Study of the mechanical and chemical relationship at the interface of fique fibres/polypropylene composite
| dc.contributor.advisor | Meza Meza, Juan Manuel | |
| dc.contributor.author | Cuellar Posada, Julio | |
| dc.contributor.cvlac | Cuellar Posada, Julio [0001709295] | |
| dc.contributor.educationalvalidator | Palacio Betancur, Juliana | |
| dc.contributor.orcid | Cuellar Posada, Julio [000000023000151X] | |
| dc.contributor.orcid | Meza Meza, Juan Manuel [0000000180133775] | |
| dc.contributor.researchgroup | Design of Advanced Compositesdadcomp | |
| dc.date.accessioned | 2026-02-06T16:26:03Z | |
| dc.date.available | 2026-02-06T16:26:03Z | |
| dc.date.issued | 2025-12 | |
| dc.description | Ilustraciones | |
| dc.description.abstract | La transición global hacia materiales sostenibles ha destacado la relevancia de los compuestos basados en fibras naturales como alternativas ecológicas a los materiales derivados del petróleo. Este estudio investiga las interacciones mecánicas y químicas en la interfaz de compuestos de polipropileno (PP) reforzados con fibra de fique. Debido a la incompatibilidad intrínseca entre las fibras lignocelulósicas hidrofílicas y la matriz hidrofóbica de PP, se implementaron estrategias como tratamientos superficiales de la fibra (mercerización y esterificación) y modificación de la matriz mediante polipropileno injertado con anhídrido maleico (MAPP) para mejorar la adhesión interfacial. Se empleó un enfoque experimental integral, que incluyó caracterizaciones micromecánicas (microbond pull-out, ensayos de tracción en fibras individuales), macromecánicas (ensayos de tracción y flexión), físicas (mediciones de ángulo de contacto) y químicas (FTIR, PZC y simulaciones moleculares). Los resultados demuestran una fuerte correlación entre las interacciones químicas en la interfaz fibra/matriz y el desempeño mecánico resultante de los compuestos. Los hallazgos revelaron que un contenido de MAPP del 5 % en peso proporciona una adhesión interfacial óptima y una resistencia mecánica mejorada, contribuyendo al desarrollo de paneles compuestos reciclables y sostenibles, adecuados para aplicaciones industriales como el transporte y la construcción. ( Texto tomado de la fuente) | spa |
| dc.description.abstract | The global transition toward sustainable materials has underscored the relevance of natural fibre-based composites as eco-friendly alternatives to petroleum-derived materials. This study investigates the mechanical and chemical interactions at the interface of fique fibre-reinforced polypropylene (PP) composites. Due to the intrinsic incompatibility between hydrophilic lignocellulosic fibres and the hydrophobic PP matrix, strategies such as fibre surface treatments (mercerization and esterification) and matrix modification using maleic anhydride grafted polypropylene (MAPP) were implemented to improve interfacial adhesion. A comprehensive experimental approach was employed, including micromechanical (microbond pull-out, single fibre tensile tests), macromechanical (tensile and flexural tests), physical (contact angle measurements), and chemical characterizations (FTIR, PZC, and molecular simulations). The findings demonstrate a strong correlation between the chemical interactions at the fibre/matrix interface and the resulting mechanical performance of the composites. Results revealed that a MAPP content of 5 wt.% provides optimal interfacial bonding and mechanical strength, contributing to the development of recyclable, sustainable composite panels suitable for industrial applications such as transportation and construction. | eng |
| dc.description.curriculararea | Ingeniería Mecánica.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ingeniería Mecánica | |
| dc.description.notes | Distinción meritoria | spa |
| dc.description.researcharea | Materiales Compuestos | |
| dc.description.researcharea | Materiales | |
| dc.description.sponsorship | Este trabajo se desarrolló con el apoyo de la convocatoria 890 de Minciencias, bajo el proyecto con código de registro 82508 y nombre "Desarrollo de paneles estructurales amigables con el medio ambiente en materiales compuestos reciclables de matriz polimérica termoplástica reforzado con fibras de fique". | |
| dc.format.extent | 1 recurso en línea (141 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.repo | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89406 | |
| dc.language.iso | eng | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Minas | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería Mecánica | |
| dc.relation.references | N. Uppal, A. Pappu, V. K. S. Gowri and V. K. Thakur, “Cellulosic fibres-based epoxy composites: From bioresources to a circular economy,” Ind. Crops Prod., vol. 182, p. 114895, 2022. DOI: 10.1016/j.indcrop.2022.114895 | |
| dc.relation.references | M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak and M. E. Hoque, “A Review on Pineapple Leaves Fibre and Its Composites,” Int. J. Polym. Sci., vol. 2015, pp. 1-16, 2015. DOI: 10.1155/2015/950567 | |
| dc.relation.references | N. Jaramillo, D. Hoyos and J. F. Santa, “Compuestos de fibra de hoja de piña fabricados mediante moldeo por compresión por capas,” Ing. compet., vol. 18, no. 2, p. 151, 2016. DOI: 10.25100/iyc.v18i2.2163 | |
| dc.relation.references | D. Rajak, D. Pagar, P. Menezes and E. Linul, “Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications,” Polymers, vol. 11, no. 10, p. 1667, 2019. DOI: 10.3390/polym11101667 | |
| dc.relation.references | A. Vinod, M. R. Sanjay, S. Suchart and P. Jyotishkumar, “Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites,” J. Clean. Prod., vol. 258, p. 120978, 2020. DOI: 10.1016/j.jclepro.2020.120978 | |
| dc.relation.references | M. Samanth and K. Subrahmanya Bhat, “Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites,” Sustain. Chem. Clim. Action, vol. 3, p. 100034, 2023. DOI: 10.1016/j.scca.2023.100034 | |
| dc.relation.references | L. Rendón-Castrillón, M. Ramírez-Carmona, C. Ocampo-López, V. Pinedo-Rangel, O. Muñoz-Blandón and E. Trujillo-Aramburo, “The Industrial Potential of Fique Cultivated in Colombia,” Sustainability, vol. 15, no. 1, p. 695, 2023. DOI: 10.3390/su15010695 | |
| dc.relation.references | C. Castro, A. Palencia, I. Gutiérrez, G. Vargas and P. Gañan, “Determination of optimal alkaline treatment conditions for fique fiber bundles as reinforcement of composites materials,” Rev. Tec. la Fac. Ing. Univ. del Zulia, vol. 30, no. 2, pp. 136-142, 2007 | |
| dc.relation.references | P. Gañań and I. Mondragon, “Effect of Fiber Treatments on Mechanical Behavior of Short Fique Fiber-reinforced Polyacetal Composites,” J. Compos. Mater., vol. 39, no. 7, pp. 633-646, 2005. DOI: 10.1177/0021998305047268 | |
| dc.relation.references | G. Idarraga, J. Vargas, M. Jalalvand, J. Meza and L. Yang, “Manufacturing And Mechanical Characterisation Of Unidirectional Fique Fibres Reinforced Polypropylene Composites,” in Proceedings of the 20th European Conference on Composite Materials, Lausanne, 2022 | |
| dc.relation.references | S. Marin Jimenez, “Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials,” Universidad Nacional de Colombia, Medellín, 2022 | |
| dc.relation.references | K. K. Chawla, Composite Materials: Science and Engineering, Springer International Publishing, 2019. DOI: 10.1007/978-3-030-28983-6 | |
| dc.relation.references | M. Kurpińska, M. Pawelska-Mazur, Y. Gu and F. Kurpiński, “The impact of natural fibers’ characteristics on mechanical properties of the cement composites,” Sci. Rep., vol. 12, no. 1, 2022. DOI: 10.1038/s41598-022-25085-6 | |
| dc.relation.references | N. E. ZAFEIROPOULOS, “Engineering the fibre – matrix interface in natural-fibre composites,” in Properties and Performance of Natural-Fibre Composites, Elsevier, 2008., pp. 127-162. DOI: 10.1533/9781845694593.1.127 | |
| dc.relation.references | J. Thomason, “INTERFACES AND INTERFACIAL EFFECTS IN GLASS REINFORCED THERMOPLASTICS,” in proceedings of the 28th Risø International Conference on Materials, Roskilde, 2007 | |
| dc.relation.references | Q. Tarrés, F. Vilaseca, P. J. Herrera-Franco, F. X. Espinach, M. Delgado-Aguilar and P. Mutjé, “Interface and micromechanical characterization of tensile strength of bio-based composites from polypropylene and henequen strands,” Ind. Crops. Prod., vol. 132, pp. 319-326, 2019. DOI: 10.1016/j.indcrop.2019.02.010 | |
| dc.relation.references | H. Oliver-Ortega, M. À. Chamorro-Trenado, J. Soler, P. Mutjé, F. Vilaseca and F. X. Espinach, “Macro and micromechanical preliminary assessment of the tensile strength of particulate rapeseed sawdust reinforced polypropylene copolymer biocomposites for its use as building material,” Constr. Build. Mater., vol. 168, pp. 422-430, 2018. DOI: 10.1016/j.conbuildmat.2018.02.158 | |
| dc.relation.references | J. P. López, S. Boufi, N. E. El Mansouri, P. Mutjé and F. Vilaseca, “PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study,” Compos. B. Eng., vol. 43, no. 8, pp. 3453-3461, 2012. DOI: 10.1016/j.compositesb.2012.01.040 | |
| dc.relation.references | M. Soleimani, L. Tabil, S. Panigrahi, X. Li and B. Crerar, “Compression Molding of Flax Fiber-Polypropylene Composites: Factors Affecting Selected Properties,” in 2006 CSBE/SCGAB, Edmonton, AB Canada, 2006. DOI: 10.13031/2013.22102 | |
| dc.relation.references | P. Gañán and I. Mondragon, “Influence Of Compatibilization Treatments On The Mechanical Properties Of Fique Fiber Reinforced Polypropylene Composites,” Int. J. Polym. Mater., vol. 53, no. 11, pp. 997-1013, 2004. DOI: 10.1080/00914030490516648 | |
| dc.relation.references | J. Vargas, M. Jalalvand and J. M. Meza, “Improving interfacial shear strength of fique fibres using an acrylic coating,” Sci. Prog., vol. 106, no. 4, 2023. DOI: 10.1177/00368504231207199 | |
| dc.relation.references | L. Mishnaevsky Jr., “How to Repair the Next Generation of Wind Turbine Blades,” Energies, vol. 16, no. 23, p. 7694, 2023. DOI: 10.3390/en16237694 | |
| dc.relation.references | J. Vargas, “Análisis interfacial de un material compuesto fabricado en matriz polimérica reforzado con fibras de fique para potenciar sus propiedades mecánicas,” Universidad Nacional de Colombia, Medellín, 2020 | |
| dc.relation.references | O. Muñoz-Blandón, M. Ramírez-Carmona, L. Rendón-Castrillón and C. Ocampo-López, “Exploring the Potential of Fique Fiber as a Natural Composite Material: A Comprehensive Characterization Study,” Polymers, vol. 15, no. 2, p. 2712, 2023. DOI: 10.3390/polym15122712 | |
| dc.relation.references | D. D. Stokke, Q. Wu and G. Han, Introduction to Wood and Natural Fiber Composites, Wiley, 2013. DOI: 10.1002/9780470711804 | |
| dc.relation.references | M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang and H. M. Zeng, “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites,” Compos. Sci. Technol., vol. 61, no. 10, pp. 1437-1447, 2001. DOI: 10.1016/S0266-3538(01)00046-X | |
| dc.relation.references | S. Zuppolini, A. Salama, I. Cruz-Maya, V. Guarino and A. Borriello, “Cellulose Amphiphilic Materials: Chemistry, Process and Applications,” Pharmaceutics, vol. 14, no. 2, p. 386, 2022. DOI: 10.3390/pharmaceutics14020386 | |
| dc.relation.references | B. Zheng, S. Yu, Z. Chen and Y.-X. Huo, “A consolidated review of commercial-scale high-value products from lignocellulosic biomass,” Front. microbiol., vol. 13, 2022. DOI: 10.3389/fmicb.2022.933882 | |
| dc.relation.references | H. L. Richards, P. G. L. Baker and E. Iwuoha, “Metal Nanoparticle Modified Polysulfone Membranes for Use in Wastewater Treatment: A Critical Review,” J. surf. eng. mater. adv. technol., vol. 2, no. 3, pp. 183-193, 2012. DOI: 10.4236/jsemat.2012.223029 | |
| dc.relation.references | A. Komuraiah, N. S. Kumar and B. D. Prasad, “Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties,” Mech. Compos. Mater., vol. 50, no. 3, pp. 359-376, 2014. DOI: 10.1007/s11029-014-9422-2 | |
| dc.relation.references | P. Yamini, S. Rokkala, S. Rishika, P. Meghana Rani and R. Arul Kumar, “Mechanical properties of natural fiber reinforced composite structure,” Mater. Today Proc., 2023. DOI: 10.1016/j.matpr.2023.04.547 | |
| dc.relation.references | S. Arumugam, J. Kandasamy, S. Venkatesan, R. Murugan, V. Lakshmi Narayanan, M. T. H. Sultan, F. S. Shahar, A. U. M. Shah, T. Khan and T. A. Sebaey, “A Review on the Effect of Fabric Reinforcement on Strength Enhancement of Natural Fiber Composites,” Materials, vol. 15, no. 9, p. 3025, 2022. DOI: 10.3390/ma15093025 | |
| dc.relation.references | M. Z. Islam, A. Amiri and C. A. Ulven, “Fatigue Behavior Comparison of Inter-Ply and Intra-Ply Hybrid Flax-Carbon Fiber Reinforced Polymer Matrix Composites,” J. Comp. Sci., vol. 5, no. 7, p. 184, 2021. DOI: 10.3390/jcs5070184 | |
| dc.relation.references | S. Neves Monteiro, F. Salgado de Assis, C. Ferreira, N. Tonini Simonassi, R. Pondé Weber, M. Souza Oliveira, H. Colorado and A. Camposo Pereira, “Fique Fabric: A Promising Reinforcement for Polymer Composites,” Polymers, vol. 10, no. 3, p. 246, 2018. DOI: 10.3390/polym10030246 | |
| dc.relation.references | T. Patwary Plateau, “Evaluation of Tensile Strength of Jute Fiber Reinforced Polypropylene Composite,” Advances in Materials, vol. 6, no. 6, p. 149, 2017. DOI: 10.11648/j.am.20170606.15 | |
| dc.relation.references | M. Sayeed, A. Sayem, J. Haider, S. Akter, M. Habib, H. Rahman and S. Shahinur, “Assessing Mechanical Properties of Jute, Kenaf, and Pineapple Leaf Fiber-Reinforced Polypropylene Composites: Experiment and Modelling,” Polymers, vol. 15, no. 4, p. 830, 2023. DOI: 10.3390/polym15040830 | |
| dc.relation.references | L. F. Ng, S. Dhar Malingam, M. Z. Selamat, Z. Mustafa and O. Bapokutty, “A comparison study on the mechanical properties of composites based on kenaf and pineapple leaf fibres,” Polymer Bulletin, vol. 77, no. 3, pp. 1449-1463, 2019. DOI: 10.1007/s00289-019-02812-0 | |
| dc.relation.references | H. A. Aisyah, M. T. Paridah, S. M. Sapuan, R. A. Ilyas, A. Khalina, N. M. Nurazzi, S. H. Lee and C. H. Lee, “A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites,” Polymers, vol. 13, no. 3, p. 471, 2021. DOI: 10.3390/polym13030471 | |
| dc.relation.references | M. Chanda, Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, CRC Press, 2006 | |
| dc.relation.references | S. H. Akella, D. Ebenezer, S. S. R. S., A. Ahire and N. K. Mal, “Studies on structure property relations of efficient decal substrates for industrial grade membrane electrode assembly development in pemfc,” Sci. Rep., vol. 8, no. 1, 2018. DOI: 10.1038/s41598-018-30215-0 | |
| dc.relation.references | D. A. Jesson and J. F. Watts, “The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification,” Polym. Rev., vol. 52, no. 3, pp. 321-354, 2012. DOI: 10.1080/15583724.2012.710288 | |
| dc.relation.references | L. H. Sharpe, “The Interphase in Adhesion,” J. Adhes., vol. 4, no. 1, pp. 51-64, 1972 | |
| dc.relation.references | M. F. Diop and J. M. Torkelson, “Maleic anhydride functionalization of polypropylene with suppressed molecular weight reduction via solid-state shear pulverization,” Polymer, vol. 54, no. 16, pp. 4143-4154, 2013. DOI: 10.1016/j.polymer.2013.06.003 | |
| dc.relation.references | A. Wattanakornsiri and S. Tongnunui, “Sustainable green composites of thermoplastic starch and cellulose fibers,” Songklanakarin Journal of Science and Technology, vol. 36, pp. 149-161, 2014 | |
| dc.relation.references | T. H. Mokhothu and M. J. John, “Bio-based coatings for reducing water sorption in natural fibre reinforced composites,” Sci. Rep., vol. 7, no. 1, 2017. DOI: 10.1038/s41598-017-13859-2 | |
| dc.relation.references | D. Garcia-Garcia, L. Quiles-Carrillo, N. Montanes, V. Fombuena and R. Balart, “Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin,” Materials, vol. 11, no. 1, p. 35, 2017. DOI: 10.3390/ma11010035 | |
| dc.relation.references | T. Souza Da Rosa, R. Trianoski, F. Michaud, C. Belloncle and S. Iwakiri, “Efficiency of Different Acetylation Methods Applied to Cellulose Fibers Waste from Pulp and Paper Mill Sludge,” J. Nat. Fibers, vol. 19, no. 1, pp. 185-198, 2020. DOI: 10.1080/15440478.2020.1731909 | |
| dc.relation.references | D. Ray, N. R. Bose, A. K. Mohanty and M. Misra, “Modification of the dynamic damping behaviour of jute/vinylester composites with latex interlayer,” Compos. B. Eng., vol. 38, no. 3, pp. 380-385, 2007. DOI: 10.1016/j.compositesb.2006.06.011 | |
| dc.relation.references | J. Subramanian, V. K. Selvaraj, P. Jeya Lal, A. Giridharan, S. Muthukumar Thiagamani, S. Viswanath, S. Siddharth and K. Pandurengan, “An experimental and simulation study on dielectric properties of bio-based kenaf composite laminated with PVC for futuristic applications,” Mater. Today: Proc., 2023. DOI: 10.1016/j.matpr.2023.02.214 | |
| dc.relation.references | C. Hu, Y. Zhou, T. Zhang, T. Jiang and G. Zeng, “Effect of fiber modified by alkali/polyvinyl alcohol coating treatment on properties of sisal fiber plastic composites,” J. Reinf. Plast. Compos., vol. 39, no. 23-24, pp. 880-889, 2020. DOI: 10.1177/0731684420934866 | |
| dc.relation.references | J. Holbery, L. Fifield, K. Denslow, A. Gutowska and K. Simmons, “ROLE OF FIBER ADHESION IN NATURAL FIBER COMPOSITE PROCESSING FOR AUTOMOTIVE APPLICATIONS,” 2005 | |
| dc.relation.references | M. Qiao, H. Kong, X. Ding, L. Zhang and M. Yu, “Effect of graphene oxide coatings on the structure of polyacrylonitrile fibers during pre-oxidation process,” RSC Advances, vol. 9, no. 48, pp. 28146-28152, 2019. DOI: 10.1039/c9ra04732h | |
| dc.relation.references | A. C. Fischer-Cripps, Nanoindentation, Springer New York, 2011. DOI: 10.1007/978-1-4419-9872-9 | |
| dc.relation.references | J. L. Thomason and J. L. Rudeiros-Fernández, “Characterization of interfacial strength in natural fibre – polyolefin composites at different temperatures,” Compos. Interfaces, vol. 29, no. 2, pp. 175-196, 2021. DOI: 10.1080/09276440.2021.1913901 | |
| dc.relation.references | T. Young, “III. An essay on the cohesion of fluids,” Phil. Trans. Roy. Soc. (London), vol. 95, pp. 65-87, 1805. DOI: 10.1098/rstl.1805.0005 | |
| dc.relation.references | W. A. ZISMAN, “Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution,” in Contact Angle, Wettability, and Adhesion, AMERICAN CHEMICAL SOCIETY, 1964, pp. 1-51. DOI: 10.1021/ba-1964-0043.ch001 | |
| dc.relation.references | T. Pongprayoon, N. Yanumet and S. Sangthong, “Surface behavior and film formation analysis of sisal fiber coated by poly(methyl methacrylate) ultrathin film,” Colloids Surf. A: Physicochem. Eng. Asp., vol. 320, no. 1-3, pp. 130-137, 2008. DOI: 10.1016/j.colsurfa.2008.01.050 | |
| dc.relation.references | V. A. Escobar Barrios, J. R. Rangel Méndez, N. V. Pérez Aguilar, G. Andrade Espinosa and J. L. Dávila Rodriguez, “FTIR - An Essential Characterization Technique for Polymeric Materials,” in Infrared Spectroscopy - Materials Science, Engineering and Technology, InTech, 2012. DOI: 10.5772/2055 | |
| dc.relation.references | S. M. Ali, F. Bonnier, H. Lambkin, K. Flynn, V. McDonagh, C. Healy, T. C. Lee, F. M. Lyng and H. J. Byrne, “A comparison of Raman, FTIR and ATR-FTIR micro spectroscopy for imaging human skin tissue sections,” Anal. Methods, vol. 5, no. 9, pp. 2281-2291, 2013. DOI: 10.1039/c3ay40185e | |
| dc.relation.references | P. J. Larkin, “Basic Principles,” in Infrared and Raman Spectroscopy, Elsevier, 2018, pp. 7-28. DOI: 10.1016/b978-0-12-804162-8.00002-1 | |
| dc.relation.references | C. Marcott, M. Lo, E. Dillon, K. Kjoller and C. Prater, “Interface Analysis of Composites Using AFM-Based Nanoscale IR and Mechanical Spectroscopy,” Microscopy Today, vol. 23, no. 2, pp. 38-45, 2015. DOI: 10.1017/s1551929515000036 | |
| dc.relation.references | Frisch, M. J. et al., “Gaussian 16, Revision C.01,” Gaussian Inc, Wallingford CT, 2016 | |
| dc.relation.references | E. Freville, J. P. Sergienko, R. Mujica, C. Rey and J. Bras, “Novel technologies for producing tridimensional cellulosic materials for packaging: A review,” Carbohydrate Polymers, vol. 342, p. 122413, 2024. DOI: 10.1016/j.carbpol.2024.122413 | |
| dc.relation.references | V. C. R. Schmidt and J. B. Laurindo, “Characterization of foams obtained from cassava starch, cellulose fibres and dolomitic limestone by a thermopressing process,” Brazilian Archives of Biology and Technology, vol. 53, no. 1, pp. 185-192, 2010. DOI: 10.1590/s1516-89132010000100023 | |
| dc.relation.references | D. Theng, G. Arbat, M. Delgado-Aguilar, B. Ngo, L. Labonne, P. Mutjé and P. Evon, “Production of fiberboard from rice straw thermomechanical extrudates by thermopressing: influence of fiber morphology, water and lignin content,” European Journal of Wood and Wood Products, vol. 77, no. 1, pp. 15-32, 2018. DOI: 10.1007/s00107-018-1358-0 | |
| dc.relation.references | C. G. Hoyos, V. A. Alvarez, P. G. Rojo and A. Vázquez, “Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application,” Fibers Polym., vol. 13, no. 5, pp. 632-640, 2012. DOI: 10.1007/s12221-012-0632-8 | |
| dc.relation.references | M. Muñoz-Vélez, M. Hidalgo-Salazar and J. Mina-Hernández, “Effect of Content and Surface Modification of Fique Fibers on the Properties of a Low-Density Polyethylene (LDPE)-Al/Fique Composite,” Polymers, vol. 10, no. 10, p. 1050, 2018. DOI: 10.3390/polym10101050 | |
| dc.relation.references | Sabic, “Sabic PP,” 2025. [Online]. Available: https://www.sabic.com/en/products/polymers/polypropylene-pp/sabic-pp. [Accessed March 2025] | |
| dc.relation.references | COACE chemical company limited, “COACE B1A,” 2025. [Online]. Available: https://www.coacechemical.com/product/b1a.html. [Accessed March 2025] | |
| dc.relation.references | Y. Gong, P. Niu, X. Wang, S. Long and J. Yang, “Influence of processing temperatures on fiber dimensions and microstructure of polypropylene/hemp fiber composites,” J. Reinf. Plast., vol. 31, no. 19, pp. 1282-1290, 2012. DOI: 10.1177/0731684412457887 | |
| dc.relation.references | Yallew, T.B.; Kassegn, E.; Aregawi, S; et al., “ Study on effect of process parameters on tensile properties of compression molded natural fiber reinforced polymer composites,” SN Appl. Sci., vol. 2, p. 338, 2020. DOI: 10.1007/s42452-020-2101-0 | |
| dc.relation.references | Jaafar, J., Siregar, J.P., Tezara, C. et al., “A review of important considerations in the compression molding process of short natural fiber composites,” Int. J. Adv. Manuf. Technol., vol. 105, pp. 3437-3450, 2019. DOI: 10.1007/s00170-019-04466-8 | |
| dc.relation.references | P. Gañan and I. Mondragon, “Surface Modification of Fique Fibers: Effects on Their Physico-Mechanical Properties,” Polymer Composites, vol. 23, no. 3, pp. 383-394, 2002. DOI: 10.1002/pc.10440 | |
| dc.relation.references | C. Luchese, J. Engel and I. Tessaro, “A Review on the Mercerization of Natural Fibers: Parameters and Effects,” Korean J. Chem. Eng., vol. 41, pp. 571-587, 2024. DOI: 10.1007/s11814-024-00112-6 | |
| dc.relation.references | J. Naik and S. Mishra, “Esterification Effect of Maleic Anhydride on Swelling Properties of Natural Fiber/High Density Polyethylene Composites,” J. Appl. Polym. Sci., vol. 106, p. 2571–2574, 2007. DOI: 10.1002/app.25329 | |
| dc.relation.references | C. A. Schneider, W. S. Rasband and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7, pp. 671-675, 2012. DOI: 10.1038/nmeth.2089 | |
| dc.relation.references | N. Farhan, H. Aziz and H. Tafreshi, “Simple method for measuring intrinsic contact angle of a fiber with liquids,” Exp. Fluids, vol. 60, p. 87, 2019. DOI: 10.1007/s00348-019-2733-2 | |
| dc.relation.references | C. Maier and T. Calafut, Polypropylene: The Definitive User's Guide and Databook, Norwich, NY: Plastics Design Library, 1998 | |
| dc.relation.references | K. Bastidas, M. Pereira and C. Z. H. Sierra, “Study and characterization of the lignocellulosic Fique (Furcraea Andina spp.) fiber,” Cellulose, vol. 29, pp. 2187-2198, 2022. DOI: 10.1007/s10570-021-04377-6 | |
| dc.relation.references | Minitab, LLC., “Minitab Statistical Software, Version 22,” Minitab, LLC, 2024 | |
| dc.relation.references | A. Noori, Y. Lu, P. Saffari, J. Liu and J. Ke, “The effect of mercerization on thermal and mechanical properties of bamboo fibers as a biocomposite material: A review,” Construction and Building Materials, vol. 279, p. 122519, 2021. DOI: 10.1016/j.conbuildmat.2021.122519 | |
| dc.relation.references | J. George, M. Sreekala and S. Thomas, “A review on interface modification and characterization of natural fiber reinforced plastic composites,” Polym. Eng. Sci., vol. 41, pp. 1471-1485, 2001. DOI: 10.1002/pen.10846 | |
| dc.relation.references | J. Lu, Q. Wu and I. Negulescu, “The Influence of Maleation on Polymer Adsorption and Fixation, Wood Surface Wettability, and Interfacial Bonding Strength in Wood-PVC Composites,” Wood and Fiber Science, vol. 34, no. 3, pp. 434-459, 2002 | |
| dc.relation.references | J. Sinebe, J. Chukwuneke and S. Omenyi, “Implications of Interfacial Energetics on Mechanical Strength of Fiber Reinforced Polymer Matrix,” Int. J. Mater. Eng., vol. 9, no. 1, pp. 1-7, 2019. DOI: 10.5923/j.ijme.20190901.01 | |
| dc.relation.references | P. Gopalakrishnan, R. Saiah, R. Gattin and J. Marc, “Effect of mercerization of flax fibers on wheat flour/flax fiber biocomposite with respect to thermal and tensile properties,” Composite Interfaces, vol. 15, no. 7-9, pp. 759-770, 2008. DOI: 10.1163/156855408786778348 | |
| dc.relation.references | Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz and C. Mai, “Silane coupling agents used for natural fiber/polymer composites: A review,” Composites Part A: Applied Science and Manufacturing, vol. 41, no. 7, pp. 806-819, 2010. DOI: 10.1016/j.compositesa.2010.03.005 | |
| dc.relation.references | G. Cantero, A. Arbelaiz, R. Llano-Ponte and I. Mondragon, “Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites,” Composites Science and Technology, vol. 63, no. 9, pp. 1247-1254, 2003. DOI: 10.1016/s0266-3538(03)00094-0 | |
