. Des., vol. 28, no. 2, pp. 551–557, 2007.spa
dc.relation.referencesG. Krauss, “Steels: heat treatment and processing principles,” ASM Int. 1990, p. 497, 1990.spa
dc.relation.referencesE. Pan, H. Di, G. Jiang, and C. Bao, “Effect of heat treatment on microstructures and mechanical properties of hot-dip galvanized DP steels,” Acta Metall. Sin. (English Lett., vol. 27, no. 3, pp. 469–475, 2014.spa
dc.relation.referencesJ. R. Mohanty, B. B. Verma, and P. K. Ray, “Determination of fatigue crack growth rate from experimental data: a new approach,” Int. J. Microstruct. Mater. Prop., vol. 5, no. 1, p. 79, 2010.spa
dc.relation.referencesK. Sudhakar and E. Dwarakadasa, “A study on fatigue crack growth in dual phase martensitic steel in air environment,” Bull. Mater. Sci., vol. 23, no. 3, pp. 193–199, 2000.spa
dc.relation.referencesR. Idris and Y. Prawoto, “Influence of ferrite fraction within martensite matrix on fatigue crack propagation : An experimental verification with dual phase steel,” Mater. Sci. Eng. A, vol. 552, pp. 547–554, 2012spa
dc.relation.referencesG. R. Speich, “Properties and Selection: Irons Steels and High Performance Alloys Vol 1,” Technology, no. Dual Phase Steels, p. 3470, 2001.spa
dc.relation.referencesZ. Sami, S. Tahar, and H. Mohamed, “Materials Science & Engineering A Microstructure and Charpy impact properties of ferrite – martensite dual phase API X70 linepipe steel,” Mater. Sci. Eng. A, vol. 598, pp. 338–342, 2014.spa
dc.relation.referencesK. K. Alaneme, “Fracture Toughness ( K 1C ) Evaluation for Dual Phase Medium Carbon Low Alloy Steels Using Circumferential Notched Tensile ( CNT ) Specimens,” vol. 14, no. 2, pp. 155–160, 2011.spa
dc.relation.referencesS. Ulu, H. Aytekin, and G. Said, “An alternative Approach to the Fracture Toughness of Dual Phase Steels,” vol. 31, no. May, pp. 360–370, 2014.spa
dc.relation.referencesD. G. Lyonel Reinhardt, J.A. Cordes, “Using Co-Simulation to Extend the Usage of XFEM,” pp. 1–17, 2011.spa
dc.relation.referencesAbaqus, “Abaqus 6.14 Abaqus Analysis,” vol. IV, 2014.spa
dc.relation.referencesJ. Shi, J. Lua, H. Waisman, P. Liu, T. Belytschko, N. Sukumar, and Y. Liang, “X-FEM toolkit for automated crack onset and growth prediction,” no. April, pp. 2008–2008, 2008spa
dc.relation.referencesX. T. Miao, C. Y. Zhou, and X. H. He, “Analysis of Limit Loads for CT Specimens with Cracks Based on Extended Finite Element Method,” Procedia Eng., vol. 130, pp. 763–774, 2015.spa
dc.relation.referencesS. P. Kumar, “Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth,” 2017.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalAceros de Fase Dualspa
dc.subject.proposalDual Phase Steeleng
dc.subject.proposalTenacidad de Fracturaspa
dc.subject.proposalFracture Toughnesseng
dc.subject.proposalJ Integraleng
dc.subject.proposalIntegral Jspa
dc.subject.proposalFatigaspa
dc.subject.proposalFatigue Strengtheng
dc.subject.proposalXFEMeng
dc.subject.proposalXFEMspa
dc.subject.proposalParis Law.eng
dc.subject.proposalLey de Paris.spa
dc.titleEvaluación experimental y modelado de propagación de grietas en un acero de fase dualspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026567189.2018 Tesis.pdf
Tamaño:
6.18 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: