Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering

dc.contributor.advisorOlaya Flórez, Jhon Jairo
dc.contributor.advisorPiamba Tulcán, Oscar Edwin
dc.contributor.authorRamos Adame, Lizeth Vanessa
dc.date.accessioned2024-01-17T16:38:46Z
dc.date.available2024-01-17T16:38:46Z
dc.date.issued2023-12
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn esta investigación, se depositaron recubrimientos nanoestructurados de CrTiAlN-Ni sobre sustratos de metal duro K20, vidrio, silicio (100) y acero inoxidable AISI 316L mediante la técnica HiPIMS (High Power Impulse Sputtering); se estudiaron sus propiedades y comportamientos para establecer el efecto del Ni en el desgaste y en la resistencia a la corrosión electroquímica de los recubrimientos. Los recubrimientos obtenidos fueron nombrados de acuerdo con el número de piezas de Ni puestas en el blanco de cromo durante los depósitos, por lo cual, se obtuvieron los siguientes sistemas: CrTiAlN-0Ni, CrTiAlN-1Ni, CrTiAlN-3Ni, CrTiAlN-5Ni y CrTiAlN-9Ni. Se utilizaron técnicas de caracterización con el propósito de establecer la relación del contenido de Ni y las propiedades estructurales, mecánicas, tribológicas y anticorrosivas de los recubrimientos para lo cual fue necesario utilizar difracción de rayos X (DRX), espectroscopia de rayos X de energía dispersiva (EDS), microscopía electrónica de barrido (SEM), prueba de nanoindentación, pin-on-disc, prueba scratch, espectroscopía de impedancia electroquímica (EIS) y prueba de polarización potenciodinámica (PP). En los patrones de difracción se encontraron picos asociados al níquel presentes en los recubrimientos depositados sobre sustrato 316L, que permitieron intuir que átomos libres de Ni favorecieron la formación de una fase amorfa en los picos de DRX; sin embargo, no fue posible establecer un efecto de refinamiento del tamaño de cristalito. El análisis de las imágenes SEM sugirió que la morfología superficial es más densa y uniforme con la adición de Ni en el recubrimiento que permitió mejorar la dureza del recubrimiento con 0,08 % at. de Ni. La ausencia de un voltaje bias durante los procesos de deposición, una capa intermedia o un pretratamiento pudieron ser las razones principales de la baja adherencia de los recubrimientos. Además, la incorporación de poco contenido de Ni influyó significativamente en el desempeño tribológico y las propiedades mecánicas de los recubrimientos estudiados. Los fenómenos de corrosión identificados después de las pruebas PP y EIS corresponden a corrosión uniforme con pitting. (Texto tomado de la fuente)spa
dc.description.abstractIn recent decades, Colombia has positioned itself as a world leader in the flower industry. However, this thriving sector faces environmental challenges, with waste generation being a constant concern. In context, carnation waste production in the country is 1500 kg/month per hectare, of which an average of 10% is used in composting and the remaining 90% is usually given as animal feed, which has been questioned for magnifying pesticides in the food chain. Thus, the search for sustainable and efficient solutions for the degradation of plant residues has become a priority in this agricultural sector. One alternative that has been studied is the direct use of microorganisms with lignocellulolytic capacity. Biocultivos S.A. and the Institute of Biotechnology of the National University of Colombia - IBUN developed an inoculum from Penicillium sp. HC1 to accelerate the degradation of lignocellulosic material. This bioinput presents challenges aligned to the production and quality of its conidia in submerged fermentation and, therefore, the present work evaluated different culture conditions on the production of Penicillium sp. HC1, as well as its use in the degradation of plant material residues from carnation residue crops in search of product improvement. This research did not show significant changes in the final product using CaCl2. On the other hand, the influence of various complex additives such as casamino acids, branched amino acids, other supplements and vitamins when added to the liquid culture medium on the production of Penicillium sp. HC1 was studied, and positive results were found. Concentrations of 13 g/L of casamino acids improve the production of biomass and conidia 6% and 11%, respectively, with respect to the control (base medium). Similarly, the so- called test amino acids (PA) in this research proved to be an effective and more economical replacement for casamino acids, also improving the viability and productivity of Penicillium sp. HC1 conidia. However, thermal tolerance did not show progress. This was solved by adding vitamins, obtaining a 64% increase in thermal tolerance with respect to the initial product. Additionally, the effect of three air flows in the submerged fermentation process in a stirred tank was explored, achieving a significant improvement in the product at 2.5 vvm. In summary, biomass improved 27%, conidia 16%, viability 76% and thermal tolerance 54% in the bioreactor product. Finally, the use of Penicillium sp. HC1 from the MBAP VIT culture medium produced at 2.5 vvm was validated, thus satisfying an agricultural need in the floriculture industry, which is constantly looking for alternatives for the management of its plant residues. This research demonstrated the improvement in the acceleration of carnation waste degradation using Penicillium sp. HC1, achieving favorable results in co-cultures with Pleurotus ostreatus T1.1.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaIngeniería de superficiesspa
dc.format.extentxvii, 149 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85347
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesD. J. Lockwood et al., “Nanostructured Coatings Nanostructure Science and Technology.”spa
dc.relation.referencesH. C. Barshilia, N. Selvakumar, B. Deepthi, and K. S. Rajam, “A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings,” Surf Coat Technol, vol. 201, no. 6, pp. 2193–2201, Dec. 2006, doi: 10.1016/j.surfcoat.2006.03.037.spa
dc.relation.referencesG. A. Zhang, P. X. Yan, P. Wang, Y. M. Chen, and J. Y. Zhang, “The structure and tribological behaviors of CrN and Cr-Ti-N coatings,” Appl Surf Sci, vol. 253, no. 18, pp. 7353–7359, Jul. 2007, doi: 10.1016/j.apsusc.2007.02.061.spa
dc.relation.referencesP. L. Tam, Z. F. Zhou, P. W. Shum, and K. Y. Li, “Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions,” Thin Solid Films, vol. 516, no. 16, pp. 5725–5731, Jun. 2008, doi: 10.1016/j.tsf.2007.07.127.spa
dc.relation.referencesP. C. Wo, P. R. Munroe, Z. T. Jiang, Z. Zhou, K. Y. Li, and Z. Xie, “Enhancing toughness of CrN coatings by Ni addition for safety-critical applications,” Materials Science and Engineering A, vol. 596, pp. 264–274, Feb. 2014, doi: 10.1016/j.msea.2013.12.064.spa
dc.relation.referencesS. Tan, X. Zhang, R. Zhen, Z. Tian, and Z. Wang, “Effect of Ni content on CrNiN coatings prepared by RF magnetron sputtering,” Vacuum, vol. 120, no. PA, pp. 54–59, Jun. 2015, doi: 10.1016/j.vacuum.2015.06.017.spa
dc.relation.referencesC. Sha, P. Munroe, Z. Zhou, and Z. Xie, “Effect of Ni content on the microstructure and mechanical behaviour of CrAlNiN coatings deposited by closed field unbalanced magnetron sputtering,” Surf Coat Technol, vol. 357, pp. 445–455, Jan. 2019, doi: 10.1016/j.surfcoat.2018.10.052.spa
dc.relation.referencesC. He et al., “Microstructure and mechanical properties of reactive sputtered nanocrystalline Ti-Al-Ni-N thin films,” Surf Coat Technol, vol. 320, pp. 472–477, Jun. 2017, doi: 10.1016/j.surfcoat.2016.11.079.spa
dc.relation.referencesK. Holmberg, H. Ronkainen, A. Laukkanen, and K. Wallin, “Friction and wear of coated surfaces - scales, modelling and simulation of tribomechanisms,” Surf Coat Technol, vol. 202, no. 4–7, pp. 1034–1049, Dec. 2007, doi: 10.1016/j.surfcoat.2007.07.105.spa
dc.relation.references“Nanocomposite Hard Coatings for Wear Protection.” [Online]. Available: http://advertisers.mrs.orgspa
dc.relation.referencesP. W. Shum, K. Y. Li, Z. F. Zhou, and Y. G. Shen, “Structural and mechanical properties of titanium-aluminium-nitride films deposited by reactive close-field unbalanced magnetron sputtering,” Surf Coat Technol, vol. 185, no. 2–3, pp. 245–253, Jul. 2004, doi: 10.1016/j.surfcoat.2003.12.011spa
dc.relation.referencesY. J. Kim, H. Y. Lee, S. I. Kim, J. G. Han, and K. S. Kim, “Microstructural and Mechanical Properties of CrTiAlN Nanocomposite Thin Films Synthesized by Closed Field Unbalanced Magnetron Sputtering,” 2007.spa
dc.relation.referencesH. Zhang, S. Duo, X. Fei, X. Xu, T. Liu, and Y. Wang, “Effect of CrTiAlN coatings on high-temperature oxidation behavior of H13 steel,” in Key Engineering Materials, Trans Tech Publications Ltd, 2012, pp. 343–346. doi: 10.4028/www.scientific.net/KEM.544.343.spa
dc.relation.referencesA. Georgiadis, G. G. Fuentes, E. Almandoz, A. Medrano, J. F. Palacio, and A. Miguel, “Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400 °C,” Mater Chem Phys, vol. 190, pp. 194–201, Apr. 2017, doi: 10.1016/j.matchemphys.2017.01.021.spa
dc.relation.referencesJ. Lin, X. Zhang, Y. Ou, and R. Wei, “The structure, oxidation resistance, mechanical and tribological properties of CrTiAlN coatings,” Surf Coat Technol, vol. 277, pp. 58–66, Sep. 2015, doi: 10.1016/j.surfcoat.2015.07.013.spa
dc.relation.referencesQ. Wang, F. Zhou, and J. Yan, “Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests,” Surf Coat Technol, vol. 285, pp. 203–213, Jan. 2016, doi: 10.1016/j.surfcoat.2015.11.040.spa
dc.relation.referencesE. N. Borja-Goyeneche and J. J. Olaya-Florez, “A microstructural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering,” DYNA (Colombia), vol. 85, no. 207, pp. 192–207, Oct. 2018, doi: 10.15446/dyna.v85n207.73304.spa
dc.relation.referencesM. Mišina, J. Musil, and S. Kadlec, “Composite TiN-Ni thin films deposited by reactive magnetron sputter ion-plating,” 1998.spa
dc.relation.referencesH. Gleiter, “NANOSTRUCTURED MATERIALS: BASIC CONCEPTS AND MICROSTRUCTURE p.” [Online]. Disponible: www.elsevier.com/locate/actamatspa
dc.relation.referencesJ. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein Journal of Nanotechnology, vol. 9, no. 1. Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, pp. 1050–1074, Apr. 03, 2018. doi: 10.3762/bjnano.9.98.spa
dc.relation.referencesH. Samir and V. Parra, “Recubrimientos funcionales de (Zr, Ag, Si) N y (Zr, Cu, Si) N producidos por la técnica de cosputtering magnetrón reactivo."spa