| dc.relation.references | PIKE Technologies, “Crystal Selection for ATR,” [Online]. Available: https://www.piketech.com/atr-crystal-selection/. [Accessed 26 June 2024] | |
| dc.relation.references | R. Nayak, S. Houshyar, A. Khandual, R. Padhye and S. Fergusson, “Identification of natural textile fibres,” in Handbook of Natural Fibres, Elsevier, 2020. DOI: 10.1016/b978-0-12-818398-4.00016-5, pp. 503-534 | |
| dc.relation.references | R. Nandanwar, A. Chaudhari and J. Ekhe, “Nitrobenzene Oxidation for Isolation of Value Added Products from Industrial Waste Lignin,” J. Chem. Bio. Phy. Sci. Sec. D, vol. 6, no. 3, pp. 501-513, 2016 | |
| dc.relation.references | P. S. Sejati, F. Obounou Akong, F. Fradet and P. Gérardin, “Wood Esterification by Fatty Acids Using Trifluoroacetic Anhydride as an Impelling Agent and Its Application for the Synthesis of a New Bioplastic,” Materials, vol. 16, no. 21, p. 6830, 2023. DOI: 10.3390/ma16216830 | |
| dc.relation.references | I. Prabowo, J. Pratama and M. Chalid, “The effect of modified ijuk fibers to crystallinity of polypropylene composite,” IOP Conference Series: Materials Science and Engineering, vol. 223, p. 012020, 2017. DOI: 10.1088/1757-899x/223/1/012020 | |
| dc.relation.references | H. R. Nafchi, M. Abdouss, S. K. Najafi, R. M. Gargari and M. Mazhar, “Effects of nano-clay particles and oxidized polypropylene polymers on improvement of the thermal properties of wood plastic composite,” Maderas, Cienc. tecnol., vol. 17, no. 1, 2015. DOI: 10.4067/S0718-221X2015005000005 | |
| dc.relation.references | A. Tarbuk, A. M. Grancarić, D. Đorđević and M. Šmelcerović, “ADSORPTION OF PLANT EXTRACTS ON CATIONIZED COTTON,” Zbornik radova Tehnološkog fakulteta u Leskovcu, vol. 19, pp. 257-264, 2009 | |
| dc.relation.references | B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam and O. Krim, “Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study,” World Journal of Environmental Engineering, vol. 3, no. 4, pp. 95-110, 2015. DOI: 10.12691/wjee-3-4-1 | |
| dc.relation.references | G. Jeffrey, An introduction to hydrogen bonding, Oxford University Press, 1997 | |
| dc.relation.references | M. Farahani, R. Bagheri and B. Marouf, “Investigation on the onset and progress of stress whitening in polypropylene using digital image processing,” Polym. Bull., vol. 81, p. 7139–7156, 2024. DOI: 10.1007/s00289-023-05045-4 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | |
| dc.subject.lemb | Productos del petroleo | |
| dc.subject.lemb | Polipropileno | |
| dc.subject.proposal | Natural fibres | eng |
| dc.subject.proposal | Composites | eng |
| dc.subject.proposal | MAPP | eng |
| dc.subject.proposal | Interface | eng |
| dc.subject.proposal | Polypropylene | eng |
| dc.subject.proposal | Fibras naturales | spa |
| dc.subject.proposal | Compuestos | spa |
| dc.subject.proposal | MAPP | spa |
| dc.subject.proposal | Interfaz | spa |
| dc.subject.proposal | Polipropileno | spa |
| dc.title | Study of the mechanical and chemical relationship at the interface of fique fibres/polypropylene composite | eng |
| dc.title.translated | Estudio de la relación mecánica y química en la interfaz de un compuesto de fibras de fique/polipropileno | spa |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Especializada | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.awardtitle | Convocatoria Minciencias número 890 de 2020: Convocatoria para el fortalecimiento de CTeI en Instituciones de Educación Superior | |
| oaire.fundername | Ministerio de Ciencia, Tecnología e Innovación de Colombia - MINCIENCIAS |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1036676135.2025.pdf
- Tamaño:
- 4.5 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Mecánica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

