Study of the mechanical and chemical relationship at the interface of fique fibres/polypropylene composite

dc.contributor.advisorMeza Meza, Juan Manuel
dc.contributor.authorCuellar Posada, Julio
dc.contributor.cvlacCuellar Posada, Julio [0001709295]
dc.contributor.educationalvalidatorPalacio Betancur, Juliana
dc.contributor.orcidCuellar Posada, Julio [000000023000151X]
dc.contributor.orcidMeza Meza, Juan Manuel [0000000180133775]
dc.contributor.researchgroupDesign of Advanced Compositesdadcomp
dc.date.accessioned2026-02-06T16:26:03Z
dc.date.available2026-02-06T16:26:03Z
dc.date.issued2025-12
dc.descriptionIlustraciones
dc.description.abstractLa transición global hacia materiales sostenibles ha destacado la relevancia de los compuestos basados en fibras naturales como alternativas ecológicas a los materiales derivados del petróleo. Este estudio investiga las interacciones mecánicas y químicas en la interfaz de compuestos de polipropileno (PP) reforzados con fibra de fique. Debido a la incompatibilidad intrínseca entre las fibras lignocelulósicas hidrofílicas y la matriz hidrofóbica de PP, se implementaron estrategias como tratamientos superficiales de la fibra (mercerización y esterificación) y modificación de la matriz mediante polipropileno injertado con anhídrido maleico (MAPP) para mejorar la adhesión interfacial. Se empleó un enfoque experimental integral, que incluyó caracterizaciones micromecánicas (microbond pull-out, ensayos de tracción en fibras individuales), macromecánicas (ensayos de tracción y flexión), físicas (mediciones de ángulo de contacto) y químicas (FTIR, PZC y simulaciones moleculares). Los resultados demuestran una fuerte correlación entre las interacciones químicas en la interfaz fibra/matriz y el desempeño mecánico resultante de los compuestos. Los hallazgos revelaron que un contenido de MAPP del 5 % en peso proporciona una adhesión interfacial óptima y una resistencia mecánica mejorada, contribuyendo al desarrollo de paneles compuestos reciclables y sostenibles, adecuados para aplicaciones industriales como el transporte y la construcción. ( Texto tomado de la fuente)spa
dc.description.abstractThe global transition toward sustainable materials has underscored the relevance of natural fibre-based composites as eco-friendly alternatives to petroleum-derived materials. This study investigates the mechanical and chemical interactions at the interface of fique fibre-reinforced polypropylene (PP) composites. Due to the intrinsic incompatibility between hydrophilic lignocellulosic fibres and the hydrophobic PP matrix, strategies such as fibre surface treatments (mercerization and esterification) and matrix modification using maleic anhydride grafted polypropylene (MAPP) were implemented to improve interfacial adhesion. A comprehensive experimental approach was employed, including micromechanical (microbond pull-out, single fibre tensile tests), macromechanical (tensile and flexural tests), physical (contact angle measurements), and chemical characterizations (FTIR, PZC, and molecular simulations). The findings demonstrate a strong correlation between the chemical interactions at the fibre/matrix interface and the resulting mechanical performance of the composites. Results revealed that a MAPP content of 5 wt.% provides optimal interfacial bonding and mechanical strength, contributing to the development of recyclable, sustainable composite panels suitable for industrial applications such as transportation and construction.eng
dc.description.curricularareaIngeniería Mecánica.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.notesDistinción meritoriaspa
dc.description.researchareaMateriales Compuestos
dc.description.researchareaMateriales
dc.description.sponsorshipEste trabajo se desarrolló con el apoyo de la convocatoria 890 de Minciencias, bajo el proyecto con código de registro 82508 y nombre "Desarrollo de paneles estructurales amigables con el medio ambiente en materiales compuestos reciclables de matriz polimérica termoplástica reforzado con fibras de fique".
dc.format.extent1 recurso en línea (141 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89406
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánica
dc.relation.referencesN. Uppal, A. Pappu, V. K. S. Gowri and V. K. Thakur, “Cellulosic fibres-based epoxy composites: From bioresources to a circular economy,” Ind. Crops Prod., vol. 182, p. 114895, 2022. DOI: 10.1016/j.indcrop.2022.114895
dc.relation.referencesM. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak and M. E. Hoque, “A Review on Pineapple Leaves Fibre and Its Composites,” Int. J. Polym. Sci., vol. 2015, pp. 1-16, 2015. DOI: 10.1155/2015/950567
dc.relation.referencesN. Jaramillo, D. Hoyos and J. F. Santa, “Compuestos de fibra de hoja de piña fabricados mediante moldeo por compresión por capas,” Ing. compet., vol. 18, no. 2, p. 151, 2016. DOI: 10.25100/iyc.v18i2.2163
dc.relation.referencesD. Rajak, D. Pagar, P. Menezes and E. Linul, “Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications,” Polymers, vol. 11, no. 10, p. 1667, 2019. DOI: 10.3390/polym11101667
dc.relation.referencesA. Vinod, M. R. Sanjay, S. Suchart and P. Jyotishkumar, “Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites,” J. Clean. Prod., vol. 258, p. 120978, 2020. DOI: 10.1016/j.jclepro.2020.120978
dc.relation.referencesM. Samanth and K. Subrahmanya Bhat, “Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites,” Sustain. Chem. Clim. Action, vol. 3, p. 100034, 2023. DOI: 10.1016/j.scca.2023.100034
dc.relation.referencesL. Rendón-Castrillón, M. Ramírez-Carmona, C. Ocampo-López, V. Pinedo-Rangel, O. Muñoz-Blandón and E. Trujillo-Aramburo, “The Industrial Potential of Fique Cultivated in Colombia,” Sustainability, vol. 15, no. 1, p. 695, 2023. DOI: 10.3390/su15010695
dc.relation.referencesC. Castro, A. Palencia, I. Gutiérrez, G. Vargas and P. Gañan, “Determination of optimal alkaline treatment conditions for fique fiber bundles as reinforcement of composites materials,” Rev. Tec. la Fac. Ing. Univ. del Zulia, vol. 30, no. 2, pp. 136-142, 2007
dc.relation.referencesP. Gañań and I. Mondragon, “Effect of Fiber Treatments on Mechanical Behavior of Short Fique Fiber-reinforced Polyacetal Composites,” J. Compos. Mater., vol. 39, no. 7, pp. 633-646, 2005. DOI: 10.1177/0021998305047268
dc.relation.referencesG. Idarraga, J. Vargas, M. Jalalvand, J. Meza and L. Yang, “Manufacturing And Mechanical Characterisation Of Unidirectional Fique Fibres Reinforced Polypropylene Composites,” in Proceedings of the 20th European Conference on Composite Materials, Lausanne, 2022
dc.relation.referencesS. Marin Jimenez, “Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials,” Universidad Nacional de Colombia, Medellín, 2022
dc.relation.referencesK. K. Chawla, Composite Materials: Science and Engineering, Springer International Publishing, 2019. DOI: 10.1007/978-3-030-28983-6
dc.relation.referencesM. Kurpińska, M. Pawelska-Mazur, Y. Gu and F. Kurpiński, “The impact of natural fibers’ characteristics on mechanical properties of the cement composites,” Sci. Rep., vol. 12, no. 1, 2022. DOI: 10.1038/s41598-022-25085-6
dc.relation.referencesN. E. ZAFEIROPOULOS, “Engineering the fibre – matrix interface in natural-fibre composites,” in Properties and Performance of Natural-Fibre Composites, Elsevier, 2008., pp. 127-162. DOI: 10.1533/9781845694593.1.127
dc.relation.referencesJ. Thomason, “INTERFACES AND INTERFACIAL EFFECTS IN GLASS REINFORCED THERMOPLASTICS,” in proceedings of the 28th Risø International Conference on Materials, Roskilde, 2007
dc.relation.referencesQ. Tarrés, F. Vilaseca, P. J. Herrera-Franco, F. X. Espinach, M. Delgado-Aguilar and P. Mutjé, “Interface and micromechanical characterization of tensile strength of bio-based composites from polypropylene and henequen strands,” Ind. Crops. Prod., vol. 132, pp. 319-326, 2019. DOI: 10.1016/j.indcrop.2019.02.010
dc.relation.referencesH. Oliver-Ortega, M. À. Chamorro-Trenado, J. Soler, P. Mutjé, F. Vilaseca and F. X. Espinach, “Macro and micromechanical preliminary assessment of the tensile strength of particulate rapeseed sawdust reinforced polypropylene copolymer biocomposites for its use as building material,” Constr. Build. Mater., vol. 168, pp. 422-430, 2018. DOI: 10.1016/j.conbuildmat.2018.02.158
dc.relation.referencesJ. P. López, S. Boufi, N. E. El Mansouri, P. Mutjé and F. Vilaseca, “PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study,” Compos. B. Eng., vol. 43, no. 8, pp. 3453-3461, 2012. DOI: 10.1016/j.compositesb.2012.01.040
dc.relation.referencesM. Soleimani, L. Tabil, S. Panigrahi, X. Li and B. Crerar, “Compression Molding of Flax Fiber-Polypropylene Composites: Factors Affecting Selected Properties,” in 2006 CSBE/SCGAB, Edmonton, AB Canada, 2006. DOI: 10.13031/2013.22102
dc.relation.referencesP. Gañán and I. Mondragon, “Influence Of Compatibilization Treatments On The Mechanical Properties Of Fique Fiber Reinforced Polypropylene Composites,” Int. J. Polym. Mater., vol. 53, no. 11, pp. 997-1013, 2004. DOI: 10.1080/00914030490516648
dc.relation.referencesJ. Vargas, M. Jalalvand and J. M. Meza, “Improving interfacial shear strength of fique fibres using an acrylic coating,” Sci. Prog., vol. 106, no. 4, 2023. DOI: 10.1177/00368504231207199
dc.relation.referencesL. Mishnaevsky Jr., “How to Repair the Next Generation of Wind Turbine Blades,” Energies, vol. 16, no. 23, p. 7694, 2023. DOI: 10.3390/en16237694
dc.relation.referencesJ. Vargas, “Análisis interfacial de un material compuesto fabricado en matriz polimérica reforzado con fibras de fique para potenciar sus propiedades mecánicas,” Universidad Nacional de Colombia, Medellín, 2020
dc.relation.referencesO. Muñoz-Blandón, M. Ramírez-Carmona, L. Rendón-Castrillón and C. Ocampo-López, “Exploring the Potential of Fique Fiber as a Natural Composite Material: A Comprehensive Characterization Study,” Polymers, vol. 15, no. 2, p. 2712, 2023. DOI: 10.3390/polym15122712
dc.relation.referencesD. D. Stokke, Q. Wu and G. Han, Introduction to Wood and Natural Fiber Composites, Wiley, 2013. DOI: 10.1002/9780470711804
dc.relation.referencesM. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang and H. M. Zeng, “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites,” Compos. Sci. Technol., vol. 61, no. 10, pp. 1437-1447, 2001. DOI: 10.1016/S0266-3538(01)00046-X
dc.relation.referencesS. Zuppolini, A. Salama, I. Cruz-Maya, V. Guarino and A. Borriello, “Cellulose Amphiphilic Materials: Chemistry, Process and Applications,” Pharmaceutics, vol. 14, no. 2, p. 386, 2022. DOI: 10.3390/pharmaceutics14020386
dc.relation.referencesB. Zheng, S. Yu, Z. Chen and Y.-X. Huo, “A consolidated review of commercial-scale high-value products from lignocellulosic biomass,” Front. microbiol., vol. 13, 2022. DOI: 10.3389/fmicb.2022.933882
dc.relation.referencesH. L. Richards, P. G. L. Baker and E. Iwuoha, “Metal Nanoparticle Modified Polysulfone Membranes for Use in Wastewater Treatment: A Critical Review,” J. surf. eng. mater. adv. technol., vol. 2, no. 3, pp. 183-193, 2012. DOI: 10.4236/jsemat.2012.223029