dc.relation.references“Simulation of wear and friction,” Tribology Series, vol. 44, pp. 13–23, 2004, doi: 10.1016/s0167-8922(04)80018-x.spa
dc.relation.referencesR. L. Boxman, S. Vepřek, and A. Raveh, “Hard Coatings Vacuum Arcs View project Teaching Scientific Writing View project,” 2014. [Online]. Available: https://www.researchgate.net/publication/245229890spa
dc.relation.referencesN. I. M. Nadzri, A. Khemar, J. A. Wahab, and M. M. Mahat, “High Entropy Alloy towards Functional Materials Application: A Review,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jan. 2022. doi: 10.1088/1742-6596/2169/1/012007.spa
dc.relation.references“Nanocomposite Hard Coatings for Wear Protection.” [Online]. Available: http://advertisers.mrs.orgspa
dc.relation.referencesH. Caliskan, P. Panjan, and C. Kurbanoglu, “Hard Coatings on Cutting Tools and Surface Finish,” in Comprehensive Materials Finishing, Elsevier Inc., 2017, pp. 230–242. doi: 10.1016/B978-0-12-803581-8.09178-5.spa
dc.relation.referencesR. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs-A review,” Science and Technology of Advanced Materials, vol. 8, no. 7–8. pp. 588–600, Oct. 2007. doi: 10.1016/j.stam.2007.08.005.spa
dc.relation.referencesH. 0 Pierson, “HANDBO OK OF REFRAC TORY CARBID ES AND NITRIDE S Propertie s, Characte ristics, Processin g and Applicatio ns,” 1996.spa
dc.relation.referencesV. К. Prokudina, “Titanium Nitride,” in Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, Elsevier, 2017, pp. 398–401. doi: 10.1016/b978-0-12-804173-4.00160-5.spa
dc.relation.referencesS. Zhang and W. Zhu, “TiN coating of tool steels: a review,” 1993.spa
dc.relation.referencesA. Ruden and A. R. Muñoz, “ANALISIS ESTRUCTURAL, SUPERFICIAL Y TRIBOLOGICO DE RECUBRIMIENTOS DE NITRURO DE CROMO (CrN) SINTETIZADO POR MAGNETRON SPUTTERING REACTIVO DC STRUCTURAL, SURFACE AND TRIBOLOGICAL ANALYZED OF CRN THIN FILMS BY REACTIVE MAGNETRÓN SPUTTERING DC."spa
dc.relation.referencesY. Baik and R. A. L. Drew, “Aluminum nitride: Processing and applications,” Key Eng Mater, no. 122–124, pp. 553–570, 1996, doi: 10.4028/www.scientific.net/kem.122-124.553.spa
dc.relation.referencesA. Egeberg, L. Warmuth, S. Riegsinger, D. Gerthsen, and C. Feldmann, “Pyridine-based low-temperature synthesis of CoN, Ni3N and Cu3N nanoparticles,” Chemical Communications, vol. 54, no. 71, pp. 9957–9960, 2018, doi: 10.1039/c8cc04893b.spa
dc.relation.references“Surface engineering for wear resistance”.spa
dc.relation.referencesR. A. Buchanan and E. E. Stansbury, “Electrochemical Corrosion,” in Handbook of Environmental Degradation of Materials: Second Edition, Elsevier Inc., 2012, pp. 87–125. doi: 10.1016/B978-1-4377-3455-3.00004-3.spa
dc.relation.referencesP. R. Roberge, Handbook of corrosion engineering. McGraw-Hill, 2000.spa
dc.relation.referencesJ. R. (Joseph R. ) Davis, Surface engineering for corrosion and wear resistance. ASM International, 2001.spa
dc.relation.referencesA. Baptista, F. Silva, J. Porteiro, J. Míguez, and G. Pinto, “Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement andmarket trend demands,” Coatings, vol. 8, no. 11. MDPI AG, 2018. doi: 10.3390/COATINGS8110402.spa
dc.relation.references“Handbook of Sputter Deposition Technology.”spa
dc.relation.referencesV. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, and I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities,” 1999. [Online]. Available: www.elsevier.nl/locate/surfcoatspa
dc.relation.referencesC. Badini et al., “Thermal shock and oxidation behavior of HiPIMS TiAlN coatings grown on Ti-48Al-2Cr-2Nb intermetallic alloy,” Materials, vol. 9, no. 12, 2016, doi: 10.3390/ma9120961.spa
dc.relation.referencesL. Zauner et al., “Reactive HiPIMS deposition of Ti-Al-N: Influence of the deposition parameters on the cubic to hexagonal phase transition,” Surf Coat Technol, vol. 382, Jan. 2020, doi: 10.1016/j.surfcoat.2019.125007.spa
dc.relation.referencesH. Elmkhah, F. Attarzadeh, A. Fattah-alhosseini, and K. H. Kim, “Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques,” J Alloys Compd, vol. 735, pp. 422–429, Feb. 2018, doi: 10.1016/j.jallcom.2017.11.162.spa
dc.relation.referencesR. Bandorf, V. Sittinger, and G. Bräuer, “High Power Impulse Magnetron Sputtering - HIPIMS,” in Comprehensive Materials Processing, Elsevier Ltd, 2014, pp. 75–99. doi: 10.1016/B978-0-08-096532-1.00404-0.spa
dc.relation.referencesA. Mishra, P. J. Kelly, and J. W. Bradley, “The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate,” Plasma Sources Sci Technol, vol. 19, no. 4, 2010, doi: 10.1088/0963-0252/19/4/045014.spa
dc.relation.referencesJ. W. Bradley, A. Mishra, and P. J. Kelly, “The effect of changing the magnetic field strength on HiPIMS deposition rates,” J Phys D Appl Phys, vol. 48, no. 21, Jun. 2015, doi: 10.1088/0022-3727/48/21/215202.spa
dc.relation.references“Deposición de peliculas delgadas de TiN”.Tesis, CIMAV. [Online]. Avaible: https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/913/3/TESIS%20DEPOSICION%20DE%20PELICULAS%20DELGADAS.pdfspa
dc.relation.referencesJ. A. Thornton, “HIGH RATE THICK FILM GROWTH,” 1977. [Online]. Available: www.annualreviews.orgspa
dc.relation.referencesJ. A. Thornton, “Structure-Zone Models of Thin Films.” [Online]. Available: http://spiedl.org/termsspa
dc.relation.referencesR. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 2, no. 2, pp. 500–503, Apr. 1984, doi: 10.1116/1.572604.spa
dc.relation.referencesJ. Epp, “X-Ray Diffraction (XRD) Techniques for Materials Characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Elsevier Inc., 2016, pp. 81–124. doi: 10.1016/B978-0-08-100040-3.00004-3.spa
dc.relation.referencesA. A. Bunaciu, E. gabriela Udriştioiu, and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Critical Reviews in Analytical Chemistry, vol. 45, no. 4. Taylor and Francis Ltd., pp. 289–299, Oct. 02, 2015. doi: 10.1080/10408347.2014.949616.spa
dc.relation.references“Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing 1”, doi: 10.1520/C1624-05R10.spa
dc.relation.referencesG. Instruments, “Getting Started with Electrochemical Corrosion Measurement.”spa
dc.relation.referencesA. Doménech-Carbó, L. Machado De Carvalho, M. Martini, D. P. Valencia, and G. Cebrián-Torrejón, “Electrochemical monitoring of the pharmacological activity of natural products,” in Studies in Natural Products Chemistry, Elsevier B.V., 2015, pp. 59–84. doi: 10.1016/B978-0-444-63473-3.00003-4.spa
dc.relation.referencesA. Georgiadis, G. G. Fuentes, E. Almandoz, A. Medrano, J. F. Palacio, and A. Miguel, “Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400 °C,” Mater Chem Phys, vol. 190, pp. 194–201, Apr. 2017, doi: 10.1016/j.matchemphys.2017.01.021.spa
dc.relation.referencesY. Xu, L. Chen, Z. Liu, F. Pei, and Y. Du, “Influence of Ti on the mechanical properties, thermal stability and oxidation resistance of Al-Cr-N coatings,” Vacuum, vol. 120, no. PA, pp. 127–131, Jul. 2015, doi: 10.1016/j.vacuum.2015.07.004.spa
dc.relation.referencesM. A. Baker, P. J. Kench, C. Tsotsos, P. N. Gibson, A. Leyland, and A. Matthews, “Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 23, no. 3, pp. 423–433, May 2005, doi: 10.1116/1.1875212.spa
dc.relation.referencesZ. R. Liu, B. Peng, Y. X. Xu, Q. Zhang, Q. Wang, and L. Chen, “Influence of Ni-addition on mechanical, tribological properties and oxidation resistance of AlCrSiN coatings,” Ceram Int, vol. 45, no. 3, pp. 3735–3742, Feb. 2019, doi: 10.1016/j.ceramint.2018.11.039.spa
dc.relation.referencesJ. Liang, S. Chen, C. Zou, C. Tian, Z. Wang, and S. Liao, “Influence of oxygen contents on the microstructure, high temperature oxidation and corrosion resistance properties of Cr-Si-O-N Coatings,” Coatings, vol. 8, no. 1, Jan. 2018, doi: 10.3390/coatings8010019.spa
dc.relation.referencesS. Veprek and M. G. J. Veprek-Heijman, “Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature,” in Thin Solid Films, Nov. 2012, pp. 274–282. doi: 10.1016/j.tsf.2012.08.048.spa
dc.relation.referencesA. P. Ehiasarian, “High-power impulse magnetron sputtering and its applications,” in Pure and Applied Chemistry, 2010, pp. 1247–1258. doi: 10.1351/PAC-CON-09-10-43.spa
dc.relation.referencesJ. Jin, D. Zheng, S. Han, J. Ma, and Z. Zhu, “Effect of Ni content on the electrical and corrosion properties of CrNiN coating in simulated proton exchange membrane fuel cell,” Int J Hydrogen Energy, vol. 42, no. 2, pp. 1142–1153, Jan. 2017, doi: 10.1016/j.ijhydene.2016.11.007.spa
dc.relation.referencesN. D. Nam, J. H. Ahn, N. E. Lee, and J. G. Kim, “Electrochemical evaluation of the reliability of plasma-polymerized methylcyclohexane films,” Mater Res Bull, vol. 45, no. 3, pp. 269–274, Mar. 2010, doi: 10.1016/j.materresbull.2009.12.024.spa
dc.relation.referencesR. Cabrera-Sierra, J. Marín-Cruz, and I. González, “Comunicaciones técnicas,” Bol. Soc. Quím. Méx, vol. 1, no. 1, pp. 32–41, 2007.spa
dc.relation.referencesU. Piratoba and A. Marino, “magnetic dilute semiconductors (DMS) View project Obtención y caracterizacion de recubrimientos de Nitruro de cromo mediante magnetron sputtering View project,” 2010. [Online]. Available: https://www.researchgate.net/publication/303145142spa
dc.relation.referencesC. Liliana and E. Peña, “Resistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas.”spa
dc.relation.referencesC. Lipson and L. Vern Colwell, “Handbook of mechanical wear: wear, frettage, pitting, cavitation, corrosion,” Literary Licensing, LLC (21 Julio 2012), ISBN-10: 1258442272spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembAcero inoxidablespa
dc.subject.lembSteel, stainlesseng
dc.subject.proposalRecubrimiento nanoestructuradospa
dc.subject.proposalNanostructured coatingeng
dc.subject.proposalHiPIMSeng
dc.subject.proposalCrTiAlN
dc.subject.proposalDesgastespa
dc.subject.proposalWeareng
dc.subject.proposalCorrosión electroquímicaspa
dc.subject.proposalElectrochemical corrosioneng
dc.titleCrecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputteringspa
dc.title.translatedGrowth and characterization of nanostructured coatings CrTiAlN-Ni deposited by co-sputtering techniqueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1118567227.2023.pdf
Tamaño:
3.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría Maestría en Ingeniería - Materiales y Procesos parte
Cargando...
Miniatura
Nombre:
1118567227.2023.pdf
Tamaño:
3.15 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: