Diseño y validación interna de un instrumento de autoinforme para caracterizar las estrategias de aprendizaje de programación de computadores

dc.contributor.advisorRamírez Echeverry, Jhon Jairo
dc.contributor.advisorRestrepo Calle, Felipe
dc.contributor.authorTorres Jiménez, Stephanie
dc.contributor.researchgroupPLaS - Programming Languages and Systemsspa
dc.date.accessioned2021-08-02T17:38:23Z
dc.date.available2021-08-02T17:38:23Z
dc.date.issued2021
dc.descriptionilustraciones, tablasspa
dc.description.abstractEn virtud de la gran acogida que la programación de computadores ha tenido en los últimos años tanto en la academia como en la industria, una inmensa mayoría de universidades la han incluido en sus currículos de Ingeniería. Sin embargo, la complejidad que la programación representa para muchos estudiantes producen altos niveles de deserción y pérdida de las asignaturas relacionadas con este conocimiento. Diversos autores han empleado instrumentos de autoinforme para determinar los aspectos que influyen positivamente durante el proceso de aprendizaje de la programación y que a su vez permiten lograr un aprendizaje significativo. Aunque en el marco del aprendizaje autorregulado se evidencia una gran cantidad de instrumentos que caracterizan aspectos como la motivación, no se encuentra un instrumento enfocado en la caracterización de las estrategias de aprendizaje de la programación de computadores. En ese sentido, este trabajo de investigación explora e identifica diferentes estrategias de aprendizaje con el objetivo de recopilarlas en un instrumento de autoinforme, el cual se denominó Cuestionario sobre Estrategias de Aprendizaje de la Programación de Computadores - CEAPC. La construcción del CEAPC se logró gracias a los procesos de diseño y validación llevados a cabo a través de una metodología mixta compuesta por métodos cuantitativos, como el Análisis Factorial Exploratorio y el cálculo del coeficiente del α de Cronbach, y métodos cualitativos como los grupos focales y las entrevistas semi-estructuradas. Los resultados fueron positivos en cuanto a las propiedades psicométricas obtenidas para el instrumento, como la validez de constructo y los índices de confiabilidad. Cuenta por un lado, con ítems de cargas factoriales mayores a 0.3 y por otro lado con valores de α de Cronbach entre 0.6 y 0.8, los cuales son aceptables de acuerdo con la literatura. Cabe resaltar que este instrumento permitirá identificar las estrategias que influyen en un proceso de aprendizaje profundo de la programación de computadores y, además, dará la posibilidad de determinar el rol que desempeña la autorregulación en el aprendizaje en esta área en particular. Así mismo, la caracterización de las estrategias de aprendizaje autorregulado, llevada a cabo a través del instrumento propuesto, permitirá plantear modos de aprendizaje fuera y dentro del aula. (Texto tomado de la fuente)spa
dc.description.abstractDue to the great reception of computer programming in recent years, both in academia and in industry, several universities have included it in their Engineering curricula. However, the complexity that programming represents to many students produces high dropout rates and failing grades in subjects related to this knowledge. Various authors have used self-report instruments to determine the aspects that positively influence the programming learning process and allow significant learning to be achieved. Although there is evidence of a large number of instruments in self-regulated learning that characterize aspects such as motivation, there is no instrument focused on characterizing the learning strategies of computer programming. In this sense, this research explores and identifies different learning strategies to compile them in a self-report instrument, which was called Cuestionario sobre Estrategias de Aprendizaje de la Programación de Computadores - CEAPC. The construction of the CEAPC was achieved thanks to the design and validation processes carried out through a mixed methodology composed of quantitative methods, such as Exploratory Factor Analysis and the calculation of the coefficient of Cronbach’s α, and qualitative methods such as focus groups and semi-structured interviews. The results were positive regarding the psychometric properties obtained for the instrument, such as construct validity and reliability indices. On the one hand, items had factor loadings greater than 0.3 and, on the other hand, values of Cronbach’s α range between 0.6 and 0.8, which are acceptable according to the literature. It should be noted that this instrument will allow identifying the strategies that influence a profound learning process of computer programming and, determining the role that self-regulation plays in learning in this particular area. Likewise, the characterization of the self-regulated learning strategies accomplished through the proposed instrument will allow proposing of learning modes outside and inside the classroom. (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaComputación Aplicada - Educación en Ingenieríaspa
dc.format.extent176 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79877
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAmbrosio, A. P., Almeida, L., Franco, A., Martins, S. & Georges, F. (2012). Assessment of self-regulated attitudes and behaviors of introductory programming students. Proceedings - Frontiers in Education Conference, FIE, 1-6. https://doi.org/10.1109/FIE.2012.6462314spa
dc.relation.referencesAron, J. D. (1974). The Program Development Process, Addison-Wesley.spa
dc.relation.referencesBabakus, E. & Mangold, W. G. (1992). Adapting the SERVQUAL Scale to Hospital Services: An empirital investigation.spa
dc.relation.referencesBandura, A. (2005). Guide for constructing self-efficacy scales. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesBegel, A. & Simon, B. (2008). Novice software developers, all over again. ICER’08 - Proceedings of the ACM Workshop on International Computing Education Research, 1(425), 3-14. https://doi.org/10.1145/1404520.1404522spa
dc.relation.referencesBerger, J.-L. & Karabenick, S. A. (2011). Motivation and students’ use of learning strategies: Evidence of unidirectional effects in mathematics classrooms. Learning and Instruction, 416-428.spa
dc.relation.referencesBergin, S., Reilly, R. & Traynor, D. (2005). Examining the role of self-regulated learning on introductory programming performance. First International Workshop on Computing Education Research, 81-86. https://doi.org/10.1145/1089786.1089794spa
dc.relation.referencesBiggs, J. B. (1987). Study Process Questionnaire Manual. https://files.eric.ed.gov/fulltext/ED308200.pdfspa
dc.relation.referencesBishop-Clark, C. (1995). Cognitive style, personality, and computer programming. Computers in Human Behavior, 11(2), 241-260. https://doi.org/10.1016/0747-5632(94)00034-Fspa
dc.relation.referencesBoekaerts, M. (1996). Self-regulated Learning at the Junction of Cognition and Motivation.spa
dc.relation.referencesBoekaerts, M. (1999). Motivated learning: Studying student * situation transactional units. https://doi.org/10.1007/BF03173110spa
dc.relation.referencesBryman, A. (2012). Social Reseach Methods (4th, Vol. 66). Oxford University Press.spa
dc.relation.referencesCárdenas, S. F. (2013). Los constructos en las investigaciones pedagógicas: cuantificación y tratamiento estadístico. Revista Científico Pedagógica, 24(23).spa
dc.relation.referencesCarretero-Dios, H. & Pérez, C. (2005). Normas para el desarrollo y revisión de estudios instrumentales. International Journal of Clinical and Health Psychology, 5(3), 521-551.spa
dc.relation.referencesCaruso, T., Hill, N., Van DeGrift, T. & Simon, B. (2011). Experience report: Getting novice programmers to THINK about improving their software development process. SIGCSE’11 - Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, 493-498. https://doi.org/10. 1145/1953163.1953307spa
dc.relation.referencesCastellanos, H., Restrepo-Calle, F., González, F. A. & Echeverry, J. J. R. (2017). Understanding the relationships between self-regulated learning and students source code in a computer programming course. Proceedings - Frontiers in Education Conference, FIE, 2017-Octob, 1-9. https://doi.org/10.1109/FIE.2017.8190467spa
dc.relation.referencesCetin, I. & Ozden, M. Y. (2015). Development of computer programming attitude scale for university students. Computer Applications in Engineering Education, 23(5), 667-672. https://doi.org/10.1002/cae.21639spa
dc.relation.referencesChen, C. & Whitesel, J. (2012). The Validity and Reliability Study of a Revised Motivated Strategy for Learning Questionnaire (MSLQ) for Assessing Computer Software Learning Strategies. International Journal of E-Adoption, 4(2), 28-51. https://doi.org/10.4018/jea.2012040103spa
dc.relation.referencesCheng, G., Poon, L. K., Lau, W. W. & Zhou, R. C. (2019). Applying eye tracking to identify students’ use of learning strategies in understanding program code. ACM International Conference Proceeding Series, 140-144. https://doi.org/10.1145/3345120.3345144spa
dc.relation.referencesChyung, Y. S., Moll, A. J. & Berg, S. A. (2010). The Role of Intrinsic Goal Orientation, Self-Efficacy, and E-Learning Practice in Engineering Education.spa
dc.relation.referencesCicchinelli, A., Veas, E., Pardo, A., Pammer-Schindler, V., Fessl, A., Barreiros, C. & Lindstädt, S. (2018). Finding traces of self-regulated learning in activity streams. Proceedings of the 8th International Conference on Learning Analytics and Knowledge - LAK ’18, 191-200. https://doi.org/10.1145/3170358.3170381spa
dc.relation.referencesClement, C. A., Kurland, D. M., Mawby, R. & Pea, R. D. (1986). Analogical Reasoning and Computer Programming. Journal of Educational Computing Research, 2(4), 473-486. https://doi.org/10.2190/dfh5-e0pg-1ml4-m34jspa
dc.relation.referencesCreswell, J. W. (2009). Design: Qualitative, Quantitative, and Mixed Methods Approaches. Sage Publications.spa
dc.relation.referencesCroasmun, J. T. . & Ostrom, L. (2011). Using Likert-type scales in the social sciences.spa
dc.relation.referencesCurione, K. & Huertas, J. A. (2017). MSLQ-UY , validation with Uruguayan university students. 17(2),1-17.spa
dc.relation.referencesDanielsiek, H., Toma, L. & Vahrenhold, J. (2017). An instrument to assess self-Efficacy in introductory algorithms courses. ACM International Computing Education Research, 9(1), 56-65. https://doi.org/10.1145/3105726.3106171spa
dc.relation.referencesDawes, J. (2008). Do data characteristics change according to the number of scale points used? An experiment using 5-point, 7-point and 10- point scales. International Journal of Market Research, 61-104.spa
dc.relation.referencesDecker, A. & McGill, M. M. (2019). A topical review of evaluation instruments for computing education. SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 558-564. https://doi.org/10.1145/3287324.3287393spa
dc.relation.referencesDemir, O. & Seferoglu, S. S. (2020). A Comparison of Solo and Pair Programming in Terms of Flow Experience, Coding Quality, and Coding Achievement. Journal of Educational Computing Research, 1-19.spa
dc.relation.referencesDíaz-Bravo, L., Torruco-García, U., Martínez-Hernández, M. & Varela-Ruiz, M. (2013). La Entrevista, Recurso Flexible y Dinámico. Investigación en educación médica, 2(7), 162-167.spa
dc.relation.referencesDorn, B. & Elliott Tew, A. (2015). Empirical validation and application of the computing attitudes survey. Computer Science Education, 25(1), 1-36.spa
dc.relation.referencesEbomoyi, J. I. (2020). Metacognition and Peer Learning Strategies as Predictors in Problem-Solving Performance in Microbiology. 21(1).spa
dc.relation.referencesEltegani, N. & Butgereit, L. (2015). Attributes of students engagement in fundamental programming learning. Proceedings - 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering, ICCNEEE 2015, 101-106. https://doi.org/10.1109/ICCNEEE.2015.7381438spa
dc.relation.referencesEntwistle, N. & McCune, V. (2004). The conceptual bases of study strategy inventories. Educational Psychology Review, 16(4), 325-345. https://doi.org/10.1007/s10648-004-0003-0spa
dc.relation.referencesEscobar-Avila, J., Venuti, D., Di Penta, M. & Haiduc, S. (2019). A survey on online learning preferences for computer science and programming. Proceedings - 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering Education and Training, ICSE-SEET 2019, 41, 170-181. https://doi.org/10.1109/ICSE-SEET.2019.00026spa
dc.relation.referencesFalkner, K., Vivian, R. & Falkner, N. J. (2014). Identifying computer science self-regulated learning strategies. ITICSE 2014 - Proceedings of the 2014 Innovation and Technology in Computer Science Education Conference, 291-296. https://doi.org/10.1145/2591708.2591715spa
dc.relation.referencesFerrando, P. J. & Anguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en psicología. Papeles del Psicólogo, 31, 28-33.spa
dc.relation.referencesFuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jackova, J., Lahtinen, E., Lewis, T. L., Thompson, D. M., Riedesel, C. & Thompson, E. (2007). Developing a computer science-specific learning taxonomy. ACM SIGCSE Bulletin, 39(4), 152-170. https://doi.org/10.1145/1345375.1345438spa
dc.relation.referencesGallego-Romero, J. M., Alario-Hoyos, C., Estévez-Ayres, I. & Delgado Kloos, C. (2020). Analyzing learners’ engagement and behavior in MOOCs on programming with the Codeboard IDE. https://doi.org/10.1007/s11423-020-09773-6spa
dc.relation.referencesGarcia, R., Falkner, K. & Vivian, R. (2018). Systematic literature review: Self-Regulated Learning strategies using e-learning tools for Computer Science. Computers and Education, 123, 150-163. https://doi.org/10.1016/j.compedu.2018.05.006spa
dc.relation.referencesGarcía, T. & McKeachie, W. (2006). The Making of the Motivated Strategies for Learning Questionnaire. Journal of the American Mathematical Society, 19(3), 717-736. https://doi.org/10.1090/S0894-0347-05-00517-5spa
dc.relation.referencesGonzález-Torres, M.-C. & Torrano, F. (2012). Methods and instruments for measuring self-regulated learning. En A. Valle y J. C. Nunez (Eds.), Handbook of Instructional Resources & Applications. Nova Science Publishers, Inc.spa
dc.relation.referencesHamui-Sutton, A. & Varela-Ruiz, M. (2013). La técnica de grupos focales. Investigación en Educación Médica, 2(5), 55-60. https://doi.org/10.1016/s2007-5057(13)72683-8spa
dc.relation.referencesHulin, C., Netemeyer, R. & Cudeck, R. (2001). Can a Reliability Coefficient Be Too High?spa
dc.relation.referencesInzunza, B., Pérez, C., Márquez, C., Ortiz, L., Marcellini, S. & Duk, S. (2016). Estructura Factorial y Confiabilidad del Cuestionario de Motivación y Estrategias de Aprendizaje, MSLQ, en Estudiantes Universitarios Chilenos de Primer Año. https://doi.org/10.21865/RIDEP47.2.02spa
dc.relation.referencesJackson, C. R. (2018). Validating and Adapting the Motivated Strategies for Learning Questionnaire (MSLQ) for STEM Courses at an HBCU. AERA Open, 4, 1-16. https://doi.org/10.1177/2332858418809346spa
dc.relation.referencesJacobse, A. E. & Harskamp, E. G. (2012). Towards efficient measurement of metacognition in mathematical problem solving. Metacognition and Learning, 7(2), 133-149. https://doi.org/10.1007/s11409-012-9088-xspa
dc.relation.referencesJuarez-Ramirez, R., Navarro, C. X., Tapia-Ibarra, V., Macias-Olvera, R. & Guerra-Garcia, C. (2019). What is Programming? Putting all Together - A Set of Skills Required. 2018 6th International Conference in Software Engineering Research and Innovation (CONISOFT), 11-20. https://doi.org/10.1109/conisoft.2018.8645956spa
dc.relation.referencesKonecki, M. (2014). Problems in Programming Education and Means of Their Improvement. https://doi.org/10.2507/daaam.scibook.2014.37spa
dc.relation.referencesKorkmaz, Ö., Çakir, R. & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558-569. https://doi.org/10.1016/j.chb.2017.01.005spa
dc.relation.referencesKumar, V., Winne, P., Hadwin, A., Nesbit, J., Jamieson-Noel, D., Calvert, T. & Samin, B. (2005). Effects of self-regulated learning in programming. Fifth IEEE International Conference on Advanced Learning Technologies (ICALT’05), 383-387. https://doi.org/10.1109/ICALT.2005.131spa
dc.relation.referencesLinhorst, D. M. (2002). A Review of the Use and Potential of Focus Groups in Social Work Research. Qualitative Social Work, 1(2), 208-228.spa
dc.relation.referencesLoksa, D. & Ko, A. J. (2016). The Role of Self-Regulation in Programming Problem Solving Process and Success. Proceedings of the 2016 ACM Conference on International Computing Education Research -ICER ’16, 83-91. https://doi.org/10.1145/2960310.2960334spa
dc.relation.referencesLoksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J. & Burnett, M. M. (2016). Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1449-1461. https://doi.org/10.1145/2858036.2858252spa
dc.relation.referencesMcDougall, A., Boyle, M., Pellas, N. & Peroutseas, E. (2016). Student Strategies for Learning Computer Programming: Implications for Pedagogy in Informatics. Journal of Educational Computing Research, 54(2), 109-116. https://doi.org/10.1023/B:EAIT.0000027924.69726.b5spa
dc.relation.referencesMcGill, T. J. & Volet, S. E. (1997). A conceptual framework for analyzing students’ knowledge of programming. Journal of Research on Computing in Education, 29(3), 276-297. https://doi.org/10.1080/08886504.1997.10782199spa
dc.relation.referencesMéndez Martínez, C. & Sepúlveda Rondón, M. A. (2012). Introducción al análisis factorial exploratorio. Revista Colombiana de Psiquiatría, 41(1), 197-207. https://doi.org/10.1016/s0034-7450(14)60077-9spa
dc.relation.referencesMuñiz, J., Elosua, P. & Hambleton, R. (1975). International Test Commission Guidelines for Test Translation and Adaptation. https://doi.org/10.1111/j.1464-0597.1975.tb00322.xspa
dc.relation.referencesNassar-McMillan, S. C., Wyer, M., Oliver-Hoyo, M. & Ryder-Burge, A. (2010). Using Focus Groups in Preliminary Instrument Development: Expected and Unexpected Lessons Learned Sylvia. The Qualitative Report, 15(6), 1621-1634.spa
dc.relation.referencesNausheen, M. (2016). An Adaptation of the Motivated Strategies for Learning Questionnaire (MSLQ) for Postgraduate Students in Pakistan: Results of an Exploratory Factor Analysis An Adaptation of the MSLQ for PGS in Pakistan: Results of an Exploratory Factor Analysis. Bulletin of Education and Research, 38(1), 1-16.spa
dc.relation.referencesNiemczyk, M. C. & Savenye, W. C. (2001). The Relationship of student motivation and self-regulated learning strategies to performance in an undergraduate computer literacy course. Papers Presented at the National Convention of the Association for Educational Communications and Technology, 311-322.spa
dc.relation.referencesOsterlind, S. J. (1991). Constructing Test Items: Multiple-Choice, Constructed-Response, Performance, and Other Formats (Vol. 14). https://doi.org/10.1016/0149-7189(91)90058-ospa
dc.relation.referencesOstroff, C. & Kozlowski, S. W. (1992). Organizational Socialization As a Learning Process: the Role of Information Acquisition. https://doi.org/10.1111/j.1744-6570.1992.tb00971.xspa
dc.relation.referencesOtt, C., Robins, A., Haden, P. & Shephard, K. (2015). Illustrating performance indicators and course characteristics to support students’ self-regulated learning in CS1. Computer Science Education, 25(2), 174-198. https://doi.org/10.1080/08993408.2015.1033129spa
dc.relation.referencesPanadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. https://doi.org/10.3389/fpsyg.2017.00422spa
dc.relation.referencesPark, H., Kim, K., Robertson, C. & Kim, D. (2019). The Effect of Memorization on the Retention and Learning Acquisition of Programming Practice. Journal of Strategic Innovation and Sustainability, 14(2), 129-135. https://doi.org/10.33423/jsis.v14i2.1378spa
dc.relation.referencesPedrosa, D., Cravino, J., Morgado, L. & Barreira, C. (2016). Self-regulated learning in computer programming: Strategies students adopted during an assignment. Communications in Computer and Information Science, 621, 87-101. https://doi.org/10.1007/978-3-319-41769-1_7spa
dc.relation.referencesPedrosa, D., Cravino, J., Morgado, L. & Barreira, C. (2017). Self-regulated learning in higher education: strategies adopted by computer programming students when supported by the SimProgramming approach. Production, 27(spe), 1-15. https://doi.org/10.1590/0103-6513.225516spa
dc.relation.referencesPett, M. & Lackey, N. (2003). Making Sense of Factor Analysis (Vol. 50). https://doi.org/10.4135/9781412984898spa
dc.relation.referencesPintrich, P. R. & De Groot, E. V. (1990). Motivational and Self-Regulated Learning Components of Classroom Academic Performance. Anzeiger für Schädlingskunde, 3(2), 13-15. https://doi.org/10.1007/BF02338175spa
dc.relation.referencesPintrich, P. R., Smith, D. A. F., Garcia, T. & Mckeachie, W. J. (1991). A Manual for the Use of the Learning Questionnaire Motivated Strategies for (MSLQ). https://doi.org/10.5901/mjss.2015.v6n1p156spa
dc.relation.referencesPintrich, P. R., Smith, D. A. F., Garcia, T. & Mckeachie, W. J. (1993). Reliability and Predictive Validity of the Motivated Strategies for Learning Questionnaire (Mslq). Educational and Psychological Measurement, 53(3), 801-813. https://doi.org/10.1177/0013164493053003024spa
dc.relation.referencesPorter, R. & Calder, P. (2004). Patterns in learning to program: an experiment? http://dl.acm.org/citation.cfm?id=980000spa
dc.relation.referencesPrather, J., Pettit, R., Becker, B. A., Denny, P., Loksa, D., Peters, A., Albrecht, Z. & Masci, K. (2019). First Things First: Providing Metacognitive Scaffolding for Interpreting Problem Prompts. Proceedings of the 50th ACM Technical Symposium on Computer Science Education - SIGCSE ’19, 531-537. https://doi.org/10.1145/3287324.3287374spa
dc.relation.referencesRafique, W., Dou, W., Hussain, K. & Ahmed, K. (2020). Factors influencing programming expertise in a web-based e-learning paradigm. Online Learning Journal, 24(1), 162-181. https://doi.org/10. 24059/olj.v24i1.1956spa
dc.relation.referencesRamalingam, V. & Wiedenbeck, S. (2005). Development and Validation of Scores on a Computer Programming Self-Efficacy Scale and Group Analyses of Novice Programmer Self-Efficacy. Journal of Educational Computing Research, 19(4), 367-381. https://doi.org/10.2190/c670-y3c8-ltj1-ct3pspa
dc.relation.referencesRamírez, M. d. C., Canto, J. E., Bueno, J. A. & Echazarreta, A. (2013). Validación Psicométrica del Motivated Strategies for Learning Questionnaire en Universitarios Mexicanos. Electronic Journal of Research in Educational Psychology, 11(1).spa
dc.relation.referencesRamírez Echeverry, J. J., Rosales Castro, L. F., Restrepo Calle, F. & González, F. A. (2018). Self-regulated learning in a computer programming course. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 13(2), 75-83. https://doi.org/10.1109/RITA.2018.2831758spa
dc.relation.referencesRamírez-Echeverry, J. J., García-Carrillo, À. & Olarte Dussán, F. A. (2016). Adaptation and Validation of the Motivated Strategies for Learning Questionnaire - MSLQ - in Engineering Students in Colombia. International Journal of Engineering Education, 32(4), 1774-1787.spa
dc.relation.referencesRenumol, V., Jayaprakash, S. & Janakiram, D. (2009). Classification of cognitive difficulties of students to learn computer programming. Indian Institute of Technology, India, 12.spa
dc.relation.referencesRodríguez-Mesa, F., Kolmos, A. & Du, X. (2017). Diversidad del PBL - Principios y modelos de apren. Aprendizaje basado en problemas en ingeniería Teoría y práctica.spa
dc.relation.referencesRovers, S. F., Clarebout, G., Savelberg, H. H., de Bruin, A. B. & van Merriënboer, J. J. (2019). Granularity matters: comparing different ways of measuring self-regulated learning. Metacognition and Learning, 1-19. https://doi.org/10.1007/s11409-019-09188-6spa
dc.relation.referencesRum, S. N. & Ismail, M. (2016). Metacognitive awareness assessment and introductory computer programming course achievement at university. International Arab Journal of Information Technology, 13(6), 667-676.spa
dc.relation.referencesSabogal, L. F., Barraza, E., Hernández, A. & Zapata, L. (2011). Validación del cuestionario de motivación y estrategias de aprendizaje forma corta-MSLQ SF, en estudiantes universitarios de una institución pública-Santa Marta. Psicogente, 14(25), 36-50.spa
dc.relation.referencesSaks, K., Leijen, Ä., Edovald, T. & Õun, K. (2015). Cross-cultural Adaptation and Psychometric Properties of the Estonian Version of MSLQ. Procedia - Social and Behavioral Sciences, 191, 597-604. https://doi.org/10.1016/j.sbspro.2015.04.278spa
dc.relation.referencesSchellings, G. (2011). Applying learning strategy questionnaires: Problems and possibilities. Metacognition and Learning, 6(2), 91-109. https://doi.org/10.1007/s11409-011-9069-5spa
dc.relation.referencesSchellings, G. & Van Hout-Wolters, B. (2011). Measuring strategy use with self-report instruments: theoretical and empirical considerations. Metacognition and Learning, 6(2), 83-90. https://doi.org/10.1007/s11409-011-9081-9spa
dc.relation.referencesSchellings, G. L., Van Hout-Wolters, B. H., Veenman, M. V. & Meijer, J. (2013). Assessing metacognitive activities: The in-depth comparison of a task-specific questionnaire with think-aloud protocols. European Journal of Psychology of Education, 28(3), 963-990. https://doi.org/10.1007/s10212-012-0149-yspa
dc.relation.referencesSchraw, G. & Sperling, R. (1994). Assesing Metacognitive Awareness.spa
dc.relation.referencesSmrithi Rekha, V. & Venkatapathy, S. (2015). Understanding the usage of online forums as learning platforms. Procedia Computer Science, 46(Icict 2014), 499-506. https: / /doi.org /10.1016 /j.procs.2015.02.074spa
dc.relation.referencesSoemantri, D., McColl, G. & Dodds, A. (2018). Measuring medical students’ reflection on their learning: Modification and validation of the motivated strategies for learning questionnaire (MSLQ). https://doi.org/10.1186/s12909-018-1384-yspa
dc.relation.referencesSoloway, E. & Ehrlich, K. (1984). Empirical Studies of Programming Knowledge. Ieee Transactions on Software Engineering, 10(5), 595-609.spa
dc.relation.referencesSuárez, O. & Mora, C. (2016). Adaptación y validación del inventario MSLQ para los cursos iniciales de física en la educación superior. Latin American Journal of Physics Education, 10(3), 1-11.spa
dc.relation.referencesSusac, A., Bubic, A., Kaponja, J., Planinic, M. & Palmovic, M. (2014). Eye movements reveals student’s strategies in simple equation solving. International Journal of Science and Mathematics Education, 555-577.spa
dc.relation.referencesTek, F. B., Benli, K. S. & Deveci, E. (2018). Implicit Theories and Self-Efficacy in an Introductory Programming Course. IEEE Transactions on Education, 61(3), 218-225. https://doi.org/10.1109/TE.2017.2789183spa
dc.relation.referencesTong, F., Guo, H., Wang, Z., Min, Y., Guo, W. & Yoon, M. (2019). Examining cross-cultural transferability of self- regulated learning model: an adaptation of the Motivated Strategies for Learning Questionnaire for Chinese adult learners. https://doi.org/10.1080/03055698.2019.1590183spa
dc.relation.referencesTsai, C. Y. (2019). Improving students’ understanding of basic programming concepts through visual programming language: The role of self-efficacy. Computers in Human Behavior, 95(May 2018), 224-232. https://doi.org/10.1016/j.chb.2018.11.038spa
dc.relation.referencesUrsachi, G., Horodnic, I. A. & Zait, A. (2013). How reliable are measurement scales? External factors with indirect influence on reliability estimators. 7th International Conference on Globalization and Higher Education in Economics and Business Administration GEBA.spa
dc.relation.referencesWatson, J. C. (2017). Establishing evidence for internal structure using exploratory factor analysis. https://doi.org/10.1080/07481756.2017.1336931spa
dc.relation.referencesWeinstein, C. E. & Mayer, R. E. (1986). The teaching of learning strategies. En M. C. Wittrock (Handbooko). MacMillan.spa
dc.relation.referencesWeinstein, C Palmen, D. (1990). LASSI-HS User’s Manual, 1-32.spa
dc.relation.referencesWhittall, S. J., Prashandi, W. A. C., Himasha, G. L. S., Silva, D. I. D. & Suriyawansa, T. K. (2017). CodeMage: Educational Programming Environment For Beginners. 9th International Conference on Knowledge and Smart Technology (KST), Chonburi, 2017, pp. 311-316., 311-316.spa
dc.relation.referencesWilliams, B., Onsman, A. & Brown, T. (1996). Exploratory factor analysis: A five-step guide for novices. Journl of Emergency Primary Health Care, 19(May), 42-50. https://doi.org/10.1080/09585190701763982spa
dc.relation.referencesWinne, P. H. & Perry, N. E. (2000). Measuring Self-Regulated Learning. Handbook of Self-Regulation.spa
dc.relation.referencesWolters, C. A. & Pintrich, P. R. (1998). Contextual differences in student motivation and self-regulated learning in mathematics, English, and social studies classrooms. (August 1995), 27-47.spa
dc.relation.referencesZhao, W. X., Zhang, W., He, Y., Xie, X. & Wen, J. R. (2018). Automatically learning topics and difficulty levels of problems in online judge systems. https://doi.org/10.1145/3158670spa
dc.relation.referencesZimmerman, B. J. (1989). Models of Self-Regulated Learning and Academic Achievement. Springer Series in Cognitive Development (p. 25). Springer, New York, NY.spa
dc.relation.referencesZimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview. Theory into practice, 41(2), 64-67. https://doi.org/10.1207/s15430421tip4102spa
dc.relation.referencesZimmerman, B. (1989). A social cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3), 329-339. https://doi.org/10.1037/0022-0663.81.3.329spa
dc.relation.referencesZimmermann, S. A., Weinstein, C. E. & Palmer, D. R. (1988). Assessing learning strategies: the design and development of the lassi. Learning and Study Strategies(pp. 25-40). ACADEMIC PRESS, INC. https://doi.org/10.1016/b978-0-12-742460-6.50009-8spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.proposalAprendizaje autorreguladospa
dc.subject.proposalProgramación de computadoresspa
dc.subject.proposalEstrategias de aprendizajespa
dc.subject.proposalInstrumento de autoinformespa
dc.subject.proposalCEAPCeng
dc.subject.proposalpropiedad psicométricaspa
dc.subject.proposalMSLQeng
dc.subject.proposalLASSIeng
dc.subject.proposalSelf-regulated learningeng
dc.subject.proposalComputer programmingeng
dc.subject.proposalLearning strategieseng
dc.subject.proposalSelf-report instrumenteng
dc.subject.proposalPsychometric propertyeng
dc.subject.spinesProgramación de computadores
dc.subject.spinesComputer programming
dc.subject.unescoMétodo de enseñanza
dc.subject.unescoTeaching methods
dc.titleDiseño y validación interna de un instrumento de autoinforme para caracterizar las estrategias de aprendizaje de programación de computadoresspa
dc.title.translatedDesign and internal validation of a self-report instrument to characterize computer programming learning strategieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023924965.2021.pdf
Tamaño:
710.47 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: