City safety perception model based on street images using machine learning and image processing techniques

dc.contributorCamargo Mendoza, Jorge Eliecerspa
dc.contributor.authorAcosta Lenis, Sergio Franciscospa
dc.date.accessioned2019-07-03T10:30:53Zspa
dc.date.available2019-07-03T10:30:53Zspa
dc.date.issued2018-03-18spa
dc.description.abstractAbstract: Safety perception measurement has been a subject of interest in many cities of the world. This importance is due to its social relevance, and to its influence on many of the economic activities that take place in a city. The methods and procedures presented in this work make use of image processing and machine learning techniques to model citizen's safety perception using visual information of city street images. Even though people safety perception is a subjective topic, results show that it is possible to find out common patterns given a limited geographical and sociocultural context, and based on people judgment of the visual appearance of a street image. Technics based on Support Vector Machines and Neural Networks are presented. The exposed models along with ranking methods are used to predict how safe a given street of Bogotá City is perceived. Results suggest that the obtained models can detect different patterns, where a common visual feature of a street or an urban environment, is linked to an activity or street condition that has a significant influence on their associated safety perception. This feature makes the proposed models an alternative tool for decision makers concerning urban planning, safety, and public health policies, as well as a collective memory associated with a particular urban environment.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/71630/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/69617
dc.language.isospaspa
dc.relationhttp://wmodi.com/spa
dc.relationhttp://wmodi.com/spa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemasspa
dc.relation.ispartofIngeniería de Sistemasspa
dc.relation.referencesAcosta Lenis, Sergio Francisco (2018) City safety perception model based on street images using machine learning and image processing techniques. Maestría thesis, Universidad Nacional de Colombia Bogotá.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc37 Educación / Educationspa
dc.subject.ddc53 Física / Physicsspa
dc.subject.ddc6 Tecnología (ciencias aplicadas) / Technologyspa
dc.subject.ddc62 Ingeniería y operaciones afines / Engineeringspa
dc.subject.proposalUrban safety perceptionspa
dc.subject.proposalTransfer learningspa
dc.subject.proposalDeep learningspa
dc.subject.proposalSupport vector machinespa
dc.subject.proposalTrueSkillspa
dc.titleCity safety perception model based on street images using machine learning and image processing techniquesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
SergioFranciscoAcostaLenis.2019.pdf
Tamaño:
8.28 MB
Formato:
Adobe Portable Document Format