dc.relation.referencesA. Komuraiah, N. S. Kumar and B. D. Prasad, “Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties,” Mech. Compos. Mater., vol. 50, no. 3, pp. 359-376, 2014. DOI: 10.1007/s11029-014-9422-2
dc.relation.referencesP. Yamini, S. Rokkala, S. Rishika, P. Meghana Rani and R. Arul Kumar, “Mechanical properties of natural fiber reinforced composite structure,” Mater. Today Proc., 2023. DOI: 10.1016/j.matpr.2023.04.547
dc.relation.referencesS. Arumugam, J. Kandasamy, S. Venkatesan, R. Murugan, V. Lakshmi Narayanan, M. T. H. Sultan, F. S. Shahar, A. U. M. Shah, T. Khan and T. A. Sebaey, “A Review on the Effect of Fabric Reinforcement on Strength Enhancement of Natural Fiber Composites,” Materials, vol. 15, no. 9, p. 3025, 2022. DOI: 10.3390/ma15093025
dc.relation.referencesM. Z. Islam, A. Amiri and C. A. Ulven, “Fatigue Behavior Comparison of Inter-Ply and Intra-Ply Hybrid Flax-Carbon Fiber Reinforced Polymer Matrix Composites,” J. Comp. Sci., vol. 5, no. 7, p. 184, 2021. DOI: 10.3390/jcs5070184
dc.relation.referencesS. Neves Monteiro, F. Salgado de Assis, C. Ferreira, N. Tonini Simonassi, R. Pondé Weber, M. Souza Oliveira, H. Colorado and A. Camposo Pereira, “Fique Fabric: A Promising Reinforcement for Polymer Composites,” Polymers, vol. 10, no. 3, p. 246, 2018. DOI: 10.3390/polym10030246
dc.relation.referencesT. Patwary Plateau, “Evaluation of Tensile Strength of Jute Fiber Reinforced Polypropylene Composite,” Advances in Materials, vol. 6, no. 6, p. 149, 2017. DOI: 10.11648/j.am.20170606.15
dc.relation.referencesM. Sayeed, A. Sayem, J. Haider, S. Akter, M. Habib, H. Rahman and S. Shahinur, “Assessing Mechanical Properties of Jute, Kenaf, and Pineapple Leaf Fiber-Reinforced Polypropylene Composites: Experiment and Modelling,” Polymers, vol. 15, no. 4, p. 830, 2023. DOI: 10.3390/polym15040830
dc.relation.referencesL. F. Ng, S. Dhar Malingam, M. Z. Selamat, Z. Mustafa and O. Bapokutty, “A comparison study on the mechanical properties of composites based on kenaf and pineapple leaf fibres,” Polymer Bulletin, vol. 77, no. 3, pp. 1449-1463, 2019. DOI: 10.1007/s00289-019-02812-0
dc.relation.referencesH. A. Aisyah, M. T. Paridah, S. M. Sapuan, R. A. Ilyas, A. Khalina, N. M. Nurazzi, S. H. Lee and C. H. Lee, “A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites,” Polymers, vol. 13, no. 3, p. 471, 2021. DOI: 10.3390/polym13030471
dc.relation.referencesM. Chanda, Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, CRC Press, 2006
dc.relation.referencesS. H. Akella, D. Ebenezer, S. S. R. S., A. Ahire and N. K. Mal, “Studies on structure property relations of efficient decal substrates for industrial grade membrane electrode assembly development in pemfc,” Sci. Rep., vol. 8, no. 1, 2018. DOI: 10.1038/s41598-018-30215-0
dc.relation.referencesD. A. Jesson and J. F. Watts, “The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification,” Polym. Rev., vol. 52, no. 3, pp. 321-354, 2012. DOI: 10.1080/15583724.2012.710288
dc.relation.referencesL. H. Sharpe, “The Interphase in Adhesion,” J. Adhes., vol. 4, no. 1, pp. 51-64, 1972
dc.relation.referencesM. F. Diop and J. M. Torkelson, “Maleic anhydride functionalization of polypropylene with suppressed molecular weight reduction via solid-state shear pulverization,” Polymer, vol. 54, no. 16, pp. 4143-4154, 2013. DOI: 10.1016/j.polymer.2013.06.003
dc.relation.referencesA. Wattanakornsiri and S. Tongnunui, “Sustainable green composites of thermoplastic starch and cellulose fibers,” Songklanakarin Journal of Science and Technology, vol. 36, pp. 149-161, 2014
dc.relation.referencesT. H. Mokhothu and M. J. John, “Bio-based coatings for reducing water sorption in natural fibre reinforced composites,” Sci. Rep., vol. 7, no. 1, 2017. DOI: 10.1038/s41598-017-13859-2
dc.relation.referencesD. Garcia-Garcia, L. Quiles-Carrillo, N. Montanes, V. Fombuena and R. Balart, “Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin,” Materials, vol. 11, no. 1, p. 35, 2017. DOI: 10.3390/ma11010035
dc.relation.referencesT. Souza Da Rosa, R. Trianoski, F. Michaud, C. Belloncle and S. Iwakiri, “Efficiency of Different Acetylation Methods Applied to Cellulose Fibers Waste from Pulp and Paper Mill Sludge,” J. Nat. Fibers, vol. 19, no. 1, pp. 185-198, 2020. DOI: 10.1080/15440478.2020.1731909
dc.relation.referencesD. Ray, N. R. Bose, A. K. Mohanty and M. Misra, “Modification of the dynamic damping behaviour of jute/vinylester composites with latex interlayer,” Compos. B. Eng., vol. 38, no. 3, pp. 380-385, 2007. DOI: 10.1016/j.compositesb.2006.06.011
dc.relation.referencesJ. Subramanian, V. K. Selvaraj, P. Jeya Lal, A. Giridharan, S. Muthukumar Thiagamani, S. Viswanath, S. Siddharth and K. Pandurengan, “An experimental and simulation study on dielectric properties of bio-based kenaf composite laminated with PVC for futuristic applications,” Mater. Today: Proc., 2023. DOI: 10.1016/j.matpr.2023.02.214
dc.relation.referencesC. Hu, Y. Zhou, T. Zhang, T. Jiang and G. Zeng, “Effect of fiber modified by alkali/polyvinyl alcohol coating treatment on properties of sisal fiber plastic composites,” J. Reinf. Plast. Compos., vol. 39, no. 23-24, pp. 880-889, 2020. DOI: 10.1177/0731684420934866
dc.relation.referencesJ. Holbery, L. Fifield, K. Denslow, A. Gutowska and K. Simmons, “ROLE OF FIBER ADHESION IN NATURAL FIBER COMPOSITE PROCESSING FOR AUTOMOTIVE APPLICATIONS,” 2005
dc.relation.referencesM. Qiao, H. Kong, X. Ding, L. Zhang and M. Yu, “Effect of graphene oxide coatings on the structure of polyacrylonitrile fibers during pre-oxidation process,” RSC Advances, vol. 9, no. 48, pp. 28146-28152, 2019. DOI: 10.1039/c9ra04732h
dc.relation.referencesA. C. Fischer-Cripps, Nanoindentation, Springer New York, 2011. DOI: 10.1007/978-1-4419-9872-9
dc.relation.referencesJ. L. Thomason and J. L. Rudeiros-Fernández, “Characterization of interfacial strength in natural fibre – polyolefin composites at different temperatures,” Compos. Interfaces, vol. 29, no. 2, pp. 175-196, 2021. DOI: 10.1080/09276440.2021.1913901
dc.relation.referencesT. Young, “III. An essay on the cohesion of fluids,” Phil. Trans. Roy. Soc. (London), vol. 95, pp. 65-87, 1805. DOI: 10.1098/rstl.1805.0005
dc.relation.referencesW. A. ZISMAN, “Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution,” in Contact Angle, Wettability, and Adhesion, AMERICAN CHEMICAL SOCIETY, 1964, pp. 1-51. DOI: 10.1021/ba-1964-0043.ch001
dc.relation.referencesT. Pongprayoon, N. Yanumet and S. Sangthong, “Surface behavior and film formation analysis of sisal fiber coated by poly(methyl methacrylate) ultrathin film,” Colloids Surf. A: Physicochem. Eng. Asp., vol. 320, no. 1-3, pp. 130-137, 2008. DOI: 10.1016/j.colsurfa.2008.01.050
dc.relation.referencesV. A. Escobar Barrios, J. R. Rangel Méndez, N. V. Pérez Aguilar, G. Andrade Espinosa and J. L. Dávila Rodriguez, “FTIR - An Essential Characterization Technique for Polymeric Materials,” in Infrared Spectroscopy - Materials Science, Engineering and Technology, InTech, 2012. DOI: 10.5772/2055
dc.relation.referencesS. M. Ali, F. Bonnier, H. Lambkin, K. Flynn, V. McDonagh, C. Healy, T. C. Lee, F. M. Lyng and H. J. Byrne, “A comparison of Raman, FTIR and ATR-FTIR micro spectroscopy for imaging human skin tissue sections,” Anal. Methods, vol. 5, no. 9, pp. 2281-2291, 2013. DOI: 10.1039/c3ay40185e
dc.relation.referencesP. J. Larkin, “Basic Principles,” in Infrared and Raman Spectroscopy, Elsevier, 2018, pp. 7-28. DOI: 10.1016/b978-0-12-804162-8.00002-1
dc.relation.referencesC. Marcott, M. Lo, E. Dillon, K. Kjoller and C. Prater, “Interface Analysis of Composites Using AFM-Based Nanoscale IR and Mechanical Spectroscopy,” Microscopy Today, vol. 23, no. 2, pp. 38-45, 2015. DOI: 10.1017/s1551929515000036
dc.relation.referencesFrisch, M. J. et al., “Gaussian 16, Revision C.01,” Gaussian Inc, Wallingford CT, 2016
dc.relation.referencesE. Freville, J. P. Sergienko, R. Mujica, C. Rey and J. Bras, “Novel technologies for producing tridimensional cellulosic materials for packaging: A review,” Carbohydrate Polymers, vol. 342, p. 122413, 2024. DOI: 10.1016/j.carbpol.2024.122413
dc.relation.referencesV. C. R. Schmidt and J. B. Laurindo, “Characterization of foams obtained from cassava starch, cellulose fibres and dolomitic limestone by a thermopressing process,” Brazilian Archives of Biology and Technology, vol. 53, no. 1, pp. 185-192, 2010. DOI: 10.1590/s1516-89132010000100023
dc.relation.referencesD. Theng, G. Arbat, M. Delgado-Aguilar, B. Ngo, L. Labonne, P. Mutjé and P. Evon, “Production of fiberboard from rice straw thermomechanical extrudates by thermopressing: influence of fiber morphology, water and lignin content,” European Journal of Wood and Wood Products, vol. 77, no. 1, pp. 15-32, 2018. DOI: 10.1007/s00107-018-1358-0
dc.relation.referencesC. G. Hoyos, V. A. Alvarez, P. G. Rojo and A. Vázquez, “Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application,” Fibers Polym., vol. 13, no. 5, pp. 632-640, 2012. DOI: 10.1007/s12221-012-0632-8
dc.relation.referencesM. Muñoz-Vélez, M. Hidalgo-Salazar and J. Mina-Hernández, “Effect of Content and Surface Modification of Fique Fibers on the Properties of a Low-Density Polyethylene (LDPE)-Al/Fique Composite,” Polymers, vol. 10, no. 10, p. 1050, 2018. DOI: 10.3390/polym10101050
dc.relation.referencesSabic, “Sabic PP,” 2025. [Online]. Available: https://www.sabic.com/en/products/polymers/polypropylene-pp/sabic-pp. [Accessed March 2025]
dc.relation.referencesCOACE chemical company limited, “COACE B1A,” 2025. [Online]. Available: https://www.coacechemical.com/product/b1a.html. [Accessed March 2025]
dc.relation.referencesY. Gong, P. Niu, X. Wang, S. Long and J. Yang, “Influence of processing temperatures on fiber dimensions and microstructure of polypropylene/hemp fiber composites,” J. Reinf. Plast., vol. 31, no. 19, pp. 1282-1290, 2012. DOI: 10.1177/0731684412457887
dc.relation.referencesYallew, T.B.; Kassegn, E.; Aregawi, S; et al., “ Study on effect of process parameters on tensile properties of compression molded natural fiber reinforced polymer composites,” SN Appl. Sci., vol. 2, p. 338, 2020. DOI: 10.1007/s42452-020-2101-0
dc.relation.referencesJaafar, J., Siregar, J.P., Tezara, C. et al., “A review of important considerations in the compression molding process of short natural fiber composites,” Int. J. Adv. Manuf. Technol., vol. 105, pp. 3437-3450, 2019. DOI: 10.1007/s00170-019-04466-8
dc.relation.referencesP. Gañan and I. Mondragon, “Surface Modification of Fique Fibers: Effects on Their Physico-Mechanical Properties,” Polymer Composites, vol. 23, no. 3, pp. 383-394, 2002. DOI: 10.1002/pc.10440
dc.relation.referencesC. Luchese, J. Engel and I. Tessaro, “A Review on the Mercerization of Natural Fibers: Parameters and Effects,” Korean J. Chem. Eng., vol. 41, pp. 571-587, 2024. DOI: 10.1007/s11814-024-00112-6
dc.relation.referencesJ. Naik and S. Mishra, “Esterification Effect of Maleic Anhydride on Swelling Properties of Natural Fiber/High Density Polyethylene Composites,” J. Appl. Polym. Sci., vol. 106, p. 2571–2574, 2007. DOI: 10.1002/app.25329
dc.relation.referencesC. A. Schneider, W. S. Rasband and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7, pp. 671-675, 2012. DOI: 10.1038/nmeth.2089
dc.relation.referencesN. Farhan, H. Aziz and H. Tafreshi, “Simple method for measuring intrinsic contact angle of a fiber with liquids,” Exp. Fluids, vol. 60, p. 87, 2019. DOI: 10.1007/s00348-019-2733-2
dc.relation.referencesC. Maier and T. Calafut, Polypropylene: The Definitive User's Guide and Databook, Norwich, NY: Plastics Design Library, 1998
dc.relation.referencesK. Bastidas, M. Pereira and C. Z. H. Sierra, “Study and characterization of the lignocellulosic Fique (Furcraea Andina spp.) fiber,” Cellulose, vol. 29, pp. 2187-2198, 2022. DOI: 10.1007/s10570-021-04377-6
dc.relation.referencesMinitab, LLC., “Minitab Statistical Software, Version 22,” Minitab, LLC, 2024
dc.relation.referencesA. Noori, Y. Lu, P. Saffari, J. Liu and J. Ke, “The effect of mercerization on thermal and mechanical properties of bamboo fibers as a biocomposite material: A review,” Construction and Building Materials, vol. 279, p. 122519, 2021. DOI: 10.1016/j.conbuildmat.2021.122519
dc.relation.referencesJ. George, M. Sreekala and S. Thomas, “A review on interface modification and characterization of natural fiber reinforced plastic composites,” Polym. Eng. Sci., vol. 41, pp. 1471-1485, 2001. DOI: 10.1002/pen.10846
dc.relation.referencesJ. Lu, Q. Wu and I. Negulescu, “The Influence of Maleation on Polymer Adsorption and Fixation, Wood Surface Wettability, and Interfacial Bonding Strength in Wood-PVC Composites,” Wood and Fiber Science, vol. 34, no. 3, pp. 434-459, 2002
dc.relation.referencesJ. Sinebe, J. Chukwuneke and S. Omenyi, “Implications of Interfacial Energetics on Mechanical Strength of Fiber Reinforced Polymer Matrix,” Int. J. Mater. Eng., vol. 9, no. 1, pp. 1-7, 2019. DOI: 10.5923/j.ijme.20190901.01
dc.relation.referencesP. Gopalakrishnan, R. Saiah, R. Gattin and J. Marc, “Effect of mercerization of flax fibers on wheat flour/flax fiber biocomposite with respect to thermal and tensile properties,” Composite Interfaces, vol. 15, no. 7-9, pp. 759-770, 2008. DOI: 10.1163/156855408786778348
dc.relation.referencesY. Xie, C. A. S. Hill, Z. Xiao, H. Militz and C. Mai, “Silane coupling agents used for natural fiber/polymer composites: A review,” Composites Part A: Applied Science and Manufacturing, vol. 41, no. 7, pp. 806-819, 2010. DOI: 10.1016/j.compositesa.2010.03.005
dc.relation.referencesG. Cantero, A. Arbelaiz, R. Llano-Ponte and I. Mondragon, “Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites,” Composites Science and Technology, vol. 63, no. 9, pp. 1247-1254, 2003. DOI: 10.1016/s0266-3538(03)00094-0
dc.relation.referencesPIKE Technologies, “Crystal Selection for ATR,” [Online]. Available: https://www.piketech.com/atr-crystal-selection/. [Accessed 26 June 2024]
dc.relation.referencesR. Nayak, S. Houshyar, A. Khandual, R. Padhye and S. Fergusson, “Identification of natural textile fibres,” in Handbook of Natural Fibres, Elsevier, 2020. DOI: 10.1016/b978-0-12-818398-4.00016-5, pp. 503-534
dc.relation.referencesR. Nandanwar, A. Chaudhari and J. Ekhe, “Nitrobenzene Oxidation for Isolation of Value Added Products from Industrial Waste Lignin,” J. Chem. Bio. Phy. Sci. Sec. D, vol. 6, no. 3, pp. 501-513, 2016
dc.relation.referencesP. S. Sejati, F. Obounou Akong, F. Fradet and P. Gérardin, “Wood Esterification by Fatty Acids Using Trifluoroacetic Anhydride as an Impelling Agent and Its Application for the Synthesis of a New Bioplastic,” Materials, vol. 16, no. 21, p. 6830, 2023. DOI: 10.3390/ma16216830
dc.relation.referencesI. Prabowo, J. Pratama and M. Chalid, “The effect of modified ijuk fibers to crystallinity of polypropylene composite,” IOP Conference Series: Materials Science and Engineering, vol. 223, p. 012020, 2017. DOI: 10.1088/1757-899x/223/1/012020
dc.relation.referencesH. R. Nafchi, M. Abdouss, S. K. Najafi, R. M. Gargari and M. Mazhar, “Effects of nano-clay particles and oxidized polypropylene polymers on improvement of the thermal properties of wood plastic composite,” Maderas, Cienc. tecnol., vol. 17, no. 1, 2015. DOI: 10.4067/S0718-221X2015005000005
dc.relation.referencesA. Tarbuk, A. M. Grancarić, D. Đorđević and M. Šmelcerović, “ADSORPTION OF PLANT EXTRACTS ON CATIONIZED COTTON,” Zbornik radova Tehnološkog fakulteta u Leskovcu, vol. 19, pp. 257-264, 2009
dc.relation.referencesB. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam and O. Krim, “Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study,” World Journal of Environmental Engineering, vol. 3, no. 4, pp. 95-110, 2015. DOI: 10.12691/wjee-3-4-1
dc.relation.referencesG. Jeffrey, An introduction to hydrogen bonding, Oxford University Press, 1997
dc.relation.referencesM. Farahani, R. Bagheri and B. Marouf, “Investigation on the onset and progress of stress whitening in polypropylene using digital image processing,” Polym. Bull., vol. 81, p. 7139–7156, 2024. DOI: 10.1007/s00289-023-05045-4
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.lembProductos del petroleo
dc.subject.lembPolipropileno
dc.subject.proposalNatural fibreseng
dc.subject.proposalCompositeseng
dc.subject.proposalMAPPeng
dc.subject.proposalInterfaceeng
dc.subject.proposalPolypropyleneeng
dc.subject.proposalFibras naturalesspa
dc.subject.proposalCompuestosspa
dc.subject.proposalMAPPspa
dc.subject.proposalInterfazspa
dc.subject.proposalPolipropilenospa
dc.titleStudy of the mechanical and chemical relationship at the interface of fique fibres/polypropylene compositeeng
dc.title.translatedEstudio de la relación mecánica y química en la interfaz de un compuesto de fibras de fique/polipropilenospa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentEspecializada
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleConvocatoria Minciencias número 890 de 2020: Convocatoria para el fortalecimiento de CTeI en Instituciones de Educación Superior
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación de Colombia - MINCIENCIAS

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036676135.2025.pdf
Tamaño:
4.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: