Desarrollo tecnológico de una harina de plátano adicionada con probióticos y prebióticos utilizando el secado por ventana de refractancia

dc.contributor.advisorRodriguez-Barona, Sneyder
dc.contributor.advisorCortés Rodríguez, Misael
dc.contributor.authorLondoño Sierra, Andrés Felipe
dc.contributor.researchgroupBacterias Acido Lácticas y sus aplicaciones Biotecnologicasindustrialesspa
dc.contributor.researchgroupGaf (Grupo de Alimentos Funcionales)spa
dc.date.accessioned2025-02-22T16:03:14Z
dc.date.available2025-02-22T16:03:14Z
dc.date.issued2024
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractEl plátano es un alimento primordial en países tropicales, produciendo un impacto sobre la seguridad alimentaria. La generación de valor en la agrocadena a partir de la aplicación de nuevas tecnologías o tecnologías mejoradas contribuye a mejorar su competitividad, al desarrollar ingredientes alimentarios con múltiples aplicaciones y alimentos con potencial funcional y ente ellos alimentos funcionales probióticos (AFP). Estos han ganado popularidad en los últimos años debido a sus beneficios sobre la salud, sobre todo en las esferas digestiva, cardiovascular, inmunitaria y mental de los consumidores. El vehículo tradicional de los alimentos probióticos han sido las matrices lácteas, sin embargo, la intolerancia a la lactosa, cada vez más frecuente, limita su consumo. Esto ha impulsado la exploración de matrices no lácteas para la producción de AFP. La presente investigación fue desarrollada por los grupos de investigación en Bacterias Ácido Lácticas y sus Aplicaciones Biotecnológicas e Industriales (GIBALABI) y en Alimentos Funcionales (GAF), adscritos a la Universidad Nacional de Colombia, y en alianza con la Universidad de Caldas y Tecnoparque SENA seccional Caldas, en el marco del proyecto de investigación “Evaluación de los cambios físicos, estructurales y funcionales ocurridos en el almidón durante la aplicación de tratamientos tecnológicos en el proceso de obtención de un alimento funcional probiótico a base de harina de plátano”. El objetivo de la presente investigación fue desarrollar una harina de plátano adicionada con prebióticos y probióticos, usando la tecnología de ventana de secado, una tecnología de secado no convencional, que busca conservar las características fisicoquímicas, tecno-funcionales, microbiológicas y funcionales de los alimentos. Para lograr este objetivo, se plantea la realización de una revisión de literatura acerca de las matrices no lácteas empleadas para producir AFP en el capítulo 1, seguido de una etapa experimental para desarrollar la harina de plátano adicionada con prebióticos y probióticos en el capítulo 2. En el capítulo 1 se realizó una revisión bibliográfica reciente (últimos 10 años) acerca de las matrices alimenticias no lácteas que se han explorado para producir AFP. La revisión examina el estado del arte en términos de matrices no lácteas y su impacto sobre la viabilidad celular, además de abordar parámetros de selección y uso de probióticos en alimentos. También se mencionan aspectos generales acerca de los beneficios que otorgan los AFP sobre la salud y plantea perspectivas futuras que justifican la necesidad de seguir investigando en este campo del conocimiento, como es el caso del reciente descubrimiento de los paraprobióticos (probióticos no viables o sus fracciones y componentes celulares libres) y su efecto sobre las características fisiológicas mejoradas, constituyendo el inicio de la ruptura del paradigma de requerir garantizar alta viabilidad celular de los probióticos para la manifestación de beneficios fisiológicos en los consumidores. Estos hallazgos plantean nuevas perspectivas en el desarrollo de AFP en general, abriendo un campo de investigación poco explorado hasta el momento. En el capítulo 2 se llevó a cabo la investigación experimental de producción de harina de plátano adicionada con prebióticos y probióticos, desarrollada en tres fases a escala laboratorio. En la primera fase, se evaluó la estabilidad fisicoquímica de tres suspensiones de plátano verde sin probióticos (SPSP) formuladas con distintas fracciones másicas de sólidos totales aportados por el plátano (XTS) (0.18 – 0.24), y adicionada con encapsulantes (maltodextrina) (MD) (1,58 %p/p), prebiótico (inulina) (INU) (1,58 %p/p) y acidulante (ácido cítrico) (AC) (0,32 %p/p), utilizando un diseño unifactorial completamente aleatorizado, considerando las variables dependientes: humedad (Xw), sólidos totales (TS), sólidos solubles (SS), viscosidad (μ) y potencial Z (ζ). Los resultados de Xw, μ y ζ señalaron una mayor estabilidad fisicoquímica en las SPSP con XTS = 0.24 en comparación con 0.18 y 0.21, obteniendo una suspensión con los siguientes atributos fisicoquímicos: Xw = 75,3 ± 0,8%, TS = 24,7± 0,82%, SS = 4.6± 0.0°Bx, μ = 844,7 ± 25,3 cP y ζ = -25,2 ± 0,8 mV. Sin embargo, el ANOVA no mostró diferencias significativas (p<0.05) de ninguna variable dependiente con respecto a XTS, mientras que la prueba de Diferencia Mínima Significativa (LSD) mostró diferencias significativas (p<0.05) entre los valores de Xw y TS obtenidos a una XTS de 0.21 y 0.24. Esto indicó que las tres formulaciones se comportaron estadísticamente como un solo grupo homogéneo, por lo que XTS fue considerada como variable independiente en el diseño experimental del proceso de secado de la fase 2; En la segunda fase se desarrolló una harina de plátano adicionada con prebióticos y probióticos, utilizando la tecnología de secado por ventana de refractancia (RWD). Se evaluó el proceso de RWD de las SPSP, utilizando la metodología de superficie de respuesta con un diseño experimental central compuesto cara centrada (α=1) (20 experimentos), considerando las variables independientes: fracción másica de sólidos totales aportados por el plátano (XTS) (0.18 – 0.24), temperatura del agua de calentamiento (T) (50 – 70°C) y tiempo de secado (t) (2 – 3 h), y las variables dependientes: humedad (Xw), actividad de agua (aw), solubilidad (S), higroscopicidad (Hy), humectabilidad (We), tamaño de partícula (D[3,2]) y ángulo de reposo (α). El ANOVA demostró diferencias significativas (p<0.05) de la Xw, aw y Hy con respecto a XTS, T y t y a sus interacciones lineales, ya que altas T favorece la difusión del agua en el producto y, al mismo tiempo, bajos t produce una menor fuerza motriz a la transferencia de calor que deriva en la evaporación efectiva del agua, mientras la monocapa del producto queda saturada por falta de afinidad del almidón y otros carbohidratos de plátano hacia el agua, evitando beneficiar su capacidad de adsorción. Las condiciones óptimas de proceso de RWD fueron XTS=0.24, T=68°C, t=2 h, con las que se obtiene una harina de plátano sin probióticos (HPSP) con los siguientes atributos de calidad: Xw = 5,1%, aw = 0,163, S = 17,4%, Hy = 14,5%, We = 38,0 s, D[3,2] = 79,3 μm, α = 14,9°. Una vez obtenida la formulación con mejores características tecno-funcionales y las condiciones óptimas de proceso, se incorporó la biomasa probiótica (Bacillus coagulans ATCC 7050) al 2, 4, 6 y 8%p/p a la SPSP. La suspensión de plátano verde con probióticos (SPCP) fue secada a las condiciones óptimas del proceso de RWD para producir una harina de plátano verde con probióticos (HPCP) con una concentración celular probiótica (N) de 10,4 ± 0,6 Log UFC/g, y viabilidad celular máximas del 91,12% con un 8%p/p de biomasa adicionada; el mayor rendimiento de encapsulación (RE) (16.97%) fue obtenido al agregar un 2% p/p de biomasa a la HPSP; En la tercera fase se evaluó el almacenamiento de la HPCP obtenida con la mayor viabilidad, utilizando un diseño factorial completamente aleatorizado en función de las variables independientes: t (0, 1, 2, 3, 4, 5 y 6 meses) y temperatura de almacenamiento (T) (15, 25 y 35 °C), y de las variables dependientes: Xw, aw, S, Hy, We, α y N. La optimización del secado por ventana de refractancia de SPCP garantizó la conservación de los atributos fisicoquímicos, tecno-funcionales y funcionales probióticos de la HPCP durante todo el almacenamiento, mostrando las siguientes características a los 6 meses: Xw = 7,2 ± 0,08%, aw = 0,331 ± 0,002, S = 16,2 ± 0,91%, Hy = 5,91 ± 0,03, We = 100,35 ± 6,64 s y α = 16,02 ± 1,67°. N solo pudo ser evaluada hasta el quinto mes de almacenamiento, en el que arrojó un valor de 8.02 ± 0,73 Log UFC/g a 15°C. Este estudio representa una herramienta científica para el desarrollo de una harina de plátano fortificada con prebióticos y probióticos, en el que se incursionó en una metodología no convencional de procesamiento, se describió el efecto de las interacciones de los componentes del sistema y su relación con las características del polvo y se estimó la vida útil de la harina. Como conclusión general, la aplicación del secado por ventana de refractancia para la producción de una harina de plátano fortificada con prebióticos y probióticos generó un producto fisicoquímicamente estable en el tiempo, y logró desarrollar propiedades tecno-funcionales que le confieren versatilidad como insumo para diversos sectores de la industria agroalimentaria. (Tomado de la fuente)spa
dc.description.abstractPlantains are a dietary mainstay in tropical countries, exerting a profound influence on food security. The generation of value in the agri-chain from the application of new or improved technologies contributes to an improvement in competitiveness by developing food ingredients with multiple applications and foods with functional potential, including probiotic functional foods (PFA). Such products have gained popularity in recent years due to their purported health benefits, particularly in digestive, cardiovascular, immune, and mental health. The conventional medium for probiotic foods has been dairy matrices. However, the rising prevalence of lactose intolerance has constrained their consumption. This has prompted the exploration of non-dairy matrices to produce probiotic foods. This research was conducted by the research groups in “Bacterias Ácido Lácticas y sus Aplicaciones Biotecnológicas e Industriales” (GIBALABI) and in “Alimentos Funcionales” (GAF), which are attached to the Universidad Nacional de Colombia, and in collaboration with the University de Caldas. As part of the research project "Evaluation of the physical, structural, and functional changes occurring in starch during the application of technological treatments in the production of a probiotic functional food based on banana flour," the Tecnoparque SENA Caldas section has conducted an analysis. The objective of this research was to develop a plantain flour fortified with prebiotics and probiotics, using the refractance window drying technology, a non-conventional drying technology, seeking to preserve the physicochemical, techno-functional, microbiological, and functional characteristics of foods. To achieve the proposed objective, a comprehensive literature review of non-dairy matrices utilized in the production of PFA will be conducted in Chapter 1. This will be followed by an experimental stage in Chapter 2, during which banana flour will be developed with the addition of prebiotics and probiotics. In Chapter 1, a comprehensive literature review was conducted on the recent (within the past ten years) exploration of non-dairy food matrices to produce PFA. The review examines the current state of the art in terms of non-dairy matrices and their impact on cell viability, as well as addressing the parameters of selection and use of probiotics in foods. Furthermore, the text mentions general aspects of the health benefits of PFAs and raises future perspectives that justify the need for further research in this field of knowledge. For example, the recent discovery of paraprobiotics (non-viable probiotics or their fractions and free cellular components) and their effect on improved physiological characteristics represents a significant departure from the traditional paradigm of requiring high cell viability of probiotics for the manifestation of physiological benefits in consumers. These findings introduce new avenues for the development of PFAs in general and provide a foundation for further research in this relatively unexplored field. In Chapter 2, the experimental research on producing banana flour with prebiotics and probiotics was carried out in three phases at a laboratory scale. In the initial phase, the physicochemical stability of three green plantain suspensions without probiotics (SPSP) formulated with varying mass fractions of total solids contributed by plantain (XTS) (0.18-0.24) and supplemented with an encapsulant (maltodextrin) (MD) (1.58% w/w), a prebiotic (inulin) (INU) (1.58 % w/w) and acidulant (citric acid) (AC) (0.32 % w/w). The experiment was conducted using a completely randomized one-factorial design. The dependent variables were moisture (Xw), total solids (TS), soluble solids (SS), viscosity (μ), and Z potential (ζ). The results of Xw, TS, and ζ measurements indicated a higher degree of physicochemical stability in the SPSPs with XTS = 0.24 compared to those with 0.18 and 0.21. The resulting suspensions exhibited the following physicochemical attributes: Xw = 75.3 ± 0.8%, TS = 24.7 ± 0.82%, SS = 4.6 ± 0.0°Bx, μ = 844.7 ± 25.3 cP and ζ = -25.2 ± 0.8 mV. Nevertheless, the ANOVA results indicated no statistically significant differences (p < 0.05) in any of the dependent variables concerning XTS. Conversely, the LSD test revealed that there were statistically significant differences (p < 0.05) between the Xw and TS values obtained at an XTS of 0.21 and 0.24. This indicated that the three formulations behaved statistically as a single homogeneous group. Consequently, XTS was considered an independent variable in the experimental design of the Phase 2 drying process. In the second phase of the study, an unripe plantain flour fortified with prebiotics and probiotics was developed using refractance window drying (RWD) technology. The suitability of the RWD process to produce SPSPs was evaluated using response surface methodology with a face-centered (α=1) central composite experimental design (20 experiments), considering the independent variables: mass fraction of total solids contributed by banana (XTS) (0. 18 - 0.24), water temperature (T) (50 - 70°C) and time (t) (2 - 3 h), and the dependent variables: moisture (Xw), water activity (aw), solubility (S), hygroscopicity (Hy), wettability (We), particle size (D[3,2]) and angle of repose (α). The ANOVA demonstrated statistically significant differences (p<0.05) in Xw, aw, and Hy concerning XTS, T, and t, as well as their linear interactions. High T facilitates the diffusion of water in the product, while simultaneously, low t results in a reduced driving force for heat transfer, leading to the effective evaporation of water. However, the monolayer of the product remains saturated due to the lack of affinity of starch and other plantain carbohydrates for water, which hinders the adsorption capacity. The optimal RWD process conditions were XTS=0.24, T=68°C, t=2 h, resulting in the production of a plantain flour without probiotics (HPSP) with the following quality attributes: Xw = 5,1%, aw = 0,163, S = 17,4%, Hy = 14,5%, We = 38,0 s, D[3,2] = 79,3 μm, α = 14,9°. Once the formulation with the optimal techno-functional characteristics and process conditions had been established, the probiotic biomass (Bacillus coagulans ATCC 7050) was incorporated at 2, 4, 6, and 8% w/w into the SPSP. The green plantain suspension with probiotics (SPCP) was subjected to an RWD process to produce a green plantain flour with probiotics (HPCP) with a probiotic cell concentration (N) of 10.4 ± 0.6 Log CFU/g and a maximum cell viability of 91.12% with 8% w/w of biomass added. The highest encapsulation yield (RE) (16.97%) was obtained by adding 2% w/w of biomass to the HPSP; In the third phase, the storage of HPCP obtained with the highest viability was evaluated using a completely randomized factorial design as a function of the independent variables, namely t (0, 1, 2, 2, 3, 4, 5, and 6 months) and storage temperature (T) (15, 25 and 35 °C), and the dependent variables: Xw, aw, S, Hy, We, α and N. The optimization of SPCP refractance window drying ensured the preservation of the probiotic's physicochemical, techno-functional, and functional attributes throughout the storage period. At six months, the following characteristics were observed: Xw = 7,2 ± 0,08%, aw = 0,331 ± 0,002, S = 16,2 ± 0,91%, Hy = 5,91 ± 0,03, We = 100,35 ± 6,64 s y α = 16,02 ± 1,67°. The evaluation of N was only possible until the fifth month of storage, at which point it yielded a value of 8.02 ± 0.73 Log CFU/g at 15°C. This study represents a scientific tool for the development of a banana flour fortified with prebiotics and probiotics, in which a non-conventional processing methodology was ventured, the effect of the interactions of the system components and their relationship with the characteristics of the powder was described, and the shelf life of the flour was estimated. As a general conclusion, the application of refractory window drying to produce a banana flour fortified with prebiotics and probiotics generated a product that is physicochemically stable over time and managed to develop techno-functional properties that confer versatility as an input for various sectors of the agri-food industry.eng
dc.description.curricularareaAgro Ingeniería Y Alimentos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.notesContiene mapas, tablas, figuras, esquemas, fotografías,spa
dc.description.researchareaDesarrollo de alimentos funcionales usando bacterias ácido-lácticasspa
dc.description.sponsorshipLa Universidad de Caldas y la Universidad Nacional de Colombia sede Manizales apoyaron y financiaron parte de esta tesis de maestría a través del proyecto “Evaluación de los cambios físicos, estructurales y funcionales ocurridos en el almidón durante la aplicación de tratamientos tecnológicos en el proceso de obtención de un alimento funcional probiótico a base de harina de plátano” en el marco de la Convocatoria Conjunta de Desarrollo Tecnológico e Innovación 2021. Los recursos de esta convocatoria fueron obtenidos de la Estampilla Pro Universitaria del municipio de Manizales, Caldas, Colombia.spa
dc.format.extent159 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87530
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbiodun-Solanke, A., & Falade, K. (2011). A review of the uses and methods of processing banana and plantain (Musa spp.) into storable food products. Journal of Agricultural Research and Development, 9(2). https://doi.org/10.4314/jard.v9i2.66815spa
dc.relation.referencesAboulfazli, F., Baba, A. S., & Misran, M. (2015). The Rheology and Physical Properties of Fermented Probiotic Ice Creams Made with Dairy Alternatives. International Journal of Food Engineering, 11(4), 493–504. https://doi.org/10.1515/ijfe-2014-0343spa
dc.relation.referencesAdams, C. A. (2010). The probiotic paradox: live and dead cells are biological response modifiers. Nutrition Research Reviews, 23(1), 37–46. https://doi.org/10.1017/S0954422410000090spa
dc.relation.referencesAgama-Acevedo, E., Rodriguez-Ambriz, S. L., García-Suárez, F. J., Gutierrez-Méraz, F., Pacheco-Vargas, G., & Bello-Pérez, L. A. (2014). Starch isolation and partial characterization of commercial cooking and dessert banana cultivars growing in Mexico. Starch - Stärke, 66(3–4), 337–344. https://doi.org/10.1002/star.201300125spa
dc.relation.referencesAhmad, A., Prakash, O., Kumar, A., Chatterjee, R., Sharma, S., Kumar, V., Kulshreshtha, K., Li, C., & Eldin, E. M. T. (2022). A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying. Energies, 15(24), 9493. https://doi.org/10.3390/en15249493spa
dc.relation.referencesAizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., & Kunugi, H. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal of Affective Disorders, 202, 254–257. https://doi.org/10.1016/j.jad.2016.05.038spa
dc.relation.referencesAlberti, K. G. M. M., Zimmet, P., & Shaw, J. (2007). International Diabetes Federation: A consensus on Type 2 diabetes prevention. Diabetic Medicine, 24(5), 451–463. https://doi.org/10.1111/j.1464-5491.2007.02157.xspa
dc.relation.referencesAlmada-Érix, C. N., Almada, C. N., Pedrosa, G. T. S., Biachi, J. P., Bonatto, M. S., Schmiele, M., Nabeshima, E. H., Clerici, M., Magnani, M., & Sant’Ana, A. S. (2022). Bread as probiotic carriers: Resistance of Bacillus coagulans GBI-30 6086 spores through processing steps. FOOD RESEARCH INTERNATIONAL, 155. https://doi.org/10.1016/j.foodres.2022.111040spa
dc.relation.referencesAlmada-Érix, C. N., Almada, C. N., Souza Pedrosa, G. T., dos Santos, P., Schmiele, M., Clerici, M. T. P. S., Martinez, J., Lollo, P. C., Magnani, M., & Sant’Ana, A. S. (2021). Quantifying the impact of eight unit operations on the survival of eight Bacillus strains with claimed probiotic properties. Food Research International, 142(February). https://doi.org/10.1016/j.foodres.2021.110191spa
dc.relation.referencesAlmanza-Benitez, S., Osorio-Díaz, P., Méndez-Montealvo, G., Islas-Hernández, J. J., & Bello-Perez, L. A. (2015). Addition of acid-treated unripe plantain flour modified the starch digestibility, indigestible carbohydrate content and antioxidant capacity of semolina spaghetti. LWT - Food Science and Technology, 62(2), 1127–1133. https://doi.org/10.1016/j.lwt.2015.02.031spa
dc.relation.referencesAmmor, S., Tauveron, G., Dufour, E., & Chevallier, I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control, 17(6), 454–461. https://doi.org/10.1016/j.foodcont.2005.02.006spa
dc.relation.referencesAnyasi, T. A., Jideani, A. I. O., & Mchau, G. R. A. (2015). Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chemistry, 172, 515–522. https://doi.org/10.1016/j.foodchem.2014.09.120spa
dc.relation.referencesAradón, A., & Castellano, V. (2014). Regulation and guidelines of probiotics and prebiotics. In Probiotics and prebiotics in food, nutrition and health (pp. 91–113). CRC Press.spa
dc.relation.referencesAragón-Rojas, S., Quintanilla-Carvajal, M. X., Hernández-Sánchez, H., Hernández-Álvarez, A. J., & Moreno, F. L. (2019a). Encapsulation of Lactobacillus fermentum K73 by Refractance Window drying. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-42016-0spa
dc.relation.referencesAraújo, T. M. R., Farias, M. D. L., Afonso, M. R. A., Costa, J. M. C. da, & Eça, K. S. (2020). Maltodextrin on the flow properties of green coconut (Cocos nucifera L.) pulp powder. Ciência e Agrotecnologia, 44. https://doi.org/10.1590/1413-7054202044003220spa
dc.relation.referencesArihara, K., & Ohata, M. (2011). Functional meat products. In Functional Foods (pp. 512–533). Elsevier. https://doi.org/10.1533/9780857092557.3.512spa
dc.relation.referencesAshwar, B. A., Gani, A., Gani, A., Shah, A., & Masoodi, F. A. (2018). Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry, 239, 287–294. https://doi.org/10.1016/j.foodchem.2017.06.110spa
dc.relation.referencesAsif-Ul-Alam, S. M., Islam, M. Z., Hoque, M. M., & Monalisa, K. (2014). Effects of Drying on the Physicochemical and Functional Properties of Green Banana (Musa sapientum) Flour and Development of Baked Product. American Journal of Food Science and Technology, 2(4), 128–133. https://doi.org/10.12691/ajfst-2-4-4spa
dc.relation.referencesAsiimwe, A., Kigozi, J. B., Baidhe, E., & Muyonga, J. H. (2022). Optimization of refractance window drying conditions for passion fruit puree. LWT, 154, 112742. https://doi.org/10.1016/j.lwt.2021.112742spa
dc.relation.referencesAssociation of Official Analytical Chemist [AOAC]. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists (15th ed.). AOAC International.spa
dc.relation.referencesAstudillo-Heras, L. L., & Sánchez-Salamea, A. L. (2019). Extracción de Almidón a partir del banano (plátano) de categoría II (Musa paradisiaca) en estado verde, para la elaboración de colada instantánea fortificada y utilización de su fibra para balanceado de ganado porcino [Tesis de grado]. Universidad de Cuencua.spa
dc.relation.referencesAzad, Md. A. K., Sarker, M., Li, T., & Yin, J. (2018). Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/9478630spa
dc.relation.referencesAzizi, D., Jafari, S. M., Mirzaei, H., & Dehnad, D. (2017). The Influence of Refractance Window Drying on Qualitative Properties of Kiwifruit Slices. International Journal of Food Engineering, 13(2). https://doi.org/10.1515/ijfe-2016-0201spa
dc.relation.referencesAzizishafa, M., Basti, A. A., Sharifan, A., & Khanjari, A. (2023). Reformulation of traditional Iranian food (Doeeneh) using probiotics: Bifidobacterium animalis subsp. lactis BB-12, Lactobacillus acidophilus LA-5, Lacticaseibacillus rhamnosus LGG, and inulin and its effect on diabetic and non-diabetic rats. Food Quality and Safety, 7. https://doi.org/10.1093/fqsafe/fyad028spa
dc.relation.referencesBabolanimogadam, N., Akhondzadeh Basti, A., Khanjari, A., Sajjadi Alhashem, S. H., Babolani Moghadgam, K., & Ahadzadeh, S. (2024). Shelf life extending of probiotic beef patties with polylactic acid‐ajwain essential oil films and stress effects on Bacillus coagulans. Journal of Food Science, 89(2), 866–880. https://doi.org/10.1111/1750-3841.16864spa
dc.relation.referencesBadui, S. (2006). Química de los alimentos (E. Quintanar Duarte & M. B. Gutiérrez Hernández, Eds.; Cámara Nac). Pearson Educación de México, S.A. de C.V. https://itscv.edu.ec/wp-content/uploads/2019/06/QUIMICA-DE-LOS-ALIMENTOS-4ta-Edicion.pdfspa
dc.relation.referencesBamigbola, Y. A., Awolu, O. O., & Oluwalana, I. B. (2016). The effect of plantain and tigernut flours substitution on the antioxidant, physicochemical and pasting properties of wheat-based composite flours. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1245060spa
dc.relation.referencesBatra, N., Singh, J., Banerjee, U. C., Patnaik, P. R., & Sobti, R. C. (2002). Production and characterization of a thermostable β ‐galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36(1), 1–6. https://doi.org/10.1042/BA20010091spa
dc.relation.referencesBell, K. J., Saad, S., Tillett, B. J., McGuire, H. M., Bordbar, S., Yap, Y. A., Nguyen, L. T., Wilkins, M. R., Corley, S., Brodie, S., Duong, S., Wright, C. J., Twigg, S., de St Groth, B. F., Harrison, L. C., Mackay, C. R., Gurzov, E. N., Hamilton-Williams, E. E., & Mariño, E. (2022). Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 10(1), 9. https://doi.org/10.1186/s40168-021-01193-9spa
dc.relation.referencesBello‐Pérez, L. A., Pineda‐Tapia, F. J., Pacheco‐Vargas, G., Carmona‐Garcia, R., & Tovar, J. (2024a). Whole Unripe Plantain Flour as Unconventional Carbohydrate Source to Prepare Gluten‐Free Pasta with High Dietary Fiber Content and Reduced Starch Hydrolysis. Starch - Stärke, 76(1–2). https://doi.org/10.1002/star.202200222spa
dc.relation.referencesBernat, N., Cháfer, M., González-Martínez, C., Rodríguez-García, J., & Chiralt, A. (2015). Optimisation of oat milk formulation to obtain fermented derivatives by using probiotic Lactobacillus reuteri microorganisms. Food Science and Technology International, 21(2), 145–157. https://doi.org/10.1177/1082013213518936spa
dc.relation.referencesBhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of food powders. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672spa
dc.relation.referencesBharwani, A., Mian, M. F., Foster, J. A., Surette, M. G., Bienenstock, J., & Forsythe, P. (2016). Structural &amp; functional consequences of chronic psychosocial stress on the microbiome &amp; host. Psychoneuroendocrinology, 63, 217–227. https://doi.org/10.1016/j.psyneuen.2015.10.001spa
dc.relation.referencesBonik, S. K., Tamanna, S. T., Happy, T. A., Haque, Md. N., Islam, S., & Faruque, Md. O. (2024). Formulation and evaluation of cereal-based breads fortified with natural prebiotics from green banana, moringa leaves powder and soya powder. Applied Food Research, 4(1), 100377. https://doi.org/10.1016/j.afres.2023.100377spa
dc.relation.referencesCadena, R. S., Caimi, D., Jaunarena, I., Lorenzo, I., Vidal, L., Ares, G., Deliza, R., & Giménez, A. (2014). Comparison of rapid sensory characterization methodologies for the development of functional yogurts. Food Research International, 64, 446–455. https://doi.org/10.1016/j.foodres.2014.07.027spa
dc.relation.referencesCano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428. https://doi.org/10.1016/j.ifset.2005.05.003spa
dc.relation.referencesCano-Sarmiento, C., Téllez-Medina, D. I., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C. Y., García-Armenta, E., Alamilla-Beltrán, L., García, H. S., & Gutiérrez-López, G. F. (2018). Zeta Potential of Food Matrices. Food Engineering Reviews, 10(3), 113–138. https://doi.org/10.1007/s12393-018-9176-zspa
dc.relation.referencesCánovas Barbosa, & G.V y Vega Mercado, H. (1996). Dehydration of Foods Dehydration of Foods Series Editor (1st ed.).spa
dc.relation.referencesCao, J., Yu, Z., Liu, W., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods, 64(October), 103643. https://doi.org/10.1016/j.jff.2019.103643spa
dc.relation.referencesCao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2spa
dc.relation.referencesCapela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203–211. https://doi.org/10.1016/j.foodres.2005.07.007spa
dc.relation.referencesCardoso, P. I. F. da C., Grisi, C. V. B., Vieira, É. de A., de Almeida, D. K. L., & Cardarelli, H. R. (2024). Cereal flours with Bacillus coagulans and beta-glucan: Technological properties and sensory acceptability. Food Chemistry, 448, 139146. https://doi.org/10.1016/j.foodchem.2024.139146spa
dc.relation.referencesCastaño-Peláez, H. I., Cortes-Rodríguez, M., Gil-González, J., & Gallón-Bedoya, M. (2022). Influence of gum arabic and homogenization process on the physicochemical stability of strawberry suspensions. Food Science and Technology, 42. https://doi.org/10.1590/fst.58020spa
dc.relation.referencesCastaño-Peláez, H., Rodríguez, M. C., Gil G., J. H., López, G. L., & Ortega-Toro, R. (2022). Optimization of spray-drying process parameters on strawberry (Fragaria ananassa D.) extracts microcapsules quality. Journal of Berry Research, 12(4), 531–550. https://doi.org/10.3233/JBR-220047spa
dc.relation.referencesCastellanos-Galeano, F. J., & Lucas-Aguirre, J. C. (2011). Caracterización física del fruto en variedades de plátano cultivadas en la zona cafetera de Colombia. Acta Agronómica, 60(2).spa
dc.relation.referencesCastoldi, M., Zotarelli, M. F., Durigon, A., Carciofi, B. A. M., & Laurindo, J. B. (2015). Production of Tomato Powder by Refractance Window Drying. Drying Technology, 33(12), 1463–1473. https://doi.org/10.1080/07373937.2014.989327spa
dc.relation.referencesCastellanos-Galeano, F. J., Chavez-Salazar, A., & Martínez-Hernández, L. J. (2017). Effect of process variables in the production of fried green plantain in vacuum. Revista Vitae, 38–46. https://doi.org/10.17533/udea.vitae.v24n1a05spa
dc.relation.referencesCayra, E., Dávila, J. H., Villalta, J. M., & Rosales, Y. (2017). Evaluación de la Estabilidad y Viabilidad de Dos Cepas Probióticas Microencapsuladas por Lecho Fluidizado. Información Tecnológica, 28(6), 35–44. https://doi.org/10.4067/S0718-07642017000600005spa
dc.relation.referencesChampagne, C. P., Tompkins, T. A., Buckley, N. D., & Green-Johnson, J. M. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiology, 27(7), 968–972. https://doi.org/10.1016/j.fm.2010.06.003spa
dc.relation.referencesChandanasree, D., Gul, K., & Riar, C. S. (2016). Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydrocolloids, 52, 175–182. https://doi.org/10.1016/j.foodhyd.2015.06.024spa
dc.relation.referencesCharalampopoulos, D., Pandiella, S. S., & Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology, 82(2), 133–141. https://doi.org/10.1016/S0168-1605(02)00248-9spa
dc.relation.referencesChávez‐Salazar, A., Castellanos‐Galeano, F. J., Álvarez‐Barreto, C. I., Bello‐Pérez, L. A., Cortés‐Rodríguez, M., & Hoyos‐Leyva, J. D. (2019). Optimization of the Spray Drying Process of the Esterified Plantain Starch by Response Surface Methodology. Starch - Stärke, 71(7–8). https://doi.org/10.1002/star.201800330spa
dc.relation.referencesChen, Q., Bi, J., Zhou, Y., Liu, X., Wu, X., & Chen, R. (2014). Multi-objective Optimization of Spray Drying of Jujube (Zizyphus jujuba Miller) Powder Using Response Surface Methodology. Food and Bioprocess Technology, 7(6), 1807–1818. https://doi.org/10.1007/s11947-013-1171-zspa
dc.relation.referencesChen, X., Yang, G., Song, J.-H., Xu, H., Li, D., Goldsmith, J., Zeng, H., Parsons-Wingerter, P. A., Reinecker, H.-C., & Kelly, C. P. (2013). Probiotic Yeast Inhibits VEGFR Signaling and Angiogenesis in Intestinal Inflammation. PLoS ONE, 8(5), e64227. https://doi.org/10.1371/journal.pone.0064227spa
dc.relation.referencesChmielewska, A., & Szajewska, H. (2010). Systematic review of randomised controlled trials: probiotics for functional constipation. World Journal of Gastroenterology, 16(1), 69–75. https://doi.org/10.3748/wjg.v16.i1.69spa
dc.relation.referencesChugh, B., & Kamal-Eldin, A. (2020). Bioactive compounds produced by probiotics in food products. Current Opinion in Food Science, 32, 76–82. https://doi.org/10.1016/j.cofs.2020.02.003spa
dc.relation.referencesCoelho, S. R., Lima, Í. A., Martins, M. L., Benevenuto Júnior, A. A., Torres Filho, R. de A., Ramos, A. de L. S., & Ramos, E. M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT, 102, 254–259. https://doi.org/10.1016/j.lwt.2018.12.045spa
dc.relation.referencesColica, C., Avolio, E., Bollero, P., Costa de Miranda, R., Ferraro, S., Sinibaldi Salimei, P., De Lorenzo, A., & Di Renzo, L. (2017). Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediators of Inflammation, 2017, 1–10. https://doi.org/10.1155/2017/5650627spa
dc.relation.referencesCordeiro, B. F., Alves, J. L., Belo, G. A., Oliveira, E. R., Braga, M. P., da Silva, S. H., Lemos, L., Guimarães, J. T., Silva, R., Rocha, R. S., Jan, G., Le Loir, Y., Silva, M. C., Freitas, M. Q., Esmerino, E. A., Gala-García, A., Ferreira, E., Faria, A. M. C., Cruz, A. G., … do Carmo, F.L. R. (2021). Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.623920spa
dc.relation.referencesCortés-Rodríguez, M., Hernández, G., & Estrada M, E. M. (2017). OPTIMIZATION OF THE SPRAY DRYING PROCESS FOR OBTAINING CAPE GOOSEBERRY POWDER: AN INNOVATIVE AND PROMISING FUNCTIONAL FOOD. Revista Vitae, 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07spa
dc.relation.referencesDadhaneeya, H., Nayak, P. K., Saikia, D., Kondareddy, R., Ray, S., & Kesavan, R. krishnan. (2023). The impact of refractance window drying on the physicochemical properties and bioactive compounds of malbhog banana slice and pulp. Applied Food Research, 3(1), 100279. https://doi.org/10.1016/j.afres.2023.100279spa
dc.relation.referencesDahdouh, L., Delalonde, M., Ricci, J., Ruiz, E., & Wisnewski, C. (2018). Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies, 48(March), 304–312. https://doi.org/10.1016/j.ifset.2018.07.006spa
dc.relation.referencesDay, L., Seymour, R. B., Pitts, K. F., Konczak, I., & Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science and Technology, 20(9), 388–395. https://doi.org/10.1016/j.tifs.2008.05.002spa
dc.relation.referencesDaza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29. https://doi.org/10.1016/j.fbp.2015.10.001spa
dc.relation.referencesde Oliveira, P. M., Leite Júnior, B. R. de C., Martins, E. M. F., Martins, M. L., Vieira, É. N. R., de Barros, F. A. R., Cristianini, M., de Almeida Costa, N., & Ramos, A. M. (2021). Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. Journal of Food Science and Technology, 58(1), 98–109. https://doi.org/10.1007/s13197-020-04518-yspa
dc.relation.referencesDi Stefano, E., White, J., Seney, S., Hekmat, S., McDowell, T., Sumarah, M., & Reid, G. (2017). A Novel Millet-Based Probiotic Fermented Food for the Developing World. Nutrients, 9(5), 529. https://doi.org/10.3390/nu9050529spa
dc.relation.referencesDiaz‐Vela, J., Totosaus, A., Cruz‐Guerrero, A. E., & de Lourdes Pérez‐Chabela, M. (2013). In vitro evaluation of the fermentation of added‐value agroindustrial by‐products: cactus pear ( <scp>O</scp> puntia ficus‐indica <scp>L</scp> .) peel and pineapple ( <scp>A</scp> nanas comosus ) peel as functional ingredients. International Journal of Food Science & Technology, 48(7), 1460–1467. https://doi.org/10.1111/ijfs.12113spa
dc.relation.referencesDo, T. V. T., & Fan, L. (2019). Probiotic Viability, Qualitative Characteristics, and Sensory Acceptability of Vegetable Juice Mixture Fermented with &amp;lt;i&amp;gt;Lactobacillus&amp;lt;/i&amp;gt; Strains. Food and Nutrition Sciences, 10(04), 412–427. https://doi.org/10.4236/fns.2019.104031spa
dc.relation.referencesDonkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2007). α-Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chemistry, 104(1), 10–20. https://doi.org/10.1016/j.foodchem.2006.10.065spa
dc.relation.referencesDunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E. M., O’Sullivan, G. C., Shanahan, F., & Collins, J. K. (1999). Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek, 76(1–4), 279–292. http://www.ncbi.nlm.nih.gov/pubmed/10532384spa
dc.relation.referencesDuru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019a). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102spa
dc.relation.referencesDuru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019b). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102spa
dc.relation.referencesEnglyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46 Suppl 2, S33-50.spa
dc.relation.referencesEnujiugha, Victor. N., & Badejo, A. A. (2017). Probiotic potentials of cereal-based beverages. Critical Reviews in Food Science and Nutrition, 57(4), 790–804. https://doi.org/10.1080/10408398.2014.930018spa
dc.relation.referencesEraso-Grisales, S., Cortés-Rodríguez, M., Gallón-Bedoya, M., Herrera-Herrera, E., & Ortega-Toro, R. (2023a). A powdered mix of cape gooseberry-based pulp, seed, and peel: Optimization of formulation and spray-drying process. Journal of Berry Research, 13(2), 107–120. https://doi.org/10.3233/JBR-220079spa
dc.relation.referencesEraso-Grisales, S., Cortés-Rodríguez, M., Gallón-Bedoya, M., Herrera-Herrera, E., & Ortega-Toro, R. (2023b). A powdered mix of cape gooseberry-based pulp, seed, and peel: Optimization of formulation and spray-drying process. Journal of Berry Research, 13(2), 107–120. https://doi.org/10.3233/JBR-220079spa
dc.relation.referencesErmis, E. (2021). A review of drying methods for improving the quality of probiotic powders and characterization. Drying Technology, 0(0), 1–18. https://doi.org/10.1080/07373937.2021.1950169spa
dc.relation.referencesErmiş, E. (Ed.). (2021). Food Powders Properties and Characterization. Springer International Publishing. https://doi.org/10.1007/978-3-030-48908-3spa
dc.relation.referencesEspin, J. C., & Balberan, F. T. (2005). Alimentos funcionales (EUFIC). In Constituyentes bioactivos no nutricionales de alimentos de origen vegetal y su aplicacion en alimentos funcionales. http://www.eufic.org/article/es/expid/basics-alimentos-funcionales/spa
dc.relation.referencesEspinosa Solis, V. (2012). PROPIEDADES DE DIGESTIÓN DE ALMIDONES NATIVOS Y MODIFICADOS DE PLÁTANO Y MANGO. https://tesis.ipn.mx/bitstream/handle/123456789/13426/Tesis%202012%20Vicente%20Espinosa%20Solis.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesFalcomer, A. L., Riquette, R. F. R., de Lima, B. R., Ginani, V. C., & Zandonadi, R. P. (2019). Health Benefits of Green Banana Consumption: A Systematic Review. Nutrients, 11(6), 1222. https://doi.org/10.3390/nu11061222spa
dc.relation.referencesFAO. (2022). FAOSTAT - Crops and livestock products: Plantains and cooking bananas. https://www.fao.org/faostat/en/#data/QCL/visualizespa
dc.relation.referencesFAO, E., & OMS, E. (2006). Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. Estudios FAO Alimentación y Nutrición, 85, 52. file:///C:/Users/Acer/Documents/paty/homework1/PROBIOTICOS OPS 2006.pdfspa
dc.relation.referencesFernández-Abascal, B., Suárez-Pinilla, P., Cobo-Corrales, C., Crespo-Facorro, B., & Suárez-Pinilla, M. (2021). In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episod. Neuroscience & Biobehavioral Reviews, 125, 535–568. https://doi.org/10.1016/j.neubiorev.2021.01.005spa
dc.relation.referencesFord, A. C., Quigley, E. M. M., Lacy, B. E., Lembo, A. J., Saito, Y. A., Schiller, L. R., Soffer, E. E., Spiegel, B. M. R., & Moayyedi, P. (2014). Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. The American Journal of Gastroenterology, 109(10), 1547–1562. https://doi.org/10.1038/ajg.2014.202spa
dc.relation.referencesFranceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197–207. https://doi.org/10.1080/07373937.2013.814664spa
dc.relation.referencesFustier, P., Taherian, A. R., & Ramaswamy, H. S. (2010). Emulsion Delivery Systems for Functional Foods. In Functional Food Product Development (pp. 79–97). Wiley-Blackwell. https://doi.org/10.1002/9781444323351.ch4spa
dc.relation.referencesGarcía-Tejeda, Y. V., Zamudio-Flores, P. B., Bello-Pérez, L. A., Romero-Bastida, C. A., & Solorza-Feria, J. (2011). OXIDACIÓN DEL ALMIDÓN NATIVO DE PLÁTANO PARA SU USO POTENCIAL EN LA FABRICACIÓN DE MATERIALES DE EMPAQUE BIODEGRADABLES: CARACTERIZACIÓN FÍSICA, QUÍMICA, TÉRMICA Y MORFOLÓGICA. In Rev. Iberoam. Polim (Vol. 12, Issue 3). https://reviberpol.files.wordpress.com/2019/07/2011-garcia-tejana.pdfspa
dc.relation.referencesGenovese, D. B., & Lozano, J. E. (2001). The effect of hydrocolloids on the stability and viscosity of cloudy apple juices. Food Hydrocolloids, 15(1), 1–7. https://doi.org/10.1016/S0268-005X(00)00053-9spa
dc.relation.referencesGenovese, D. B., & Lozano, J. E. (2006). Contribution of colloidal forces to the viscosity and stability of cloudy apple juice. Food Hydrocolloids, 20(6), 767–773. https://doi.org/10.1016/j.foodhyd.2005.07.003spa
dc.relation.referencesGeorge Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018a). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002spa
dc.relation.referencesGeorge Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018b). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002spa
dc.relation.referencesGibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401spa
dc.relation.referencesGiraldo-Gómez, G. I., Rodríguez-Barona, S., & Sanabria-González, N. R. (2019). Preparation of instant green banana flour powders by an extrusion process. Powder Technology, 353, 437–443. https://doi.org/10.1016/j.powtec.2019.05.050spa
dc.relation.referencesGlaser, R., & Venus, J. (2014). Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements. Biotechnology Reports, 4, 60–65. https://doi.org/10.1016/j.btre.2014.08.001spa
dc.relation.referencesGlaser, R., & Venus, J. (2017). Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium. New Biotechnology, 37, 180–193. https://doi.org/10.1016/j.nbt.2016.12.006spa
dc.relation.referencesGoldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004827.pub4spa
dc.relation.referencesGolubeva, A. V., Crampton, S., Desbonnet, L., Edge, D., O’Sullivan, O., Lomasney, K. W., Zhdanov, A. V., Crispie, F., Moloney, R. D., Borre, Y. E., Cotter, P. D., Hyland, N. P., O’Halloran, K. D., Dinan, T. G., O’Keeffe, G. W., & Cryan, J. F. (2015). Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology, 60, 58–74. https://doi.org/10.1016/j.psyneuen.2015.06.002spa
dc.relation.referencesGómez, A., Anaya, J., Rodríguez, G., Lechón, A., Perugachi, I., Velásquez, C., Carlos, S., Miniet, A., & Lascano, R. (2022). Glycemic effect of a functional pancake made from an instant oat mix. Revista Espanola de Nutricion Humana y Dietetica, 26(3), 189–196. https://doi.org/10.14306/renhyd.26.3.1668spa
dc.relation.referencesGranato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292–302. https://doi.org/10.1111/j.1541-4337.2010.00110.xspa
dc.relation.referencesGray, G. M. (1992). Starch Digestion and Absorption in Nonruminants. The Journal of Nutrition, 122(1), 172–177. https://doi.org/10.1093/jn/122.1.172spa
dc.relation.referencesGrom, L. C., Rocha, R. S., Balthazar, C. F., Guimarães, J. T., Coutinho, N. M., Barros, C. P., Pimentel, T. C., Venâncio, E. L., Collopy Junior, I., Maciel, P. M. C., Silva, P. H. F., Granato, D., Freitas, M. Q., Esmerino, E. A., Silva, M. C., & Cruz, A. G. (2020). Postprandial glycemia in healthy subjects: Which probiotic dairy food is more adequate? Journal of Dairy Science, 103(2), 1110–1119. https://doi.org/10.3168/jds.2019-17401spa
dc.relation.referencesGuandalini, S. (2011). Probiotics for Prevention and Treatment of Diarrhea. Journal of Clinical Gastroenterology, 45, S149–S153. https://doi.org/10.1097/MCG.0b013e3182257e98spa
dc.relation.referencesGupta, M., & Bajaj, B. K. (2017). Development of fermented oat flour beverage as a potential probiotic vehicle. Food Bioscience, 20, 104–109. https://doi.org/10.1016/j.fbio.2017.08.007spa
dc.relation.referencesHaffner, F. B., Diab, R., & Pasc, A. (2016). Encapsulation of probiotics: insights into academic and industrial approaches. AIMS Materials Science, 3(1), 114–136. https://doi.org/10.3934/matersci.2016.1.114spa
dc.relation.referencesHaider, C., & Palzer, S. (2016). Agglomeration in the Food Industry—A Result of Particle Contact Mechanisms. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21002-0spa
dc.relation.referencesHandique, J., Bora, S. J., & Sit, N. (2019). Optimization of banana juice extraction using combination of enzymes. Journal of Food Science and Technology, 56(8), 3732–3743. https://doi.org/10.1007/s13197-019-03845-zspa
dc.relation.referencesHernández-Santos, B., Martínez-Sánchez, C. E., Torruco-Uco, J. G., Rodríguez-Miranda, J., Ruiz-López, I. I., Vajando-Anaya, E. S., Carmona-García, R., & Herman-Lara, E. (2016). Evaluation of physical and chemical properties of carrots dried by Refractance Window drying. Drying Technology, 34(12), 1414–1422. https://doi.org/10.1080/07373937.2015.1118705spa
dc.relation.referencesHijová, E. (2022). Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. In Metabolites (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/metabo12040313spa
dc.relation.referencesHomsuwan, N., Pruksasri, S., & Ngampanya, B. (2023). Bacillus siamensis FVP1 as a potential probiotic for enhancing nutritional aspects of soybean meal. International Journal of Food Science and Technology, 58(8), 4277–4287. https://doi.org/10.1111/ijfs.16527spa
dc.relation.referencesHou, H., Chen, D., Zhang, K., Zhang, W., Liu, T., Wang, S., Dai, X., Wang, B., Zhong, W., & Cao, H. (2022). Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Letters, 526, 225–235. https://doi.org/10.1016/j.canlet.2021.11.027spa
dc.relation.referencesHuang, S., Méjean, S., Rabah, H., Dolivet, A., Le Loir, Y., Chen, X. D., Jan, G., Jeantet, R., & Schuck, P. (2017). Double use of concentrated sweet whey for growth and spray drying of probiotics: Towards maximal viability in pilot scale spray dryer. Journal of Food Engineering, 196, 11–17. https://doi.org/10.1016/j.jfoodeng.2016.10.017spa
dc.relation.referencesHuq, T., Khan, A., Khan, R. A., Riedl, B., & Lacroix, M. (2013). Encapsulation of Probiotic Bacteria in Biopolymeric System. Critical Reviews in Food Science and Nutrition, 53(9), 909–916. https://doi.org/10.1080/10408398.2011.573152spa
dc.relation.referencesİçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015a). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102spa
dc.relation.referencesİçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015b). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102spa
dc.relation.referencesIguarán, E. C., Triviño-Valencia, J., & Rodríguez-Barona, S. (2020). Effect of storage and stress conditions on the counts of Bifidobacterium animalis microencapsulated and incorporated in plantain flour. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.25219spa
dc.relation.referencesInstituto Colombiano Agropecuario. (2019). Resolución 17334 (17334).spa
dc.relation.referencesInstituto Colombiano de Bienestar Familiar. (2018). Tabla de composición de alimentos colombianos. Instituto Colombiano de Bienestar Familiar.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. (1976). Norma Técnica Colombiana [NTC] 1190.spa
dc.relation.referencesIraporda, C., Rubel, I. A., Managó, N., Manrique, G. D., Garrote, G. L., & Abraham, A. G. (2022). Inulin addition improved probiotic survival in soy-based fermented beverage. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 38(8). https://doi.org/10.1007/s11274-022-03322-4spa
dc.relation.referencesIshwarya, S. P., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171–180. https://doi.org/10.1016/j.jfoodeng.2014.10.011spa
dc.relation.referencesJalgaonkar, K., Mahawar, M. K., Vishwakarma, R. K., Shivhare, U. S., & Nambi, V. E. (2020). Optimization of process condition for preparation of sapota bar using Refractance window drying method. Drying Technology, 38(3), 269–278. https://doi.org/10.1080/07373937.2018.1482314spa
dc.relation.referencesJaniszewska-Turak, E., Dellarosa, N., Tylewicz, U., Laghi, L., Romani, S., Dalla Rosa, M., & Witrowa-Rajchert, D. (2017). The influence of carrier material on some physical and structural properties of carrot juice microcapsules. Food Chemistry, 236, 134–141. https://doi.org/10.1016/j.foodchem.2017.03.134spa
dc.relation.referencesKandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012spa
dc.relation.referencesKaragül, Ö., & EL, S. N. (2024). Cereal-based fermented synbiotic instant powders: a dessert practice. Ege Üniversitesi Ziraat Fakültesi Dergisi, 60(4), 571–579. https://doi.org/10.20289/zfdergi.1336843spa
dc.relation.referencesKareem, S. O., Adio, O. Q., & Osho, M. B. (2014). Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix. Enzyme Research, 2014, 1–7. https://doi.org/10.1155/2014/967056spa
dc.relation.referencesKatina, K., Liukkonen, K.-H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.-M., Lampi, A.-M., Pihlava, J.-M., & Poutanen, K. (2007). Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3), 348–355. https://doi.org/10.1016/j.jcs.2007.07.006spa
dc.relation.referencesKelly, G. S. (2003). Bovine colostrums: a review of clinical uses. Alternative Medicine Review : A Journal of Clinical Therapeutic, 8(4), 378–394.spa
dc.relation.referencesKelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F., & Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019spa
dc.relation.referencesKhalesi, S., Sun, J., Buys, N., & Jayasinghe, R. (2014). Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension, 64(4), 897–903. https://doi.org/10.1161/HYPERTENSIONAHA.114.03469spa
dc.relation.referencesKingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., & Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT - Food Science and Technology, 62(1), 847–853. https://doi.org/10.1016/j.lwt.2014.12.007spa
dc.relation.referencesKober, M.-M., & Bowe, W. P. (2015). The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women’s Dermatology, 1(2), 85–89. https://doi.org/10.1016/j.ijwd.2015.02.001spa
dc.relation.referencesKoç, B., Sakin-Yılmazer, M., Kaymak-Ertekin, F., & Balkır, P. (2014). Physical properties of yoghurt powder produced by spray drying. Journal of Food Science and Technology, 51(7), 1377–1383. https://doi.org/10.1007/s13197-012-0653-8spa
dc.relation.referencesKrumbeck, J. A., Maldonado-Gomez, M. X., Martínez, I., Frese, S. A., Burkey, T. E., Rasineni, K., Ramer-Tait, A. E., Harris, E. N., Hutkins, R. W., & Walter, J. (2015). In vivo selection to identify bacterial strains with enhanced ecological performance in synbiotic applications. Applied and Environmental Microbiology, 81(7), 2455–2465. https://doi.org/10.1128/AEM.03903-14spa
dc.relation.referencesKumar, B., Vijayendra, S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products - a review. Journal of Food Science and Technology, 52(10), 6112–6124. https://doi.org/10.1007/s13197-015-1795-2spa
dc.relation.referencesKumar, H., Dhalaria, R., Guleria, S., Cimler, R., Choudhary, R., Dhanjal, D. S., Singh, R., Kimta, N., Dulta, K., Pathera, A. K., Khan, A., Nausad, M., Alomar, S. Y., Manickam, S., & Kuča, K. (2023). To exploring the role of probiotics, plant-based fermented products, and paraprobiotics as anti-inflammatory agents in promoting human health. Journal of Agriculture and Food Research, 14, 100896. https://doi.org/10.1016/j.jafr.2023.100896spa
dc.relation.referencesKumar, P. S., Saravanan, A., Sheeba, N., & Uma, S. (2019). Structural, functional characterization and physicochemical properties of green banana flour from dessert and plantain bananas (Musa spp.). LWT, 116, 108524. https://doi.org/10.1016/j.lwt.2019.108524spa
dc.relation.referencesKumar, P. S., Thayumanavan, S., Pushpavalli, S., Saraswathi, M. S., Backiyarani, S., Mohanasundaram, A., & Uma, S. (2023). Comparing physico‐chemical characteristics, antioxidant properties, glycemic response, and volatile profiles of eleven banana varieties. International Journal of Food Science & Technology, 58(6), 2893–2908. https://doi.org/10.1111/ijfs.16392spa
dc.relation.referencesKumar, S., Rattu, G., Mitharwal, S., Chandra, A., Kumar, S., Kaushik, A., Mishra, V., & Nema, P. K. (2022). Trends in non‐dairy‐based probiotic food products: Advances and challenges. Journal of Food Processing and Preservation, 46(9). https://doi.org/10.1111/jfpp.16578spa
dc.relation.referencesLacerda, E. C. Q., Calado, V. M. de A., Monteiro, M., Finotelli, P. V., Torres, A. G., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/j.carbpol.2016.05.093spa
dc.relation.referencesLaksmi Suryaatmadja Jenie, B. S., Yusup Saputra, M., & Widaningrum, dan. (2013). SENSORY EVALUATION AND SURVIVAL OF PROBIOTICS IN MODIFIED BANANA FLOUR YOGHURT DURING STORAGE. Jurnal Teknologi Dan Industri Pangan, 24(1), 40–47. https://doi.org/10.6066/jtip.2013.24.1.40spa
dc.relation.referencesLamiki, P., Tsuchiya, J., Pathak, S., Okura, R., Solimene, U., Jain, S., Kawakita, S., & Marotta, F. (2010). Probiotics in diverticular disease of the colon: an open label study. Journal of Gastrointestinal and Liver Diseases : JGLD, 19(1), 31–36. http://www.ncbi.nlm.nih.gov/pubmed/20361072spa
dc.relation.referencesLapsiri, W., Bhandari, B., & Wanchaitanawong, P. (2012). Viability of Lactobacillus plantarum TISTR 2075 in Different Protectants during Spray Drying and Storage. Drying Technology, 30(13), 1407–1412. https://doi.org/10.1080/07373937.2012.684226spa
dc.relation.referencesLe Leu, R. K., Hu, Y., Brown, I. L., Woodman, R. J., & Young, G. P. (2010). Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis, 31(2), 246–251. https://doi.org/10.1093/carcin/bgp197spa
dc.relation.referencesLee, A., Cheng, K.-C., & Liu, J.-R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLOS ONE, 12(8), e0182220. https://doi.org/10.1371/journal.pone.0182220spa
dc.relation.referencesLee, N., Park, Y.-S., Kang, D.-K., & Paik, H.-D. (2023). Paraprobiotics: definition, manufacturing methods, and functionality. Food Science and Biotechnology, 32(14), 1981–1991. https://doi.org/10.1007/s10068-023-01378-yspa
dc.relation.referencesLiu, Liong, Chung, Huang, Peng, Cheng, Lin, Wu, & Tsai. (2019). Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 11(4), 820. https://doi.org/10.3390/nu11040820spa
dc.relation.referencesLong-Smith, C., O’Riordan, K. J., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2020). Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 60(1), 477–502. https://doi.org/10.1146/annurev-pharmtox-010919-023628spa
dc.relation.referencesLopetuso, L. R., Giorgio, M. E., Saviano, A., Scaldaferri, F., Gasbarrini, A., & Cammarota, G. (2019). Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? International Journal of Molecular Sciences, 20(1), 183. https://doi.org/10.3390/ijms20010183spa
dc.relation.referencesLópez-Esparza, R., Balderas Altamirano, M. A., Pérez, E., & Gama Goicochea, A. (2015). Importance of Molecular Interactions in Colloidal Dispersions. Advances in Condensed Matter Physics, 2015, 1–8. https://doi.org/10.1155/2015/683716spa
dc.relation.referencesLouis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661–672. https://doi.org/10.1038/nrmicro3344spa
dc.relation.referencesMahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., & Srivastav, P. P. (2021). Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods, 3, 100024. https://doi.org/10.1016/j.fufo.2021.100024spa
dc.relation.referencesMäkeläinen, H., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. (2010). Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Beneficial Microbes, 1(2), 139–148. https://doi.org/10.3920/BM2009.0029spa
dc.relation.referencesMalfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021a). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study. Phytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074spa
dc.relation.referencesMalfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021b). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study.spa
dc.relation.referencesPhytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074 Mandale, N. M., Attkan, A. K., Kumar, S., & Kumar, N. (2023). Drying kinetics and quality assessment of refractance window dried beetroot. Journal of Food Process Engineering, 46(7). https://doi.org/10.1111/jfpe.14332spa
dc.relation.referencesManderino, L., Carroll, I., Azcarate-Peril, M. A., Rochette, A., Heinberg, L., Peat, C., Steffen, K., Mitchell, J., & Gunstad, J. (2017). Preliminary Evidence for an Association Between the Composition of the Gut Microbiome and Cognitive Function in Neurologically Healthy Older Adults. Journal of the International Neuropsychological Society, 23(8), 700–705. https://doi.org/10.1017/S1355617717000492spa
dc.relation.referencesMangiola, F. (2016). Gut microbiota in autism and mood disorders. World Journal of Gastroenterology, 22(1), 361. https://doi.org/10.3748/wjg.v22.i1.361spa
dc.relation.referencesMantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2018). Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods, 8(1), 4. https://doi.org/10.3390/foods8010004spa
dc.relation.referencesMarín-Arango, Z. T., Cortés R., M., Gil G., J., & Agudelo-Laverde, L. M. (2023). Biofortified andean blackberry (rubus glaucus benth) powder with Lacticaseibacillus casei: process and formulation effects. F1000Research, 12, 479. https://doi.org/10.12688/f1000research.132767.1spa
dc.relation.referencesMartinez Pantoja, D. F., Acosta Castaño, M., Alvarez Barreto, C. I., & Castellanos Galeano, F. J. (2022). Fritura por inmersión al vacío de rodajas de plátano verde con recubrimientos comestibles. INGENIERÍA Y COMPETITIVIDAD, 25(1), 14. https://doi.org/10.25100/iyc.v25i1.11970spa
dc.relation.referencesMartínez-Navarrete, N., Andrés Grau, A., Chiralt Boix, A., & Fito Maupoey, P. (1998). Termodinámica y cinética de sistemas alimento-entorno. Universidad Politécnica de Valencia.spa
dc.relation.referencesMartins, E. M. F., Ramos, A. M., Vanzela, E. S. L., Stringheta, P. C., de Oliveira Pinto, C. L., & Martins, J. M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51(2), 764–770. https://doi.org/10.1016/j.foodres.2013.01.047spa
dc.relation.referencesMelo Sabogal, D. V., Torres Grisales, Y., Serna jiménez, J. A., & Torres Valenzuela, L. S. (2015). APROVECHAMIENTO DE PULPA Y CÁSCARA DE PLÁTANO(Musa paradisiaca spp) PARA LA OBTENCIÓN DE MALTODEXTRINA. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 13(2), 76. https://doi.org/10.18684/BSAA(13)76-85spa
dc.relation.referencesMendes, A. C., & Chronakis, I. S. (2021). Electrohydrodynamic encapsulation of probiotics: A review. Food Hydrocolloids, 117, 106688. https://doi.org/10.1016/j.foodhyd.2021.106688 Metchnikoff, E. (1910). The Prolongation of Life: Optimistic Studies (P. C. Mitchell, Ed.). G P Putnam’s Sons.spa
dc.relation.referencesMichail, S. K., Stolfi, A., Johnson, T., & Onady, G. M. (2008). Efficacy of probiotics in the treatment of pediatric atopic dermatitis: a meta-analysis of randomized controlled trials. Annals of Allergy, Asthma & Immunology, 101(5), 508–516. https://doi.org/10.1016/S1081-1206(10)60290-6spa
dc.relation.referencesMin, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019a). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760spa
dc.relation.referencesMin, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019b). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2017). Evaluaciones agropecuarias municipales: plátano.spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2021). Cadena de plátano. Dirección de cadenas agrícolas y forestales Junio 2021.spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2021). Resolución 810.spa
dc.relation.referencesMitharwal, S., Kumar, S., & Chauhan, K. (2021a). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382spa
dc.relation.referencesMitharwal, S., Kumar, S., & Chauhan, K. (2021b). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382spa
dc.relation.referencesMontoya, J. (2020). Formulación de una matriz alimentaria a base de harina de plátano Dominico Hartón (Musa paradisiaca L.) para el diseño de alimentos funcionales libres de gluten. 1–217. https://repositorio.unal.edu.co/handle/unal/78569spa
dc.relation.referencesMontoya, J., Rodriguez-Barona, S., & Giraldo, G. (2016). CARACTERISITICAS FISICOQUÍMICAS DE LA HARINA DE PLÁTANO (Musa Paradisiaca) DOMINICO HARTON Y HARINA DE TRIGO COMERCIAL CON TENDENCIAS FUNCIONALES. Vitae, 23, 396–399.spa
dc.relation.referencesMujumdar, A. S., & Xiao, H.-W. (2019). Advanced Drying Technologies for Foods (CRC Press). Taylor & Francis Group. https://cloudflare-ipfs.com/ipfs/bafykbzacedi3guxgccvbjaqaltnkgyetubxd7gizgn4ty4s4z545jreyjpwpo?filename=Arun S Mujumdar %28Editor%29_ Hong-Wei Xiao %28Editor%29 - Advanced Drying Technologies for Foods-CRC Press %282019%29.pdfspa
dc.relation.referencesMuyonga, J. H., Natocho, J., Kigozi, J., Baidhe, E., & Nansereko, S. (2022). Drying behaviour and optimization of drying conditions of pineapple puree and slices using refractance window drying technology. Journal of Food Science and Technology, 59(7), 2794–2803. https://doi.org/10.1007/s13197-021-05302-2spa
dc.relation.referencesNakamura, F., Ishida, Y., Aihara, K., Sawada, D., Ashida, N., Sugawara, T., Aoki, Y., Takehara, I., Takano, K., & Fujiwara, S. (2016). Effect of fragmented Lactobacillus amylovorus CP1563 on lipid metabolism in overweight and mildly obese individuals: a randomized controlled trial. Microbial Ecology in Health & Disease, 27(0). https://doi.org/10.3402/mehd.v27.30312spa
dc.relation.referencesNaseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., & Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility, 26(8), 1155–1162. https://doi.org/10.1111/nmo.12378spa
dc.relation.referencesNguyen, T. D. T., Kang, J. H., & Lee, M. S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology, 113(3), 358–361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015spa
dc.relation.referencesNindo, C. I., & Tang, J. (2007). Refractance Window Dehydration Technology: A Novel Contact Drying Method. Drying Technology, 25(1), 37–48. https://doi.org/10.1080/07373930601152673spa
dc.relation.referencesNinkov, A., Frank, J. R., & Maggio, L. A. (2021). Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 11(3), 173–176. https://doi.org/10.1007/S40037-021-00695-4spa
dc.relation.referencesNunes, G. L., Motta, M. H., Cichoski, A. J., Wagner, R., Muller, É. I., Codevilla, C. F., da Silva, C. D. B., & de Menezes, C. R. (2018). Encapsulation of lactobacillus acidophilus la-5 and bifidobacterium bb-12 by spray drying and evaluation of its resistance in simulated gastrointestinal conditions, thermal treatments and storage conditions. Ciencia Rural, 48(6), 1–11. https://doi.org/10.1590/0103-8478cr20180035spa
dc.relation.referencesNuñez, H., Jaques, A., Belmonte, K., Elitin, J., Valdenegro, M., Ramírez, C., & Córdova, A. (2024). Development of an Apple Snack Enriched with Probiotic Lacticaseibacillus rhamnosus: Evaluation of the Refractance Window Drying Process on Cell Viability. Foods, 13(11), 1756. https://doi.org/10.3390/foods13111756spa
dc.relation.referencesOchoa-Martínez, C. I., Quintero, P. T., Ayala, A. A., & Ortiz, M. J. (2012). Drying characteristics of mango slices using the Refractance WindowTM technique. Journal of Food Engineering, 109(1), 69–75. https://doi.org/10.1016/j.jfoodeng.2011.09.032spa
dc.relation.referencesOcoró-Zamora, M. U., & Ayala-Aponte, A. A. (2013). Influencia del espesor en secado de puré de papaya (Carica papaya L.) por tecnología de ventana de refractanciaspi®. DYNA (Colombia), 80(182), 147–154.spa
dc.relation.referencesOhkawara, S., Furuya, H., Nagashima, K., Asanuma, N., & Hino, T. (2005). Oral Administration of Butyrivibrio fibrisolvens, a Butyrate-Producing Bacterium, Decreases the Formation of Aberrant Crypt Foci in the Colon and Rectum of Mice. The Journal of Nutrition, 135(12), 2878–2883. https://doi.org/10.1093/jn/135.12.2878spa
dc.relation.referencesOlivares, A., Soto, C., Caballero, E., & Altamirano, C. (2019). Survival of microencapsulated Lactobacillus casei (prepared by vibration technology) in fruit juice during cold storage. Electronic Journal of Biotechnology, 42, 42–48. https://doi.org/10.1016/j.ejbt.2019.10.002spa
dc.relation.referencesOlugbuyi, A. O., Malomo, S. A., Ijarotimi, O. S., & Fagbemi, T. N. (2023). Amino Acids Profile,Glyceamic Index/load, In-vitro Antioxidant and Sensory Attributes of Optimized Dough Meal from the Blends of Plantain, Soycake and Rice-bran Flours. Journal of Culinary Science & Technology, 21(5), 795–817. https://doi.org/10.1080/15428052.2021.2016530spa
dc.relation.referencesOluwajuyitan, T. D., & Ijarotimi, O. S. (2019). Nutritional, antioxidant, glycaemic index and Antihyperglycaemic properties of improved traditional plantain-based (Musa AAB) dough meal enriched with tigernut (Cyperus esculentus) and defatted soybean (Glycine max) flour for diabetic patients. Heliyon, 5(4), e01504. https://doi.org/10.1016/j.heliyon.2019.e01504spa
dc.relation.referencesOlveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482–494. https://doi.org/10.1016/j.endonu.2016.07.006spa
dc.relation.referencesOrganización Mundial de Gastroenterología. (2023). Directrices mundiales de la Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2023.pdfspa
dc.relation.referencesOrmaza-Zapata, Á. M., Días-Arango, F. O., & Rodríguez-Barona, S. (2019). EVALUATION OF PROBIOTIC MICROENCAPSULATION IN A PREBIOTIC WITH COFFEE EXTRACT. Coffe Science, 14(3), 394–406.spa
dc.relation.referencesOrtega-Rivas, E., Yang, H., Juliano, P., & Barbosa-Canovas, G. V. (2005). Food Powders: Physical properties, processing and functionality (Springer Science & Business Media, Ed.). Springer US. https://doi.org/10.1007/0-387-27613-0spa
dc.relation.referencesOrtiz-Jerez, M. J., & Ochoa-Martínez, C. I. (2015). Heat Transfer Mechanisms in Conductive Hydro-Drying of Pumpkin ( Cucurbita maxima ) Pieces. Drying Technology, 33(8), 965–972. https://doi.org/10.1080/07373937.2015.1009538spa
dc.relation.referencesOuwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek, 82(1–4), 279–289.spa
dc.relation.referencesOvando-Martinez, M., Sáyago-Ayerdi, S., Agama-Acevedo, E., Goñi, I., & Bello-Pérez, L. A. (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry, 113(1), 121–126. https://doi.org/10.1016/j.foodchem.2008.07.035spa
dc.relation.referencesOzuna, L. E. (1992). Elaboración de puré de plátano por un método alternativo [Master’s degree]. Universidad de Sonora.spa
dc.relation.referencesPadhi, S., & Dwivedi, M. (2022). Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of Refractance window drying. Future Foods, 5, 100101. https://doi.org/10.1016/j.fufo.2021.100101spa
dc.relation.referencesPadhi, S., Murakonda, S., & Dwivedi, M. (2022). Investigation of drying characteristics and nutritional retention of unripe green banana flour by refractance window drying technology using statistical approach. Journal of Food Measurement and Characterization, 16(3), 2375–2385. https://doi.org/10.1007/s11694-022-01349-7spa
dc.relation.referencesPallares Pallares, A., Estupiñán A, M. R., Perea Villamil, J. A., & López Giraldo, L. J. (2017). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51. Revista ION, 29(2), 7–21. https://doi.org/10.18273/revion.v29n2-2016001spa
dc.relation.referencesPandey, Kavita. R., Naik, Suresh. R., & Vakil, Babu. V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1spa
dc.relation.referencesPanghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018a). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003spa
dc.relation.referencesPanghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018b). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003spa
dc.relation.referencesPavan, M. A., Schmidt, S. J., & Feng, H. (2012). Water sorption behavior and thermal analysis of freeze-dried, Refractance Window-dried and hot-air dried açaí (Euterpe oleracea Martius) juice. LWT - Food Science and Technology, 48(1), 75–81. https://doi.org/10.1016/j.lwt.2012.02.024spa
dc.relation.referencesPedersen, L. L., Owusu-Kwarteng, J., Thorsen, L., & Jespersen, L. (2012). Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 159(2), 144–151. https://doi.org/10.1016/j.ijfoodmicro.2012.08.016spa
dc.relation.referencesPereira, A. L. F., Maciel, T. C., & Rodrigues, S. (2011). Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 44(5), 1276–1283. https://doi.org/10.1016/j.foodres.2010.11.035spa
dc.relation.referencesPerricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006spa
dc.relation.referencesPlayne, M. J., Bennett, L. E., & Smithers, G. W. (2003). Functional dairy foods and ingredients. Australian Journal of Dairy Technology, 58(3), 242.spa
dc.relation.referencesPowthong, P., Jantrapanukorn, B., Suntornthiticharoen, P., & Laohaphatanalert, K. (2020). Study of prebiotic properties of selected banana species in Thailand. Journal of Food Science and Technology, 57(7), 2490–2500. https://doi.org/10.1007/s13197-020-04284-xspa
dc.relation.referencesPrado, F. C., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Trends in non-dairy probiotic beverages. Food Research International, 41(2), 111–123. https://doi.org/10.1016/j.foodres.2007.10.010spa
dc.relation.referencesQuigley, E. M. M. (2010). Prebiotics and probiotics; modifying and mining the microbiota. Pharmacological Research, 61(3), 213–218. https://doi.org/10.1016/j.phrs.2010.01.004spa
dc.relation.referencesRajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance Window Drying of Apple Slices: Mass Transfer Phenomena and Quality Parameters. Food and Bioprocess Technology, 12(10), 1646–1658. https://doi.org/10.1007/s11947-019-02334-7spa
dc.relation.referencesRamani, R., & Ramani, V. (2018). PROBIOTIC MICROENCAPSULATION TECHNIQUES AND COATING MATERIALS: EBSCOhost. International Journal of Probiotics & Prebiotics, 13(4), 161–168. https://web-b-ebscohost-com.wdg.biblio.udg.mx:8443/ehost/detail/detail?vid=0&sid=363953fd-8220-475d-8972-2b57009c5f10%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3D%3D#AN=133492672&db=fsrspa
dc.relation.referencesRashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., & Jafari, S. M. (2020). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical Reviews in Food Science and Nutrition, 0(0), 1–25. https://doi.org/10.1080/10408398.2020.1854169spa
dc.relation.referencesRattanaprasert, M., Roos, S., Hutkins, R. W., & Walter, J. (2014). Quantitative evaluation of synbiotic strategies to improve persistence and metabolic activity of Lactobacillus reuteri DSM 17938 in the human gastrointestinal tract. Journal of Functional Foods, 10, 85–94. https://doi.org/10.1016/j.jff.2014.05.017spa
dc.relation.referencesRayo, L. M., Chaguri e Carvalho, L., Sardá, F. A. H., Dacanal, G. C., Menezes, E. W., & Tadini, C. C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration. LWT - Food Science and Technology, 63(1), 461–469. https://doi.org/10.1016/j.lwt.2015.03.059spa
dc.relation.referencesReis, J. M. C. dos, Pinheiro, M. F., Oti, A. T., Feitosa-Junior, D. J. S., Pantoja, M. de S., & Barros, R. S. M. (2016). TECHNOLOGICAL INFORMATION REGARDING PREBIOTICS AND PROBIOTICS NUTRITION VERSUS THE PATENT REGISTERS: WHAT IS NEW? ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 29(4), 279–281. https://doi.org/10.1590/0102-6720201600040016spa
dc.relation.referencesRivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1–11. https://doi.org/10.1016/j.fm.2008.06.008spa
dc.relation.referencesRodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. In Food Research International (Vol. 137). https://doi.org/10.1016/j.foodres.2020.109682spa
dc.relation.referencesRodríguez de Olmos, A., Garro, O. A., & Garro, M. S. (2022). Behavior study of Bifidobacterium longum using solid state fermentation from commercial soybean meal. LWT, 157, 113101. https://doi.org/10.1016/j.lwt.2022.113101spa
dc.relation.referencesRodríguez-Barona, S., Giraldo, G. I., & Montes, L. M. (2016). Encapsulación De Alimentos Probióticos Mediante Liofilización En Presencia De Prebióticos. Informacion Tecnologica, 27(6), 135–144. https://doi.org/10.4067/S0718-07642016000600014spa
dc.relation.referencesRodríguez-Barona, S., Giraldo, G. I., & Zuluaga, Y. P. (2015). Evaluación de la Incorporación de Fibra Prebiótica sobre la Viabilidad de LactobaciHus casei Impregnado en Matrices de Mora (Rubus glaucus). Información Tecnológica, 26(5), 25–34. https://doi.org/10.4067/S0718-07642015000500005spa
dc.relation.referencesRodríguez-Barona, S., Granada-Orozco, J., & Cruz-Ríos, D. (2014a). Comparación de sacarosa, inulina y fructo-oligosacáridos como agente4 osmóticos en mora de castilla (Rubus glaucus Benth.). Acta Horticulturae, 1016, 47–51. https://doi.org/10.17660/ActaHortic.2014.1016.4spa
dc.relation.referencesRodríguez-Barona, S., Granada-Orozco, J., & Cruz-Ríos, D. (2014b). COMPARACIÓN DE SACAROSA, INULINA Y FRUCTO-OLIGOSACÁRIDOS COMO AGENTES OSMÓTICOS EN MORA DE CASTILLA (RUBUS GLAUCUS BENTH.) -COMPARISON OF SUCROSE, INULIN AND FRUCTO-OLIGOSACCHARIDES AS OSMOTIC AGENTS IN THE ANDEAN BLACKBERRY (RUBUS GLAUCUS BENTH.). Acta Horticulturae, 1016, 47–51. https://doi.org/10.17660/ActaHortic.2014.1016.4spa
dc.relation.referencesRodríguez-Barona, S., Montes, L. M., & Ramírez, D. de J. (2012). Microencapsulación De Probióticos Mediante Secado Por Aspersión En Presencia De Prebióticos. Vitae, 19(1), S186–S188.spa
dc.relation.referencesRodríguez-Restrepo, Y. A., Giraldo, G. I., & Rodríguez-Barona, S. (2017a). Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: Application to microencapsulation of Bifidobacterium animalis subsp. lactis. Journal of Food Process Engineering, 40(6), 1–8. https://doi.org/10.1111/jfpe.12557spa
dc.relation.referencesRomeo, J., Nova, E., Wärnberg, J., Gómez-Martínez, S., Díaz Ligia, L. E., & Marcos, A. (2010). Immunomodulatory effect of fibres, probiotics and synbiotics in different life-stages. Nutricion Hospitalaria, 25(3), 341–349.spa
dc.relation.referencesRostami, H., Dehnad, D., Jafari, S. M., & Tavakoli, H. R. (2018). Evaluation of physical, rheological, microbial, and organoleptic properties of meat powder produced by Refractance Window drying. Drying Technology, 36(9), 1076–1085. https://doi.org/10.1080/07373937.2017.1377224spa
dc.relation.referencesRowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8spa
dc.relation.referencesRubio, R., Aymerich, T., Bover-Cid, S., Guàrdia, M. D., Arnau, J., & Garriga, M. (2013). Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT - Food Science and Technology, 54(1), 51–56. https://doi.org/10.1016/j.lwt.2013.05.014spa
dc.relation.referencesRwubuzizi, R., Kim, H., Holzapfel, W. H., & Todorov, S. D. (2023). Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon, 9(4), e15610. https://doi.org/10.1016/j.heliyon.2023.e15610spa
dc.relation.referencesSalari, M., Razavi, S. H., & Gharibzahedi, S. M. T. (2015). Characterising the synbiotic beverages based on barley and malt flours fermented by Lactobacillus delbrueckii and paracasei strains.Quality Assurance and Safety of Crops & Foods, 7(3), 355–361. https://doi.org/10.3920/QAS2013.0390spa
dc.relation.referencesSalazar, B. C., Cortés, M., & Montoya, O. I. (2015). The impact of storage conditions on the stability of sugarcane powder biofortified with kefir grains. Revista Facultad Nacional de Agronomía Medellín, 68(2), 7703–7712. https://doi.org/10.15446/rfnam.v68n2.50987spa
dc.relation.referencesSampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M.-F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018spa
dc.relation.referencesSantos, S. de J. L., Canto, H. K. F., da Silva, L. H. M., & Rodrigues, A. M. da C. (2022). Characterization and properties of purple yam (Dioscorea trifida) powder obtained by refractance window drying. Drying Technology, 40(6), 1103–1113. https://doi.org/10.1080/07373937.2020.1847140spa
dc.relation.referencesSarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. W. J. (2016). Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends in Neurosciences, 39(11), 763–781. https://doi.org/10.1016/j.tins.2016.09.002spa
dc.relation.referencesSavassi, B., Cordeiro, B. F., Silva, S. H., Oliveira, E. R., Belo, G., Figueiroa, A. G., Alves Queiroz, M. I., Faria, A. M. C., Alves, J., Silva, T. F. da, Campos, G. M., Esmerino, E. A., Rocha, R. S., Freitas, M. Q., Silva, M. C., Cruz, A. G., Vital, K. D., Fernandes, S. O. A., Cardoso, V. N., … Azevedo, V. (2021). Lyophilized Symbiotic Mitigates Mucositis Induced by 5-Fluorouracil. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.755871spa
dc.relation.referencesSavlak, N., Türker, B., & Yeşilkanat, N. (2016). Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chemistry, 213, 180–186. https://doi.org/10.1016/j.foodchem.2016.06.064spa
dc.relation.referencesSawicki, C., McKay, D., McKeown, N., Dallal, G., Chen, C., & Blumberg, J. (2016). Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial. Nutrients, 8(12), 813. https://doi.org/10.3390/nu8120813spa
dc.relation.referencesSchepper, J. D., Irwin, R., Kang, J., Dagenais, K., Lemon, T., Shinouskis, A., Parameswaran, N., & McCabe, L. R. (2017). Probiotics in Gut-Bone Signaling (pp. 225–247). https://doi.org/10.1007/978-3-319-66653-2_11spa
dc.relation.referencesSeth, D., Mishra, H. N., & Deka, S. C. (2017). Functional and reconstitution properties of spray-dried sweetened yogurt powder as influenced by processing conditions. International Journal of Food Properties, 20(7), 1603–1611. https://doi.org/10.1080/10942912.2016.1214965spa
dc.relation.referencesSgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & Costa-Mattioli, M. (2019). Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron, 101(2), 246-259.e6. https://doi.org/10.1016/j.neuron.2018.11.018spa
dc.relation.referencesShaikh, S. S., Joshi, C., Malek, F., Malik, A., & Gandhi, M. (2024). Food Storage, Processing and Genetic Stability Studies of Bacillus (Heyndrickxia) coagulans BCP92 (MTCC 25460). Applied Food Biotechnology, 11(1). https://doi.org/10.22037/afb.v11i1.44919spa
dc.relation.referencesSharma, V., & Mishra, H. N. (2013). Fermentation of vegetable juice mixture by probiotic lactic acid bacteria. Nutrafoods, 12(1), 17–22. https://doi.org/10.1007/s13749-012-0050-yspa
dc.relation.referencesShende, D., & Datta, A. K. (2020). Optimization study for refractance window drying process of Langra variety mango. Journal of Food Science and Technology, 57(2), 683–692. https://doi.org/10.1007/s13197-019-04101-0spa
dc.relation.referencesShori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/j.fbio.2015.11.001spa
dc.relation.referencesSidira, M., Kandylis, P., Kanellaki, M., & Kourkoutas, Y. (2016). Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chemistry, 201, 334–338. https://doi.org/10.1016/j.foodchem.2016.01.084spa
dc.relation.referencesSihra, N., Goodman, A., Zakri, R., Sahai, A., & Malde, S. (2018). Nonantibiotic prevention and management of recurrent urinary tract infection. Nature Reviews Urology, 15(12), 750–776. https://doi.org/10.1038/s41585-018-0106-xspa
dc.relation.referencesSilanikove, N., Leitner, G., & Merin, U. (2015). The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients, 7(9), 7312–7331. https://doi.org/10.3390/nu7095340spa
dc.relation.referencesSilva‐Espinoza, M. A., Salvador, A., Camacho, M. del M., & Martínez‐Navarrete, N. (2021). Impact of freeze‐drying conditions on the sensory perception of a freeze‐dried orange snack. Journal of the Science of Food and Agriculture, 101(11), 4585–4590. https://doi.org/10.1002/jsfa.11101spa
dc.relation.referencesSimova, E. D., Beshkova, D. B., & Dimitrov, Zh. P. (2009). Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. Journal of Applied Microbiology, 106(2), 692–701. https://doi.org/10.1111/j.1365-2672.2008.04052.xspa
dc.relation.referencesSingh, R., Ranvir, S., & Madan, S. (2017). Comparative Study of the Properties of Ripe Banana Flour, Unripe Banana Flour and Cooked Banana Flour Aiming Towards Effective Utilization of These Flours. International Journal of Current Microbiology and Applied Sciences, 6(8), 2003–2015. https://doi.org/10.20546/ijcmas.2017.608.239spa
dc.relation.referencesSlykerman, R. F., Hood, F., Wickens, K., Thompson, J. M. D., Barthow, C., Murphy, R., Kang, J., Rowden, J., Stone, P., Crane, J., Stanley, T., Abels, P., Purdie, G., Maude, R., & Mitchell, E.A. (2017). Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine, 24, 159–165. https://doi.org/10.1016/j.ebiom.2017.09.013spa
dc.relation.referencesStadnik, J., & Dolatowski, Z. J. (2014). Effect of Inoculation with Probiotics and Ageing Time on Selected Functional Properties and Oxidation of Proteins in Dry-Cured Pork Loins. International Journal of Food Properties, 17(4), 866–876. https://doi.org/10.1080/10942912.2012.685679spa
dc.relation.referencesStelmasiewicz, M., Świątek, Ł., & Ludwiczuk, A. (2021). Phytochemical Profile and Anticancer Potential of Endophytic Microorganisms from Liverwort Species, Marchantia polymorpha L. Molecules, 27(1), 153. https://doi.org/10.3390/molecules27010153spa
dc.relation.referencesSuwanangul, S., Jaichakan, P., Narkprasom, N., Kraithong, S., Narkprasom, K., & Sangsawad, P. (2023). Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion. Foods, 12(19), 3692. https://doi.org/10.3390/foods12193692spa
dc.relation.referencesSwieca, M., Kordowska-Wiater, M., Pytka, M., Gawlik-Dziki, U., Seczyk, L., Złotek, U., & Kapusta, I. (2019). Nutritional and pro-health quality of lentil and adzuki bean sprouts enriched with probiotic yeast Saccharomyces cerevisiae var. boulardii. LWT, 100, 220–226. https://doi.org/10.1016/j.lwt.2018.10.081spa
dc.relation.referencesTamnak, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., & Muhammad, K. (2016). Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 56, 405–416. https://doi.org/10.1016/j.foodhyd.2015.12.033spa
dc.relation.referencesTan, Y. X., Mok, W. K., & Chen, W. N. (2021). In Vitro Evaluation of Enriched Brewers’ Spent Grains Using Bacillus subtilis WX-17 as Potential Functional Food Ingredients. Applied Biochemistry and Biotechnology, 193(2), 349–362. https://doi.org/10.1007/s12010-020-03424-5spa
dc.relation.referencesTarnaud, F., Gaucher, F., do Carmo, F. L. R., Illikoud, N., Jardin, J., Briard-Bion, V., Guyomarc’h, F., Gagnaire, V., & Jan, G. (2020). Differential Adaptation of Propionibacterium freudenreichii CIRM-BIA129 to Cow’s Milk Versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.549027spa
dc.relation.referencesTejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G. R., & Rowland, I. (2013). Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe, 24, 60–65. https://doi.org/10.1016/j.anaerobe.2013.09.011spa
dc.relation.referencesTissier, H. (1900). Recherches sur la flore intestinale normale et pathologique du nourrisson. Université de Paris.spa
dc.relation.referencesTontul, İ., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018a). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176. https://doi.org/10.1016/j.idairyj.2018.06.002spa
dc.relation.referencesTontul, İ., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018b). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176. https://doi.org/10.1016/j.idairyj.2018.06.002spa
dc.relation.referencesTontul, I., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2021). The impact of refractance window drying conditions on the physical and microbiological properties of kefir powder. Food Bioscience, 43, 101317. https://doi.org/10.1016/j.fbio.2021.101317spa
dc.relation.referencesTontul, I., & Topuz, A. (2017). Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT, 80, 294–303. https://doi.org/10.1016/j.lwt.2017.02.035spa
dc.relation.referencesTontul, I., & Topuz, A. (2019). Storage stability of bioactive compounds of pomegranate leather (pestil) produced by refractance window drying. Journal of Food Process Engineering, 42(2). https://doi.org/10.1111/jfpe.12973spa
dc.relation.referencesTorres Rodelo, M. del R. (2018). Evaluación tecnológica del proceso de obtención de biomasa de microorganismos probióticos en medio de cultivo formulado con suero lácteo suplementado. 1–129.spa
dc.relation.referencesTribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Perez, L. A., & Tadini, C. C. (2009). Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT - Food Science and Technology, 42(5), 1022–1025. https://doi.org/10.1016/j.lwt.2008.12.017spa
dc.relation.referencesTripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241. https://doi.org/10.1016/j.jff.2014.04.030spa
dc.relation.referencesTurroni, F., Milani, C., Duranti, S., Ferrario, C., Lugli, G. A., Mancabelli, L., van Sinderen, D., & Ventura, M. (2018). Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cellular and Molecular Life Sciences, 75(1), 103–118. https://doi.org/10.1007/s00018-017-2672-0spa
dc.relation.referencesUnidad de Planificación Rural Agropecuaria. (2023). Resultados Evaluaciones Agropecuarias 2023. https://upra.gov.co/es-co/Evas_Documentos/Resultados%20Evaluaciones%20Agropecuarias%202023.pdfspa
dc.relation.referencesUrgesi, R., Casale, C., Pistelli, R., Rapaccini, G. L., & de Vitis, I. (2014). A randomized double-blind placebo-controlled clinical trial on efficacy and safety of association of simethicone and Bacillus coagulans (Colinox®) in patients with irritable bowel syndrome. European Review for Medical and Pharmacological Sciences, 18(9), 1344–1353. http://www.ncbi.nlm.nih.gov/pubmed/24867512spa
dc.relation.referencesVieira, K. C. de O., Ferreira, C. D. S., Bueno, E. B. T., De Moraes, Y. A., Toledo, A. C. C. G., Nakagaki, W. R., Pereira, V. C., & Winkelstroter, L. K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT, 130, 109637. https://doi.org/10.1016/j.lwt.2020.109637spa
dc.relation.referencesVillarroel, P., Gómez, C., Vera, C., & Torres, J. (2018). Almidón resistente: Características tecnológicas e intereses fisiológicos. Revista Chilena de Nutrición, 45(3), 271–278. https://doi.org/10.4067/s0717-75182018000400271spa
dc.relation.referencesVillegas, B. M., Villa, G. C., Torres, J. M., Ospina, S., Rocha, L. A., & Laverde, J. F. (2012). BANANUT PLUS: HARINA DE BANANO VERDE ENRIQUECIDA CON MICRONUTRIENTES. Vitae. https://www.redalyc.org/articulo.oa?id=169823914062spa
dc.relation.referencesVitaglione, P., Napolitano, A., & Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology, 19(9), 451–463. https://doi.org/10.1016/j.tifs.2008.02.005spa
dc.relation.referencesVrese, M. De. (2001). Probiotics, prebiotics, and synbiotics—approaching a definition 1–3. 73(14).spa
dc.relation.referencesWang, S., Chelikani, V., & Serventi, L. (2018). Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT, 97, 570–572. https://doi.org/10.1016/j.lwt.2018.07.067spa
dc.relation.referencesWang, Z., Feng, Y., Yang, N., Jiang, T., Xu, H., & Lei, H. (2022). Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chemistry, 373, 131455. https://doi.org/10.1016/j.foodchem.2021.131455spa
dc.relation.referencesWardy, W., Pujols Martínez, K. D., Xu, Z., No, H. K., & Prinyawiwatkul, W. (2014). Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology, 55(1), 67–73. https://doi.org/10.1016/j.lwt.2013.07.013spa
dc.relation.referencesWatanabe, F. F. F., Marques, C., Farias, F. O., Ellenderser, L. N., & Masson, M. L. (2020). Yacon-based Beverage as Non-dairy Vehicle for Bifidobacterium animalis ssp. lactis: Stability and In vitro Probiotic Viability. Biointerface Research in Applied Chemistry, 11(4), 11458–11472. https://doi.org/10.33263/BRIAC114.1145811472spa
dc.relation.referencesWei, H., Loimaranta, V., Tenovuo, J., Rokka, S., Syväoja, E.-L., Korhonen, H., Joutsjoki, V., & Marnila, P. (2002). Stability and activity of specific antibodies against Streptococcus mutans and Streptococcus sobrinus in bovine milk fermented with Lactobacillus rhamnosus strain GG or treated at ultra-high temperature. Oral Microbiology and Immunology, 17(1), 9–15. https://doi.org/10.1046/j.0902-0055.2001.00084.xspa
dc.relation.referencesWellala, C. K. D., Bi, J., Liu, X., Liu, J., Lyu, J., Zhou, M., Marszałek, K., & Trych, U. (2020). Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innovative Food Science and Emerging Technologies, 60, 102279. https://doi.org/10.1016/j.ifset.2019.102279spa
dc.relation.referencesWollowski, I., Rechkemmer, G., & Pool-Zobel, B. L. (2001). Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 73(2), 451s–455s. https://doi.org/10.1093/ajcn/73.2.451sspa
dc.relation.referencesWongputtisin, P., Ramaraj, R., Unpaprom, Y., Kawaree, R., & Pongtrakul, N. (2015). Raffinose family oligosaccharides in seed of Glycine max cv. Chiang Mai60 and potential source of prebiotic substances. International Journal of Food Science & Technology, 50(8), 1750–1756. https://doi.org/10.1111/ijfs.12842spa
dc.relation.referencesWu, G., Zhang, C., Wu, H., Wang, R., Shen, J., Wang, L., Zhao, Y., Pang, X., Zhang, X., Zhao, L., & Zhang, M. (2017). Genomic microdiversity of Bifidobacterium pseudocatenulatum underlying differential strain-level responses to dietary carbohydrate intervention. MBio, 8(1). https://doi.org/10.1128/mBio.02348-16spa
dc.relation.referencesXiao, Y., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. In Clinical Nutrition (Vol. 39, Issue 5, pp. 1315–1323). Churchill Livingstone. https://doi.org/10.1016/j.clnu.2019.05.014spa
dc.relation.referencesYan, X.-T., Zhang, Z., Wang, Y., Zhang, W., Zhang, L., Liu, Y., Chen, D., Wang, W., Ma, W., Qian, J.-Y., & Gu, R. (2023). Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. Applied Biological Chemistry, 66(1), 7. https://doi.org/10.1186/s13765-022-00762-2spa
dc.relation.referencesYang, B., McCullough, M. L., Gapstur, S. M., Jacobs, E. J., Bostick, R. M., Fedirko, V., Flanders, W. D., & Campbell, P. T. (2014). Calcium, Vitamin D, Dairy Products, and Mortality Among Colorectal Cancer Survivors: The Cancer Prevention Study-II Nutrition Cohort. Journal of Clinical Oncology, 32(22), 2335–2343. https://doi.org/10.1200/JCO.2014.55.3024spa
dc.relation.referencesYang, J., Zhou, F., Xiong, L., Mao, S., Hu, Y., & Lu, B. (2015). Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan [Carya cathayensis] at different stir-frying steps. LWT - Food Science and Technology, 62(1), 541–548. https://doi.org/10.1016/j.lwt.2014.09.049spa
dc.relation.referencesYao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874. https://doi.org/10.1111/1541-4337.12532spa
dc.relation.referencesYarabbi, H., Roshanak, S., & Milani, E. (2023). Production of the probiotic dessert containing sprouted quinoa milk and evaluation of physicochemical and microbial properties during storage. Food Science & Nutrition, 11(9), 5596–5608. https://doi.org/10.1002/fsn3.3517spa
dc.relation.referencesYoha, K. S., Anukiruthika, T., Anila, W., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT, 146, 111461. https://doi.org/10.1016/j.lwt.2021.111461spa
dc.relation.referencesYoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020a). Conductive hydro drying through refractance window drying–An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Drying Technology, 38(5–6), 610–620. https://doi.org/10.1080/07373937.2019.1624972spa
dc.relation.referencesYoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020b). Conductive hydro drying through refractance window drying–An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Drying Technology, 38(5–6), 610–620. https://doi.org/10.1080/07373937.2019.1624972spa
dc.relation.referencesYoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020c). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering, 283, 110033. https://doi.org/10.1016/j.jfoodeng.2020.110033spa
dc.relation.referencesYu, Z.-Y., Jiang, S.-W., Cao, X.-M., Jiang, S.-T., & Pan, L.-J. (2016). Effect of high pressure homogenization (HPH) on the physical properties of taro ( Colocasia esculenta (L). Schott) pulp. Journal of Food Engineering, 177, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.10.042spa
dc.relation.referencesZarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41–47. https://doi.org/10.1016/j.jssas.2013.06.002spa
dc.relation.referencesZelante, T., Iannitti, R. G., Cunha, C., DeLuca, A., Giovannini, G., Pieraccini, G., Zecchi, R., D’Angelo, C., Massi-Benedetti, C., Fallarino, F., Carvalho, A., Puccetti, P., & Romani, L. (2013). Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 39(2), 372–385. https://doi.org/10.1016/j.immuni.2013.08.003spa
dc.relation.referencesZhang, C., Quek, S. Y., Fu, N., Su, Y., Kilmartin, P. A., & Chen, X. D. (2020). Storage stability and in vitro digestion of microencapsulated powder containing fermented noni juice and probiotics. Food Bioscience, 37, 100740. https://doi.org/10.1016/j.fbio.2020.100740spa
dc.relation.referencesZhang, P., Whistler, R. L., BeMiller, J. N., & Hamaker, B. R. (2005). Banana starch: production, physicochemical properties, and digestibility—a review. Carbohydrate Polymers, 59(4), 443–458. https://doi.org/10.1016/j.carbpol.2004.10.014spa
dc.relation.referencesZhou, R., Xu, Y., Dong, D., Hu, J., Zhang, L., & Liu, H. (2023). The effects of microcapsules with different protein matrixes on the viability of probiotics during spray drying, gastrointestinal digestion, thermal treatment, and storage. EFood, 4(4). https://doi.org/10.1002/efd2.98spa
dc.relation.referencesZhu, D., Shen, Y., Wei, L., Xu, L., Cao, X., Liu, H., & Li, J. (2020). Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry, 328, 126967. https://doi.org/10.1016/j.foodchem.2020.126967spa
dc.relation.referencesZhu, W., Lyu, F., Naumovski, N., Ajlouni, S., & Ranadheera, C. S. (2020). Functional Efficacy of Probiotic Lactobacillus sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival. Beverages, 6(1), 13. https://doi.org/10.3390/beverages6010013spa
dc.relation.referencesZhu, Y. Y., Thakur, K., Feng, J. Y., Cai, J. S., Zhang, J. G., Hu, F., & Wei, Z. J. (2020). B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends in Food Science and Technology, 105(June), 43–55. https://doi.org/10.1016/j.tifs.2020.08.019spa
dc.relation.referencesZielińska, D., Rzepkowska, A., Radawska, A., & Zieliński, K. (2015). In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber. Current Microbiology, 70(2), 183–194. https://doi.org/10.1007/s00284-014-0699-0spa
dc.relation.referencesZorzela, L., Ardestani, S. K., McFarland, L. V., & Vohra, S. (2017). Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. Beneficial Microbes, 8(5), 739–754. https://doi.org/10.3920/BM2017.0032spa
dc.relation.referencesZotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2015). Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 69, 410–417. https://doi.org/10.1016/j.foodres.2015.01.013spa
dc.relation.referencesZotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027spa
dc.relation.referencesAboulfazli, F., Baba, A. S., & Misran, M. (2015). The Rheology and Physical Properties of Fermented Probiotic Ice Creams Made with Dairy Alternatives. International Journal of Food Engineering, 11(4), 493–504. https://doi.org/10.1515/ijfe-2014-0343spa
dc.relation.referencesAdams, C. A. (2010). The probiotic paradox: live and dead cells are biological response modifiers. Nutrition Research Reviews, 23(1), 37–46. https://doi.org/10.1017/S0954422410000090spa
dc.relation.referencesAizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., & Kunugi, H. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal of Affective Disorders, 202, 254–257. https://doi.org/10.1016/j.jad.2016.05.038spa
dc.relation.referencesAmmor, S., Tauveron, G., Dufour, E., & Chevallier, I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control, 17(6), 454–461. https://doi.org/10.1016/j.foodcont.2005.02.006spa
dc.relation.referencesAradón, A., & Castellano, V. (2014). Regulation and guidelines of probiotics and prebiotics. In Probiotics and prebiotics in food, nutrition and health (pp. 91–113). CRC Press.spa
dc.relation.referencesArihara, K., & Ohata, M. (2011). Functional meat products. In Functional Foods (pp. 512–533). Elsevier. https://doi.org/10.1533/9780857092557.3.512spa
dc.relation.referencesAshwar, B. A., Gani, A., Gani, A., Shah, A., & Masoodi, F. A. (2018). Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry, 239, 287–294. https://doi.org/10.1016/j.foodchem.2017.06.110spa
dc.relation.referencesAzad, Md. A. K., Sarker, M., Li, T., & Yin, J. (2018). Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/9478630spa
dc.relation.referencesBell, K. J., Saad, S., Tillett, B. J., McGuire, H. M., Bordbar, S., Yap, Y. A., Nguyen, L. T., Wilkins, M. R., Corley, S., Brodie, S., Duong, S., Wright, C. J., Twigg, S., de St Groth, B. F., Harrison, L. C., Mackay, C. R., Gurzov, E. N., Hamilton-Williams, E. E., & Mariño, E. (2022). Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 10(1), 9. https://doi.org/10.1186/s40168-021-01193-9spa
dc.relation.referencesBernat, N., Cháfer, M., González-Martínez, C., Rodríguez-García, J., & Chiralt, A. (2015). Optimisation of oat milk formulation to obtain fermented derivatives by using probiotic Lactobacillus reuteri microorganisms. Food Science and Technology International, 21(2), 145–157. https://doi.org/10.1177/1082013213518936spa
dc.relation.referencesBharwani, A., Mian, M. F., Foster, J. A., Surette, M. G., Bienenstock, J., & Forsythe, P. (2016). Structural &amp; functional consequences of chronic psychosocial stress on the microbiome &amp; host. Psychoneuroendocrinology, 63, 217–227. https://doi.org/10.1016/j.psyneuen.2015.10.001spa
dc.relation.referencesCadena, R. S., Caimi, D., Jaunarena, I., Lorenzo, I., Vidal, L., Ares, G., Deliza, R., & Giménez, A. (2014). Comparison of rapid sensory characterization methodologies for the development of functional yogurts. Food Research International, 64, 446–455. https://doi.org/10.1016/j.foodres.2014.07.027spa
dc.relation.referencesCao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2spa
dc.relation.referencesChampagne, C. P., Tompkins, T. A., Buckley, N. D., & Green-Johnson, J. M. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiology, 27(7), 968–972. https://doi.org/10.1016/j.fm.2010.06.003spa
dc.relation.referencesCharalampopoulos, D., Pandiella, S. S., & Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology, 82(2), 133–141. https://doi.org/10.1016/S0168-1605(02)00248-9spa
dc.relation.referencesChen, X., Yang, G., Song, J.-H., Xu, H., Li, D., Goldsmith, J., Zeng, H., Parsons-Wingerter, P. A., Reinecker, H.-C., & Kelly, C. P. (2013). Probiotic Yeast Inhibits VEGFR Signaling and Angiogenesis in Intestinal Inflammation. PLoS ONE, 8(5), e64227. https://doi.org/10.1371/journal.pone.0064227spa
dc.relation.referencesChmielewska, A., & Szajewska, H. (2010). Systematic review of randomised controlled trials: probiotics for functional constipation. World Journal of Gastroenterology, 16(1), 69–75. https://doi.org/10.3748/wjg.v16.i1.69spa
dc.relation.referencesCoelho, S. R., Lima, Í. A., Martins, M. L., Benevenuto Júnior, A. A., Torres Filho, R. de A., Ramos, A. de L. S., & Ramos, E. M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT, 102, 254–259. https://doi.org/10.1016/j.lwt.2018.12.045spa
dc.relation.referencesColica, C., Avolio, E., Bollero, P., Costa de Miranda, R., Ferraro, S., Sinibaldi Salimei, P., De Lorenzo, A., & Di Renzo, L. (2017). Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediators of Inflammation, 2017, 1–10. https://doi.org/10.1155/2017/5650627spa
dc.relation.referencesCordeiro, B. F., Alves, J. L., Belo, G. A., Oliveira, E. R., Braga, M. P., da Silva, S. H., Lemos, L., Guimarães, J. T., Silva, R., Rocha, R. S., Jan, G., Le Loir, Y., Silva, M. C., Freitas, M. Q., Esmerino, E. A., Gala-García, A., Ferreira, E., Faria, A. M. C., Cruz, A. G., … do Carmo, F. L. R. (2021). Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.623920spa
dc.relation.referencesde Oliveira, P. M., Leite Júnior, B. R. de C., Martins, E. M. F., Martins, M. L., Vieira, É. N. R., de Barros, F. A. R., Cristianini, M., de Almeida Costa, N., & Ramos, A. M. (2021). Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. Journal of Food Science and Technology, 58(1), 98–109. https://doi.org/10.1007/s13197-020-04518-yspa
dc.relation.referencesDi Stefano, E., White, J., Seney, S., Hekmat, S., McDowell, T., Sumarah, M., & Reid, G. (2017). A Novel Millet-Based Probiotic Fermented Food for the Developing World. Nutrients, 9(5), 529. https://doi.org/10.3390/nu9050529spa
dc.relation.referencesDiaz‐Vela, J., Totosaus, A., Cruz‐Guerrero, A. E., & de Lourdes Pérez‐Chabela, M. (2013). In vitro evaluation of the fermentation of added‐value agroindustrial by‐products: cactus pear ( <scp>O</scp> puntia ficus‐indica <scp>L</scp> .) peel and pineapple ( <scp>A</scp> nanas comosus ) peel as functional ingredients. International Journal of Food Science & Technology, 48(7), 1460–1467. https://doi.org/10.1111/ijfs.12113spa
dc.relation.referencesDo, T. V. T., & Fan, L. (2019). Probiotic Viability, Qualitative Characteristics, and Sensory Acceptability of Vegetable Juice Mixture Fermented with &amp;lt;i&amp;gt;Lactobacillus&amp;lt;/i&amp;gt; Strains. Food and Nutrition Sciences, 10(04), 412–427. https://doi.org/10.4236/fns.2019.104031spa
dc.relation.referencesDonkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2007). α-Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chemistry, 104(1), 10–20. https://doi.org/10.1016/j.foodchem.2006.10.065spa
dc.relation.referencesDunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E. M., O’Sullivan, G. C., Shanahan, F., & Collins, J. K. (1999). Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek, 76(1–4), 279–292. http://www.ncbi.nlm.nih.gov/pubmed/10532384spa
dc.relation.referencesDuru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019a). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102spa
dc.relation.referencesDuru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019b). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102spa
dc.relation.referencesEnujiugha, Victor. N., & Badejo, A. A. (2017). Probiotic potentials of cereal-based beverages. Critical Reviews in Food Science and Nutrition, 57(4), 790–804. https://doi.org/10.1080/10408398.2014.930018spa
dc.relation.referencesFAO, E., & OMS, E. (2006). Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. Estudios FAO Alimentación y Nutrición, 85, 52. file:///C:/Users/Acer/Documents/paty/homework1/PROBIOTICOS OPS 2006.pdfspa
dc.relation.referencesFernández-Abascal, B., Suárez-Pinilla, P., Cobo-Corrales, C., Crespo-Facorro, B., & Suárez-Pinilla, M. (2021). In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episod. Neuroscience & Biobehavioral Reviews, 125, 535–568. https://doi.org/10.1016/j.neubiorev.2021.01.005spa
dc.relation.referencesFord, A. C., Quigley, E. M. M., Lacy, B. E., Lembo, A. J., Saito, Y. A., Schiller, L. R., Soffer, E. E., Spiegel, B. M. R., & Moayyedi, P. (2014). Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. The American Journal of Gastroenterology, 109(10), 1547–1562. https://doi.org/10.1038/ajg.2014.202spa
dc.relation.referencesGeorge Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018a). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002spa
dc.relation.referencesGeorge Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018b). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002spa
dc.relation.referencesGoldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004827.pub4spa
dc.relation.referencesGómez, A., Anaya, J., Rodríguez, G., Lechón, A., Perugachi, I., Velásquez, C., Carlos, S., Miniet, A., & Lascano, R. (2022). Glycemic effect of a functional pancake made from an instant oat mix. Revista Espanola de Nutricion Humana y Dietetica, 26(3), 189–196. https://doi.org/10.14306/renhyd.26.3.1668spa
dc.relation.referencesGuandalini, S. (2011). Probiotics for Prevention and Treatment of Diarrhea. Journal of Clinical Gastroenterology, 45, S149–S153. https://doi.org/10.1097/MCG.0b013e3182257e98 Gupta, M., & Bajaj, B. K. (2017). Development of fermented oat flour beverage as a potential probiotic vehicle. Food Bioscience, 20, 104–109. https://doi.org/10.1016/j.fbio.2017.08.007spa
dc.relation.referencesHijová, E. (2022). Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. In Metabolites (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/metabo12040313spa
dc.relation.referencesHou, H., Chen, D., Zhang, K., Zhang, W., Liu, T., Wang, S., Dai, X., Wang, B., Zhong, W., & Cao, H. (2022). Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Letters, 526, 225–235. https://doi.org/10.1016/j.canlet.2021.11.027spa
dc.relation.referencesİçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015a). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102spa
dc.relation.referencesİçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015b). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102spa
dc.relation.referencesIshwarya, S. P., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171–180. https://doi.org/10.1016/j.jfoodeng.2014.10.011spa
dc.relation.referencesKandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012spa
dc.relation.referencesKaragül, Ö., & EL, S. N. (2024). Cereal-based fermented synbiotic instant powders: a dessert practice. Ege Üniversitesi Ziraat Fakültesi Dergisi, 60(4), 571–579. https://doi.org/10.20289/zfdergi.1336843spa
dc.relation.referencesKareem, S. O., Adio, O. Q., & Osho, M. B. (2014). Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix. Enzyme Research, 2014, 1–7. https://doi.org/10.1155/2014/967056spa
dc.relation.referencesKatina, K., Liukkonen, K.-H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.-M., Lampi, A.-M., Pihlava, J.-M., & Poutanen, K. (2007). Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3), 348–355. https://doi.org/10.1016/j.jcs.2007.07.006spa
dc.relation.referencesKelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F., & Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019spa
dc.relation.referencesKhalesi, S., Sun, J., Buys, N., & Jayasinghe, R. (2014). Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension, 64(4), 897–903. https://doi.org/10.1161/HYPERTENSIONAHA.114.03469spa
dc.relation.referencesKober, M.-M., & Bowe, W. P. (2015). The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women’s Dermatology, 1(2), 85–89. https://doi.org/10.1016/j.ijwd.2015.02.001spa
dc.relation.referencesKumar, B., Vijayendra, S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products - a review. Journal of Food Science and Technology, 52(10), 6112–6124. https://doi.org/10.1007/s13197-015-1795-2spa
dc.relation.referencesKumar, H., Dhalaria, R., Guleria, S., Cimler, R., Choudhary, R., Dhanjal, D. S., Singh, R., Kimta, N., Dulta, K., Pathera, A. K., Khan, A., Nausad, M., Alomar, S. Y., Manickam, S., & Kuča, K. (2023). To exploring the role of probiotics, plant-based fermented products, and paraprobiotics as anti-inflammatory agents in promoting human health. Journal of Agriculture and Food Research, 14, 100896. https://doi.org/10.1016/j.jafr.2023.100896spa
dc.relation.referencesKumar, S., Rattu, G., Mitharwal, S., Chandra, A., Kumar, S., Kaushik, A., Mishra, V., & Nema, P. K. (2022). Trends in non‐dairy‐based probiotic food products: Advances and challenges. Journal of Food Processing and Preservation, 46(9). https://doi.org/10.1111/jfpp.16578spa
dc.relation.referencesLamiki, P., Tsuchiya, J., Pathak, S., Okura, R., Solimene, U., Jain, S., Kawakita, S., & Marotta, F. (2010). Probiotics in diverticular disease of the colon: an open label study. Journal of Gastrointestinal and Liver Diseases : JGLD, 19(1), 31–36. http://www.ncbi.nlm.nih.gov/pubmed/20361072spa
dc.relation.referencesLee, A., Cheng, K.-C., & Liu, J.-R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLOS ONE, 12(8), e0182220. https://doi.org/10.1371/journal.pone.0182220spa
dc.relation.referencesLee, N., Park, Y.-S., Kang, D.-K., & Paik, H.-D. (2023). Paraprobiotics: definition, manufacturing methods, and functionality. Food Science and Biotechnology, 32(14), 1981–1991. https://doi.org/10.1007/s10068-023-01378-yspa
dc.relation.referencesLopetuso, L. R., Giorgio, M. E., Saviano, A., Scaldaferri, F., Gasbarrini, A., & Cammarota, G. (2019). Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? International Journal of Molecular Sciences, 20(1), 183. https://doi.org/10.3390/ijms20010183spa
dc.relation.referencesLouis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661–672. https://doi.org/10.1038/nrmicro3344spa
dc.relation.referencesMäkeläinen, H., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. (2010). Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Beneficial Microbes, 1(2), 139–148. https://doi.org/10.3920/BM2009.0029spa
dc.relation.referencesMalfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study. Phytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074spa
dc.relation.referencesMantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2018). Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods, 8(1), 4. https://doi.org/10.3390/foods8010004spa
dc.relation.referencesMartins, E. M. F., Ramos, A. M., Vanzela, E. S. L., Stringheta, P. C., de Oliveira Pinto, C. L., & Martins, J. M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51(2), 764–770. https://doi.org/10.1016/j.foodres.2013.01.047spa
dc.relation.referencesMetchnikoff, E. (1910). The Prolongation of Life: Optimistic Studies (P. C. Mitchell, Ed.). G P Putnam’s Sons.spa
dc.relation.referencesMin, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019a). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760spa
dc.relation.referencesMin, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019b). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760spa
dc.relation.referencesMitharwal, S., Kumar, S., & Chauhan, K. (2021a). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382spa
dc.relation.referencesMitharwal, S., Kumar, S., & Chauhan, K. (2021b). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382spa
dc.relation.referencesNakamura, F., Ishida, Y., Aihara, K., Sawada, D., Ashida, N., Sugawara, T., Aoki, Y., Takehara, I., Takano, K., & Fujiwara, S. (2016). Effect of fragmented Lactobacillus amylovorus CP1563 on lipid metabolism in overweight and mildly obese individuals: a randomized controlled trial. Microbial Ecology in Health & Disease, 27(0). https://doi.org/10.3402/mehd.v27.30312spa
dc.relation.referencesNaseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., & Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility, 26(8), 1155–1162. https://doi.org/10.1111/nmo.12378spa
dc.relation.referencesNguyen, T. D. T., Kang, J. H., & Lee, M. S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology, 113(3), 358–361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015spa
dc.relation.referencesNinkov, A., Frank, J. R., & Maggio, L. A. (2021). Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 11(3), 173–176. https://doi.org/10.1007/S40037-021-00695-4spa
dc.relation.referencesOlivares, A., Soto, C., Caballero, E., & Altamirano, C. (2019). Survival of microencapsulated Lactobacillus casei (prepared by vibration technology) in fruit juice during cold storage. Electronic Journal of Biotechnology, 42, 42–48. https://doi.org/10.1016/j.ejbt.2019.10.002spa
dc.relation.referencesOlveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482–494. https://doi.org/10.1016/j.endonu.2016.07.006spa
dc.relation.referencesOrganización Mundial de Gastroenterología. (2023). Directrices mundiales de la Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2023.pdfspa
dc.relation.referencesOuwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek, 82(1–4), 279–289.spa
dc.relation.referencesPallares Pallares, A., Estupiñán A, M. R., Perea Villamil, J. A., & López Giraldo, L. J. (2017). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51. Revista ION, 29(2), 7–21. https://doi.org/10.18273/revion.v29n2-2016001spa
dc.relation.referencesPandey, Kavita. R., Naik, Suresh. R., & Vakil, Babu. V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1spa
dc.relation.referencesPanghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018a). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003spa
dc.relation.referencesPanghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018b). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003spa
dc.relation.referencesPedersen, L. L., Owusu-Kwarteng, J., Thorsen, L., & Jespersen, L. (2012). Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 159(2), 144–151. https://doi.org/10.1016/j.ijfoodmicro.2012.08.016spa
dc.relation.referencesPereira, A. L. F., Maciel, T. C., & Rodrigues, S. (2011). Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 44(5), 1276–1283. https://doi.org/10.1016/j.foodres.2010.11.035spa
dc.relation.referencesPerricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006spa
dc.relation.referencesPrado, F. C., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Trends in non-dairy probiotic beverages. Food Research International, 41(2), 111–123. https://doi.org/10.1016/j.foodres.2007.10.010spa
dc.relation.referencesQuigley, E. M. M. (2010). Prebiotics and probiotics; modifying and mining the microbiota. Pharmacological Research, 61(3), 213–218. https://doi.org/10.1016/j.phrs.2010.01.004spa
dc.relation.referencesReis, J. M. C. dos, Pinheiro, M. F., Oti, A. T., Feitosa-Junior, D. J. S., Pantoja, M. de S., & Barros, R. S. M. (2016). TECHNOLOGICAL INFORMATION REGARDING PREBIOTICS AND PROBIOTICS NUTRITION VERSUS THE PATENT REGISTERS: WHAT IS NEW? ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 29(4), 279–281. https://doi.org/10.1590/0102-6720201600040016spa
dc.relation.referencesRivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1–11. https://doi.org/10.1016/j.fm.2008.06.008spa
dc.relation.referencesRodríguez de Olmos, A., Garro, O. A., & Garro, M. S. (2022). Behavior study of Bifidobacterium longum using solid state fermentation from commercial soybean meal. LWT, 157, 113101. https://doi.org/10.1016/j.lwt.2022.113101spa
dc.relation.referencesRodríguez-Barona, S., Giraldo, G. I., & Montes, L. M. (2016). Encapsulación De Alimentos Probióticos Mediante Liofilización En Presencia De Prebióticos. Informacion Tecnologica, 27(6), 135–144. https://doi.org/10.4067/S0718-07642016000600014spa
dc.relation.referencesRowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8spa
dc.relation.referencesRubio, R., Aymerich, T., Bover-Cid, S., Guàrdia, M. D., Arnau, J., & Garriga, M. (2013). Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT - Food Science and Technology, 54(1), 51–56. https://doi.org/10.1016/j.lwt.2013.05.014spa
dc.relation.referencesRwubuzizi, R., Kim, H., Holzapfel, W. H., & Todorov, S. D. (2023). Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon, 9(4), e15610. https://doi.org/10.1016/j.heliyon.2023.e15610spa
dc.relation.referencesSalari, M., Razavi, S. H., & Gharibzahedi, S. M. T. (2015). Characterising the synbiotic beverages based on barley and malt flours fermented by Lactobacillus delbrueckii and paracasei strains. Quality Assurance and Safety of Crops & Foods, 7(3), 355–361. https://doi.org/10.3920/QAS2013.0390spa
dc.relation.referencesSampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M.-F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018spa
dc.relation.referencesSawicki, C., McKay, D., McKeown, N., Dallal, G., Chen, C., & Blumberg, J. (2016). Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial. Nutrients, 8(12), 813. https://doi.org/10.3390/nu8120813spa
dc.relation.referencesSchepper, J. D., Irwin, R., Kang, J., Dagenais, K., Lemon, T., Shinouskis, A., Parameswaran, N., & McCabe, L. R. (2017). Probiotics in Gut-Bone Signaling (pp. 225–247). https://doi.org/10.1007/978-3-319-66653-2_11spa
dc.relation.referencesSgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & Costa-Mattioli, M. (2019). Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron, 101(2), 246-259.e6. https://doi.org/10.1016/j.neuron.2018.11.018spa
dc.relation.referencesSharma, V., & Mishra, H. N. (2013). Fermentation of vegetable juice mixture by probiotic lactic acid bacteria. Nutrafoods, 12(1), 17–22. https://doi.org/10.1007/s13749-012-0050-y Shori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/j.fbio.2015.11.001spa
dc.relation.referencesSidira, M., Kandylis, P., Kanellaki, M., & Kourkoutas, Y. (2016). Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chemistry, 201, 334–338. https://doi.org/10.1016/j.foodchem.2016.01.084spa
dc.relation.referencesSihra, N., Goodman, A., Zakri, R., Sahai, A., & Malde, S. (2018). Nonantibiotic prevention and management of recurrent urinary tract infection. Nature Reviews Urology, 15(12), 750–776. https://doi.org/10.1038/s41585-018-0106-xspa
dc.relation.referencesSilanikove, N., Leitner, G., & Merin, U. (2015). The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients, 7(9), 7312–7331. https://doi.org/10.3390/nu7095340spa
dc.relation.referencesSimova, E. D., Beshkova, D. B., & Dimitrov, Zh. P. (2009). Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. Journal of Applied Microbiology, 106(2), 692–701. https://doi.org/10.1111/j.1365-2672.2008.04052.xspa
dc.relation.referencesSlykerman, R. F., Hood, F., Wickens, K., Thompson, J. M. D., Barthow, C., Murphy, R., Kang, J., Rowden, J., Stone, P., Crane, J., Stanley, T., Abels, P., Purdie, G., Maude, R., & Mitchell, E. A. (2017). Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine, 24, 159–165. https://doi.org/10.1016/j.ebiom.2017.09.013spa
dc.relation.referencesStadnik, J., & Dolatowski, Z. J. (2014). Effect of Inoculation with Probiotics and Ageing Time on Selected Functional Properties and Oxidation of Proteins in Dry-Cured Pork Loins. International Journal of Food Properties, 17(4), 866–876. https://doi.org/10.1080/10942912.2012.685679spa
dc.relation.referencesSwieca, M., Kordowska-Wiater, M., Pytka, M., Gawlik-Dziki, U., Seczyk, L., Złotek, U., & Kapusta, I. (2019). Nutritional and pro-health quality of lentil and adzuki bean sprouts enriched with probiotic yeast Saccharomyces cerevisiae var. boulardii. LWT, 100, 220–226. https://doi.org/10.1016/j.lwt.2018.10.081spa
dc.relation.referencesTarnaud, F., Gaucher, F., do Carmo, F. L. R., Illikoud, N., Jardin, J., Briard-Bion, V., Guyomarc’h, F., Gagnaire, V., & Jan, G. (2020). Differential Adaptation of Propionibacterium freudenreichii CIRM-BIA129 to Cow’s Milk Versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.549027spa
dc.relation.referencesTejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G. R., & Rowland, I. (2013). Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe, 24, 60–65. https://doi.org/10.1016/j.anaerobe.2013.09.011spa
dc.relation.referencesTissier, H. (1900). Recherches sur la flore intestinale normale et pathologique du nourrisson. Université de Paris.spa
dc.relation.referencesTurroni, F., Milani, C., Duranti, S., Ferrario, C., Lugli, G. A., Mancabelli, L., van Sinderen, D., & Ventura, M. (2018). Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cellular and Molecular Life Sciences, 75(1), 103–118. https://doi.org/10.1007/s00018-017-2672-0spa
dc.relation.referencesUrgesi, R., Casale, C., Pistelli, R., Rapaccini, G. L., & de Vitis, I. (2014). A randomized double-blind placebo-controlled clinical trial on efficacy and safety of association of simethicone and Bacillus coagulans (Colinox®) in patients with irritable bowel syndrome. European Review for Medical and Pharmacological Sciences, 18(9), 1344–1353. http://www.ncbi.nlm.nih.gov/pubmed/24867512spa
dc.relation.referencesVieira, K. C. de O., Ferreira, C. D. S., Bueno, E. B. T., De Moraes, Y. A., Toledo, A. C. C. G., Nakagaki, W. R., Pereira, V. C., & Winkelstroter, L. K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT, 130, 109637. https://doi.org/10.1016/j.lwt.2020.109637spa
dc.relation.referencesVitaglione, P., Napolitano, A., & Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology, 19(9), 451–463. https://doi.org/10.1016/j.tifs.2008.02.005spa
dc.relation.referencesWang, S., Chelikani, V., & Serventi, L. (2018). Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT, 97, 570–572. https://doi.org/10.1016/j.lwt.2018.07.067spa
dc.relation.referencesWang, Z., Feng, Y., Yang, N., Jiang, T., Xu, H., & Lei, H. (2022). Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chemistry, 373, 131455. https://doi.org/10.1016/j.foodchem.2021.131455spa
dc.relation.referencesWatanabe, F. F. F., Marques, C., Farias, F. O., Ellenderser, L. N., & Masson, M. L. (2020). Yacon-based Beverage as Non-dairy Vehicle for Bifidobacterium animalis ssp. lactis: Stability and In vitro Probiotic Viability. Biointerface Research in Applied Chemistry, 11(4), 11458–11472. https://doi.org/10.33263/BRIAC114.1145811472spa
dc.relation.referencesWollowski, I., Rechkemmer, G., & Pool-Zobel, B. L. (2001). Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 73(2), 451s–455s. https://doi.org/10.1093/ajcn/73.2.451sspa
dc.relation.referencesWongputtisin, P., Ramaraj, R., Unpaprom, Y., Kawaree, R., & Pongtrakul, N. (2015). Raffinose family oligosaccharides in seed of Glycine max cv. Chiang Mai60 and potential source of prebiotic substances. International Journal of Food Science & Technology, 50(8), 1750–1756. https://doi.org/10.1111/ijfs.12842spa
dc.relation.referencesXiao, Y., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. In Clinical Nutrition (Vol. 39, Issue 5, pp. 1315–1323). Churchill Livingstone. https://doi.org/10.1016/j.clnu.2019.05.014spa
dc.relation.referencesYan, X.-T., Zhang, Z., Wang, Y., Zhang, W., Zhang, L., Liu, Y., Chen, D., Wang, W., Ma, W., Qian, J.-Y., & Gu, R. (2023). Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. Applied Biological Chemistry, 66(1), 7. https://doi.org/10.1186/s13765-022-00762-2spa
dc.relation.referencesYang, B., McCullough, M. L., Gapstur, S. M., Jacobs, E. J., Bostick, R. M., Fedirko, V., Flanders, W. D., & Campbell, P. T. (2014). Calcium, Vitamin D, Dairy Products, and Mortality Among Colorectal Cancer Survivors: The Cancer Prevention Study-II Nutrition Cohort. Journal of Clinical Oncology, 32(22), 2335–2343. https://doi.org/10.1200/JCO.2014.55.3024spa
dc.relation.referencesYang, J., Zhou, F., Xiong, L., Mao, S., Hu, Y., & Lu, B. (2015). Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan [Carya cathayensis] at different stir-frying steps. LWT - Food Science and Technology, 62(1), 541–548. https://doi.org/10.1016/j.lwt.2014.09.049spa
dc.relation.referencesYao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874. https://doi.org/10.1111/1541-4337.12532spa
dc.relation.referencesYarabbi, H., Roshanak, S., & Milani, E. (2023). Production of the probiotic dessert containing sprouted quinoa milk and evaluation of physicochemical and microbial properties during storage. Food Science & Nutrition, 11(9), 5596–5608. https://doi.org/10.1002/fsn3.3517spa
dc.relation.referencesZhang, C., Quek, S. Y., Fu, N., Su, Y., Kilmartin, P. A., & Chen, X. D. (2020). Storage stability and in vitro digestion of microencapsulated powder containing fermented noni juice and probiotics. Food Bioscience, 37, 100740. https://doi.org/10.1016/j.fbio.2020.100740spa
dc.relation.referencesZhu, W., Lyu, F., Naumovski, N., Ajlouni, S., & Ranadheera, C. S. (2020). Functional Efficacy of Probiotic Lactobacillus sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival. Beverages, 6(1), 13. https://doi.org/10.3390/beverages6010013spa
dc.relation.referencesZielińska, D., Rzepkowska, A., Radawska, A., & Zieliński, K. (2015). In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber. Current Microbiology, 70(2), 183–194. https://doi.org/10.1007/s00284-014-0699-0spa
dc.relation.referencesZorzela, L., Ardestani, S. K., McFarland, L. V., & Vohra, S. (2017). Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. Beneficial Microbes, 8(5), 739–754. https://doi.org/10.3920/BM2017.0032spa
dc.relation.referencesAbiodun-Solanke, A., & Falade, K. (2011). A review of the uses and methods of processing banana and plantain (Musa spp.) into storable food products. Journal of Agricultural Research and Development, 9(2). https://doi.org/10.4314/jard.v9i2.66815spa
dc.relation.referencesAboulfazli, F., Baba, A. S., & Misran, M. (2015). The Rheology and Physical Properties of Fermented Probiotic Ice Creams Made with Dairy Alternatives. International Journal of Food Engineering, 11(4), 493–504. https://doi.org/10.1515/ijfe-2014-0343spa
dc.relation.referencesAdams, C. A. (2010). The probiotic paradox: live and dead cells are biological response modifiers. Nutrition Research Reviews, 23(1), 37–46. https://doi.org/10.1017/S0954422410000090spa
dc.relation.referencesAgama-Acevedo, E., Rodriguez-Ambriz, S. L., García-Suárez, F. J., Gutierrez-Méraz, F., Pacheco-Vargas, G., & Bello-Pérez, L. A. (2014). Starch isolation and partial characterization of commercial cooking and dessert banana cultivars growing in Mexico. Starch - Stärke, 66(3–4), 337–344. https://doi.org/10.1002/star.201300125spa
dc.relation.referencesAhmad, A., Prakash, O., Kumar, A., Chatterjee, R., Sharma, S., Kumar, V., Kulshreshtha, K., Li, C., & Eldin, E. M. T. (2022). A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying. Energies, 15(24), 9493. https://doi.org/10.3390/en15249493spa
dc.relation.referencesAizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., & Kunugi, H. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal of Affective Disorders, 202, 254–257. https://doi.org/10.1016/j.jad.2016.05.038spa
dc.relation.referencesAlberti, K. G. M. M., Zimmet, P., & Shaw, J. (2007). International Diabetes Federation: A consensus on Type 2 diabetes prevention. Diabetic Medicine, 24(5), 451–463. https://doi.org/10.1111/j.1464-5491.2007.02157.xspa
dc.relation.referencesAlmada-Érix, C. N., Almada, C. N., Pedrosa, G. T. S., Biachi, J. P., Bonatto, M. S., Schmiele, M., Nabeshima, E. H., Clerici, M., Magnani, M., & Sant’Ana, A. S. (2022). Bread as probiotic carriers: Resistance of Bacillus coagulans GBI-30 6086 spores through processing steps. FOOD RESEARCH INTERNATIONAL, 155. https://doi.org/10.1016/j.foodres.2022.111040spa
dc.relation.referencesAlmada-Érix, C. N., Almada, C. N., Souza Pedrosa, G. T., dos Santos, P., Schmiele, M., Clerici, M. T. P. S., Martinez, J., Lollo, P. C., Magnani, M., & Sant’Ana, A. S. (2021). Quantifying the impact of eight unit operations on the survival of eight Bacillus strains with claimed probiotic properties. Food Research International, 142(February). https://doi.org/10.1016/j.foodres.2021.110191spa
dc.relation.referencesAlmanza-Benitez, S., Osorio-Díaz, P., Méndez-Montealvo, G., Islas-Hernández, J. J., & Bello-Perez, L. A. (2015). Addition of acid-treated unripe plantain flour modified the starch digestibility, indigestible carbohydrate content and antioxidant capacity of semolina spaghetti. LWT - Food Science and Technology, 62(2), 1127–1133. https://doi.org/10.1016/j.lwt.2015.02.031spa
dc.relation.referencesAmmor, S., Tauveron, G., Dufour, E., & Chevallier, I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control, 17(6), 454–461. https://doi.org/10.1016/j.foodcont.2005.02.006spa
dc.relation.referencesAnyasi, T. A., Jideani, A. I. O., & Mchau, G. R. A. (2015). Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chemistry, 172, 515–522. https://doi.org/10.1016/j.foodchem.2014.09.120spa
dc.relation.referencesAradón, A., & Castellano, V. (2014). Regulation and guidelines of probiotics and prebiotics. In Probiotics and prebiotics in food, nutrition and health (pp. 91–113). CRC Press.spa
dc.relation.referencesAragón-Rojas, S., Quintanilla-Carvajal, M. X., Hernández-Sánchez, H., Hernández-Álvarez, A. J., & Moreno, F. L. (2019a). Encapsulation of Lactobacillus fermentum K73 by Refractance Window drying. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-42016-0spa
dc.relation.referencesAraújo, T. M. R., Farias, M. D. L., Afonso, M. R. A., Costa, J. M. C. da, & Eça, K. S. (2020). Maltodextrin on the flow properties of green coconut (Cocos nucifera L.) pulp powder. Ciência e Agrotecnologia, 44. https://doi.org/10.1590/1413-7054202044003220spa
dc.relation.referencesArihara, K., & Ohata, M. (2011). Functional meat products. In Functional Foods (pp. 512–533). Elsevier. https://doi.org/10.1533/9780857092557.3.512spa
dc.relation.referencesAshwar, B. A., Gani, A., Gani, A., Shah, A., & Masoodi, F. A. (2018). Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry, 239, 287–294. https://doi.org/10.1016/j.foodchem.2017.06.110spa
dc.relation.referencesAsif-Ul-Alam, S. M., Islam, M. Z., Hoque, M. M., & Monalisa, K. (2014). Effects of Drying on the Physicochemical and Functional Properties of Green Banana (Musa sapientum) Flour and Development of Baked Product. American Journal of Food Science and Technology, 2(4), 128–133. https://doi.org/10.12691/ajfst-2-4-4spa
dc.relation.referencesAsiimwe, A., Kigozi, J. B., Baidhe, E., & Muyonga, J. H. (2022). Optimization of refractance window drying conditions for passion fruit puree. LWT, 154, 112742. https://doi.org/10.1016/j.lwt.2021.112742spa
dc.relation.referencesAssociation of Official Analytical Chemist [AOAC]. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists (15th ed.). AOAC Internationalspa
dc.relation.referencesAstudillo-Heras, L. L., & Sánchez-Salamea, A. L. (2019). Extracción de Almidón a partir del banano (plátano) de categoría II (Musa paradisiaca) en estado verde, para la elaboración de colada instantánea fortificada y utilización de su fibra para balanceado de ganado porcino [Tesis de grado]. Universidad de Cuencua.spa
dc.relation.referencesAzad, Md. A. K., Sarker, M., Li, T., & Yin, J. (2018). Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/9478630spa
dc.relation.referencesAzizi, D., Jafari, S. M., Mirzaei, H., & Dehnad, D. (2017). The Influence of Refractance Window Drying on Qualitative Properties of Kiwifruit Slices. International Journal of Food Engineering, 13(2). https://doi.org/10.1515/ijfe-2016-0201spa
dc.relation.referencesAzizishafa, M., Basti, A. A., Sharifan, A., & Khanjari, A. (2023). Reformulation of traditional Iranian food (Doeeneh) using probiotics: Bifidobacterium animalis subsp. lactis BB-12, Lactobacillus acidophilus LA-5, Lacticaseibacillus rhamnosus LGG, and inulin and its effect on diabetic and non-diabetic rats. Food Quality and Safety, 7. https://doi.org/10.1093/fqsafe/fyad028spa
dc.relation.referencesBabolanimogadam, N., Akhondzadeh Basti, A., Khanjari, A., Sajjadi Alhashem, S. H., Babolani Moghadgam, K., & Ahadzadeh, S. (2024). Shelf life extending of probiotic beef patties with polylactic acid‐ajwain essential oil films and stress effects on Bacillus coagulans. Journal of Food Science, 89(2), 866–880. https://doi.org/10.1111/1750-3841.16864spa
dc.relation.referencesBadui, S. (2006). Química de los alimentos (E. Quintanar Duarte & M. B. Gutiérrez Hernández, Eds.; Cámara Nac). Pearson Educación de México, S.A. de C.V. https://itscv.edu.ec/wp-content/uploads/2019/06/QUIMICA-DE-LOS-ALIMENTOS-4ta-Edicion.pdfspa
dc.relation.referencesBamigbola, Y. A., Awolu, O. O., & Oluwalana, I. B. (2016). The effect of plantain and tigernut flours substitution on the antioxidant, physicochemical and pasting properties of wheat-based composite flours. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1245060spa
dc.relation.referencesBatra, N., Singh, J., Banerjee, U. C., Patnaik, P. R., & Sobti, R. C. (2002). Production and characterization of a thermostable β ‐galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36(1), 1–6. https://doi.org/10.1042/BA20010091spa
dc.relation.referencesBell, K. J., Saad, S., Tillett, B. J., McGuire, H. M., Bordbar, S., Yap, Y. A., Nguyen, L. T., Wilkins, M. R., Corley, S., Brodie, S., Duong, S., Wright, C. J., Twigg, S., de St Groth, B. F., Harrison, L. C., Mackay, C. R., Gurzov, E. N., Hamilton-Williams, E. E., & Mariño, E. (2022). Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 10(1), 9. https://doi.org/10.1186/s40168-021-01193-9spa
dc.relation.referencesBello‐Pérez, L. A., Pineda‐Tapia, F. J., Pacheco‐Vargas, G., Carmona‐Garcia, R., & Tovar, J. (2024a). Whole Unripe Plantain Flour as Unconventional Carbohydrate Source to Prepare Gluten‐Free Pasta with High Dietary Fiber Content and Reduced Starch Hydrolysis. Starch - Stärke, 76(1–2). https://doi.org/10.1002/star.202200222spa
dc.relation.referencesBernat, N., Cháfer, M., González-Martínez, C., Rodríguez-García, J., & Chiralt, A. (2015). Optimisation of oat milk formulation to obtain fermented derivatives by using probiotic Lactobacillus reuteri microorganisms. Food Science and Technology International, 21(2), 145–157. https://doi.org/10.1177/1082013213518936spa
dc.relation.referencesBhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of food powders. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672spa
dc.relation.referencesBharwani, A., Mian, M. F., Foster, J. A., Surette, M. G., Bienenstock, J., & Forsythe, P. (2016). Structural &amp; functional consequences of chronic psychosocial stress on the microbiome &amp; host. Psychoneuroendocrinology, 63, 217–227. https://doi.org/10.1016/j.psyneuen.2015.10.001spa
dc.relation.referencesBonik, S. K., Tamanna, S. T., Happy, T. A., Haque, Md. N., Islam, S., & Faruque, Md. O. (2024). Formulation and evaluation of cereal-based breads fortified with natural prebiotics from green banana, moringa leaves powder and soya powder. Applied Food Research, 4(1), 100377. https://doi.org/10.1016/j.afres.2023.100377spa
dc.relation.referencesCadena, R. S., Caimi, D., Jaunarena, I., Lorenzo, I., Vidal, L., Ares, G., Deliza, R., & Giménez, A. (2014). Comparison of rapid sensory characterization methodologies for the development of functional yogurts. Food Research International, 64, 446–455. https://doi.org/10.1016/j.foodres.2014.07.027spa
dc.relation.referencesCano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428. https://doi.org/10.1016/j.ifset.2005.05.003spa
dc.relation.referencesCano-Sarmiento, C., Téllez-Medina, D. I., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C. Y., García-Armenta, E., Alamilla-Beltrán, L., García, H. S., & Gutiérrez-López, G. F. (2018). Zeta Potential of Food Matrices. Food Engineering Reviews, 10(3), 113–138. https://doi.org/10.1007/s12393-018-9176-zspa
dc.relation.referencesCánovas Barbosa, & G.V y Vega Mercado, H. (1996). Dehydration of Foods Dehydration of Foods Series Editor (1st ed.).spa
dc.relation.referencesCao, J., Yu, Z., Liu, W., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods, 64(October), 103643. https://doi.org/10.1016/j.jff.2019.103643spa
dc.relation.referencesCao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2spa
dc.relation.referencesCapela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203–211. https://doi.org/10.1016/j.foodres.2005.07.007spa
dc.relation.referencesCardoso, P. I. F. da C., Grisi, C. V. B., Vieira, É. de A., de Almeida, D. K. L., & Cardarelli, H. R. (2024). Cereal flours with Bacillus coagulans and beta-glucan: Technological properties and sensory acceptability. Food Chemistry, 448, 139146. https://doi.org/10.1016/j.foodchem.2024.139146spa
dc.relation.referencesCastaño-Peláez, H. I., Cortes-Rodríguez, M., Gil-González, J., & Gallón-Bedoya, M. (2022). Influence of gum arabic and homogenization process on the physicochemical stability of strawberry suspensions. Food Science and Technology, 42. https://doi.org/10.1590/fst.58020spa
dc.relation.referencesCastaño-Peláez, H., Rodríguez, M. C., Gil G., J. H., López, G. L., & Ortega-Toro, R. (2022). Optimization of spray-drying process parameters on strawberry (Fragaria ananassa D.) extracts microcapsules quality. Journal of Berry Research, 12(4), 531–550. https://doi.org/10.3233/JBR-220047spa
dc.relation.referencesCastellanos-Galeano, F. J., & Lucas-Aguirre, J. C. (2011). Caracterización física del fruto en variedades de plátano cultivadas en la zona cafetera de Colombia. Acta Agronómica, 60(2).spa
dc.relation.referencesCastoldi, M., Zotarelli, M. F., Durigon, A., Carciofi, B. A. M., & Laurindo, J. B. (2015). Production of Tomato Powder by Refractance Window Drying. Drying Technology, 33(12), 1463–1473. https://doi.org/10.1080/07373937.2014.989327spa
dc.relation.referencesCatellanos-Galeano, F. J., Chavez-Salazar, A., & Martínez-Hernández, L. J. (2017). Effect of process variables in the production of fried green plantain in vacuum. Revista Vitae, 38–46. https://doi.org/10.17533/udea.vitae.v24n1a05spa
dc.relation.referencesCayra, E., Dávila, J. H., Villalta, J. M., & Rosales, Y. (2017). Evaluación de la Estabilidad y Viabilidad de Dos Cepas Probióticas Microencapsuladas por Lecho Fluidizado. Información Tecnológica, 28(6), 35–44. https://doi.org/10.4067/S0718-07642017000600005spa
dc.relation.referencesChampagne, C. P., Tompkins, T. A., Buckley, N. D., & Green-Johnson, J. M. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiology, 27(7), 968–972. https://doi.org/10.1016/j.fm.2010.06.003spa
dc.relation.referencesChandanasree, D., Gul, K., & Riar, C. S. (2016). Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydrocolloids, 52, 175–182. https://doi.org/10.1016/j.foodhyd.2015.06.024spa
dc.relation.referencesCharalampopoulos, D., Pandiella, S. S., & Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology, 82(2), 133–141. https://doi.org/10.1016/S0168-1605(02)00248-9spa
dc.relation.referencesChávez‐Salazar, A., Castellanos‐Galeano, F. J., Álvarez‐Barreto, C. I., Bello‐Pérez, L. A., Cortés‐Rodríguez, M., & Hoyos‐Leyva, J. D. (2019). Optimization of the Spray Drying Process of the Esterified Plantain Starch by Response Surface Methodology. Starch - Stärke, 71(7–8). https://doi.org/10.1002/star.201800330spa
dc.relation.referencesChen, Q., Bi, J., Zhou, Y., Liu, X., Wu, X., & Chen, R. (2014). Multi-objective Optimization of Spray Drying of Jujube (Zizyphus jujuba Miller) Powder Using Response Surface Methodology. Food and Bioprocess Technology, 7(6), 1807–1818. https://doi.org/10.1007/s11947-013-1171-zspa
dc.relation.referencesChen, X., Yang, G., Song, J.-H., Xu, H., Li, D., Goldsmith, J., Zeng, H., Parsons-Wingerter, P. A., Reinecker, H.-C., & Kelly, C. P. (2013). Probiotic Yeast Inhibits VEGFR Signaling and Angiogenesis in Intestinal Inflammation. PLoS ONE, 8(5), e64227. https://doi.org/10.1371/journal.pone.0064227spa
dc.relation.referencesChmielewska, A., & Szajewska, H. (2010). Systematic review of randomised controlled trials: probiotics for functional constipation. World Journal of Gastroenterology, 16(1), 69–75. https://doi.org/10.3748/wjg.v16.i1.69spa
dc.relation.referencesChugh, B., & Kamal-Eldin, A. (2020). Bioactive compounds produced by probiotics in food products. Current Opinion in Food Science, 32, 76–82. https://doi.org/10.1016/j.cofs.2020.02.003spa
dc.relation.referencesCoelho, S. R., Lima, Í. A., Martins, M. L., Benevenuto Júnior, A. A., Torres Filho, R. de A., Ramos, A. de L. S., & Ramos, E. M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT, 102, 254–259. https://doi.org/10.1016/j.lwt.2018.12.045spa
dc.relation.referencesColica, C., Avolio, E., Bollero, P., Costa de Miranda, R., Ferraro, S., Sinibaldi Salimei, P., De Lorenzo, A., & Di Renzo, L. (2017). Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediators of Inflammation, 2017, 1–10. https://doi.org/10.1155/2017/5650627spa
dc.relation.referencesCordeiro, B. F., Alves, J. L., Belo, G. A., Oliveira, E. R., Braga, M. P., da Silva, S. H., Lemos, L., Guimarães, J. T., Silva, R., Rocha, R. S., Jan, G., Le Loir, Y., Silva, M. C., Freitas, M. Q., Esmerino, E. A., Gala-García, A., Ferreira, E., Faria, A. M. C., Cruz, A. G., … do Carmo, F. L. R. (2021). Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.623920spa
dc.relation.referencesCortés-Rodríguez, M., Hernández, G., & Estrada M, E. M. (2017). OPTIMIZATION OF THE SPRAY DRYING PROCESS FOR OBTAINING CAPE GOOSEBERRY POWDER: AN INNOVATIVE AND PROMISING FUNCTIONAL FOOD. Revista Vitae, 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07spa
dc.relation.referencesDadhaneeya, H., Nayak, P. K., Saikia, D., Kondareddy, R., Ray, S., & Kesavan, R. krishnan. (2023). The impact of refractance window drying on the physicochemical properties and bioactive compounds of malbhog banana slice and pulp. Applied Food Research, 3(1), 100279. https://doi.org/10.1016/j.afres.2023.100279spa
dc.relation.referencesDahdouh, L., Delalonde, M., Ricci, J., Ruiz, E., & Wisnewski, C. (2018). Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies, 48(March), 304–312. https://doi.org/10.1016/j.ifset.2018.07.006spa
dc.relation.referencesDay, L., Seymour, R. B., Pitts, K. F., Konczak, I., & Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science and Technology, 20(9), 388–395. https://doi.org/10.1016/j.tifs.2008.05.002spa
dc.relation.referencesDaza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29. https://doi.org/10.1016/j.fbp.2015.10.001spa
dc.relation.referencesde Oliveira, P. M., Leite Júnior, B. R. de C., Martins, E. M. F., Martins, M. L., Vieira, É. N. R., de Barros, F. A. R., Cristianini, M., de Almeida Costa, N., & Ramos, A. M. (2021). Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. Journal of Food Science and Technology, 58(1), 98–109. https://doi.org/10.1007/s13197-020-04518-yspa
dc.relation.referencesDi Stefano, E., White, J., Seney, S., Hekmat, S., McDowell, T., Sumarah, M., & Reid, G. (2017). A Novel Millet-Based Probiotic Fermented Food for the Developing World. Nutrients, 9(5), 529. https://doi.org/10.3390/nu9050529spa
dc.relation.referencesDiaz‐Vela, J., Totosaus, A., Cruz‐Guerrero, A. E., & de Lourdes Pérez‐Chabela, M. (2013). In vitro evaluation of the fermentation of added‐value agroindustrial by‐products: cactus pear ( <scp>O</scp> puntia ficus‐indica <scp>L</scp> .) peel and pineapple ( <scp>A</scp> nanas comosus ) peel as functional ingredients. International Journal of Food Science & Technology, 48(7), 1460–1467. https://doi.org/10.1111/ijfs.12113spa
dc.relation.referencesDo, T. V. T., & Fan, L. (2019). Probiotic Viability, Qualitative Characteristics, and Sensory Acceptability of Vegetable Juice Mixture Fermented with &amp;lt;i&amp;gt;Lactobacillus&amp;lt;/i&amp;gt; Strains. Food and Nutrition Sciences, 10(04), 412–427. https://doi.org/10.4236/fns.2019.104031spa
dc.relation.referencesDonkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2007). α-Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chemistry, 104(1), 10–20. https://doi.org/10.1016/j.foodchem.2006.10.065spa
dc.relation.referencesDunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E. M., O’Sullivan, G. C., Shanahan, F., & Collins, J. K. (1999). Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek, 76(1–4), 279–292. http://www.ncbi.nlm.nih.gov/pubmed/10532384spa
dc.relation.referencesDuru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019a). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102spa
dc.relation.referencesDuru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019b). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102spa
dc.relation.referencesEnglyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46 Suppl 2, S33-50.spa
dc.relation.referencesEnujiugha, Victor. N., & Badejo, A. A. (2017). Probiotic potentials of cereal-based beverages. Critical Reviews in Food Science and Nutrition, 57(4), 790–804. https://doi.org/10.1080/10408398.2014.930018spa
dc.relation.referencesEraso-Grisales, S., Cortés-Rodríguez, M., Gallón-Bedoya, M., Herrera-Herrera, E., & Ortega-Toro, R. (2023a). A powdered mix of cape gooseberry-based pulp, seed, and peel: Optimization of formulation and spray-drying process. Journal of Berry Research, 13(2), 107–120. https://doi.org/10.3233/JBR-220079spa
dc.relation.referencesEraso-Grisales, S., Cortés-Rodríguez, M., Gallón-Bedoya, M., Herrera-Herrera, E., & Ortega-Toro, R. (2023b). A powdered mix of cape gooseberry-based pulp, seed, and peel: Optimization of formulation and spray-drying process. Journal of Berry Research, 13(2), 107–120. https://doi.org/10.3233/JBR-220079spa
dc.relation.referencesErmis, E. (2021). A review of drying methods for improving the quality of probiotic powders and characterization. Drying Technology, 0(0), 1–18. https://doi.org/10.1080/07373937.2021.1950169spa
dc.relation.referencesErmiş, E. (Ed.). (2021). Food Powders Properties and Characterization. Springer International Publishing. https://doi.org/10.1007/978-3-030-48908-3spa
dc.relation.referencesEspin, J. C., & Balberan, F. T. (2005). Alimentos funcionales (EUFIC). In Constituyentes bioactivos no nutricionales de alimentos de origen vegetal y su aplicacion en alimentos funcionales. http://www.eufic.org/article/es/expid/basics-alimentos-funcionales/spa
dc.relation.referencesEspinosa Solis, V. (2012). PROPIEDADES DE DIGESTIÓN DE ALMIDONES NATIVOS Y MODIFICADOS DE PLÁTANO Y MANGO. https://tesis.ipn.mx/bitstream/handle/123456789/13426/Tesis%202012%20Vicente%20Espinosa%20Solis.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesFalcomer, A. L., Riquette, R. F. R., de Lima, B. R., Ginani, V. C., & Zandonadi, R. P. (2019). Health Benefits of Green Banana Consumption: A Systematic Review. Nutrients, 11(6), 1222. https://doi.org/10.3390/nu11061222spa
dc.relation.referencesFAO. (2022). FAOSTAT - Crops and livestock products: Plantains and cooking bananas. https://www.fao.org/faostat/en/#data/QCL/visualizespa
dc.relation.referencesFAO, E., & OMS, E. (2006). Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. Estudios FAO Alimentación y Nutrición, 85, 52. file:///C:/Users/Acer/Documents/paty/homework1/PROBIOTICOS OPS 2006.pdfspa
dc.relation.referencesFernández-Abascal, B., Suárez-Pinilla, P., Cobo-Corrales, C., Crespo-Facorro, B., & Suárez-Pinilla, M. (2021). In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episod. Neuroscience & Biobehavioral Reviews, 125, 535–568. https://doi.org/10.1016/j.neubiorev.2021.01.005spa
dc.relation.referencesFord, A. C., Quigley, E. M. M., Lacy, B. E., Lembo, A. J., Saito, Y. A., Schiller, L. R., Soffer, E. E., Spiegel, B. M. R., & Moayyedi, P. (2014). Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. The American Journal of Gastroenterology, 109(10), 1547–1562. https://doi.org/10.1038/ajg.2014.202spa
dc.relation.referencesFranceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197–207. https://doi.org/10.1080/07373937.2013.814664spa
dc.relation.referencesFustier, P., Taherian, A. R., & Ramaswamy, H. S. (2010). Emulsion Delivery Systems for Functional Foods. In Functional Food Product Development (pp. 79–97). Wiley-Blackwell. https://doi.org/10.1002/9781444323351.ch4spa
dc.relation.referencesGarcía-Tejeda, Y. V., Zamudio-Flores, P. B., Bello-Pérez, L. A., Romero-Bastida, C. A., & Solorza-Feria, J. (2011). OXIDACIÓN DEL ALMIDÓN NATIVO DE PLÁTANO PARA SU USO POTENCIAL EN LA FABRICACIÓN DE MATERIALES DE EMPAQUE BIODEGRADABLES: CARACTERIZACIÓN FÍSICA, QUÍMICA, TÉRMICA Y MORFOLÓGICA. In Rev. Iberoam. Polim (Vol. 12, Issue 3). https://reviberpol.files.wordpress.com/2019/07/2011-garcia-tejana.pdfspa
dc.relation.referencesGenovese, D. B., & Lozano, J. E. (2001). The effect of hydrocolloids on the stability and viscosity of cloudy apple juices. Food Hydrocolloids, 15(1), 1–7. https://doi.org/10.1016/S0268-005X(00)00053-9spa
dc.relation.referencesGenovese, D. B., & Lozano, J. E. (2006). Contribution of colloidal forces to the viscosity and stability of cloudy apple juice. Food Hydrocolloids, 20(6), 767–773. https://doi.org/10.1016/j.foodhyd.2005.07.003spa
dc.relation.referencesGeorge Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018a). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002spa
dc.relation.referencesGeorge Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018b). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002spa
dc.relation.referencesGibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401spa
dc.relation.referencesGiraldo-Gómez, G. I., Rodríguez-Barona, S., & Sanabria-González, N. R. (2019). Preparation of instant green banana flour powders by an extrusion process. Powder Technology, 353, 437–443. https://doi.org/10.1016/j.powtec.2019.05.050spa
dc.relation.referencesGlaser, R., & Venus, J. (2014). Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements. Biotechnology Reports, 4, 60–65. https://doi.org/10.1016/j.btre.2014.08.001spa
dc.relation.referencesGlaser, R., & Venus, J. (2017). Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium. New Biotechnology, 37, 180–193. https://doi.org/10.1016/j.nbt.2016.12.006spa
dc.relation.referencesGoldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004827.pub4spa
dc.relation.referencesGolubeva, A. V., Crampton, S., Desbonnet, L., Edge, D., O’Sullivan, O., Lomasney, K. W., Zhdanov, A. V., Crispie, F., Moloney, R. D., Borre, Y. E., Cotter, P. D., Hyland, N. P., O’Halloran, K. D., Dinan, T. G., O’Keeffe, G. W., & Cryan, J. F. (2015). Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology, 60, 58–74. https://doi.org/10.1016/j.psyneuen.2015.06.002spa
dc.relation.referencesGómez, A., Anaya, J., Rodríguez, G., Lechón, A., Perugachi, I., Velásquez, C., Carlos, S., Miniet, A., & Lascano, R. (2022). Glycemic effect of a functional pancake made from an instant oat mix. Revista Espanola de Nutricion Humana y Dietetica, 26(3), 189–196. https://doi.org/10.14306/renhyd.26.3.1668spa
dc.relation.referencesGranato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292–302. https://doi.org/10.1111/j.1541-4337.2010.00110.xspa
dc.relation.referencesGray, G. M. (1992). Starch Digestion and Absorption in Nonruminants. The Journal of Nutrition, 122(1), 172–177. https://doi.org/10.1093/jn/122.1.172spa
dc.relation.referencesGrom, L. C., Rocha, R. S., Balthazar, C. F., Guimarães, J. T., Coutinho, N. M., Barros, C. P., Pimentel, T. C., Venâncio, E. L., Collopy Junior, I., Maciel, P. M. C., Silva, P. H. F., Granato, D., Freitas, M. Q., Esmerino, E. A., Silva, M. C., & Cruz, A. G. (2020). Postprandial glycemia in healthy subjects: Which probiotic dairy food is more adequate? Journal of Dairy Science, 103(2), 1110–1119. https://doi.org/10.3168/jds.2019-17401 Guandalini, S. (2011). Probiotics for Prevention and Treatment of Diarrhea. Journal of Clinical Gastroenterology, 45, S149–S153. https://doi.org/10.1097/MCG.0b013e3182257e98spa
dc.relation.referencesGupta, M., & Bajaj, B. K. (2017). Development of fermented oat flour beverage as a potential probiotic vehicle. Food Bioscience, 20, 104–109. https://doi.org/10.1016/j.fbio.2017.08.007spa
dc.relation.referencesHaffner, F. B., Diab, R., & Pasc, A. (2016). Encapsulation of probiotics: insights into academic and industrial approaches. AIMS Materials Science, 3(1), 114–136. https://doi.org/10.3934/matersci.2016.1.114spa
dc.relation.referencesHaider, C., & Palzer, S. (2016). Agglomeration in the Food Industry—A Result of Particle Contact Mechanisms. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21002-0spa
dc.relation.referencesHandique, J., Bora, S. J., & Sit, N. (2019). Optimization of banana juice extraction using combination of enzymes. Journal of Food Science and Technology, 56(8), 3732–3743. https://doi.org/10.1007/s13197-019-03845-zspa
dc.relation.referencesHernández-Santos, B., Martínez-Sánchez, C. E., Torruco-Uco, J. G., Rodríguez-Miranda, J., Ruiz-López, I. I., Vajando-Anaya, E. S., Carmona-García, R., & Herman-Lara, E. (2016). Evaluation of physical and chemical properties of carrots dried by Refractance Window drying. Drying Technology, 34(12), 1414–1422. https://doi.org/10.1080/07373937.2015.1118705spa
dc.relation.referencesHijová, E. (2022). Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. In Metabolites (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/metabo12040313spa
dc.relation.referencesHomsuwan, N., Pruksasri, S., & Ngampanya, B. (2023). Bacillus siamensis FVP1 as a potential probiotic for enhancing nutritional aspects of soybean meal. International Journal of Food Science and Technology, 58(8), 4277–4287. https://doi.org/10.1111/ijfs.16527spa
dc.relation.referencesHou, H., Chen, D., Zhang, K., Zhang, W., Liu, T., Wang, S., Dai, X., Wang, B., Zhong, W., & Cao, H. (2022). Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Letters, 526, 225–235. https://doi.org/10.1016/j.canlet.2021.11.027spa
dc.relation.referencesHuang, S., Méjean, S., Rabah, H., Dolivet, A., Le Loir, Y., Chen, X. D., Jan, G., Jeantet, R., & Schuck, P. (2017). Double use of concentrated sweet whey for growth and spray drying of probiotics: Towards maximal viability in pilot scale spray dryer. Journal of Food Engineering, 196, 11–17. https://doi.org/10.1016/j.jfoodeng.2016.10.017spa
dc.relation.referencesHuq, T., Khan, A., Khan, R. A., Riedl, B., & Lacroix, M. (2013). Encapsulation of Probiotic Bacteria in Biopolymeric System. Critical Reviews in Food Science and Nutrition, 53(9), 909–916. https://doi.org/10.1080/10408398.2011.573152spa
dc.relation.referencesİçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015a). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102spa
dc.relation.referencesİçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015b). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102spa
dc.relation.referencesIguarán, E. C., Triviño-Valencia, J., & Rodríguez-Barona, S. (2020). Effect of storage and stress conditions on the counts of Bifidobacterium animalis microencapsulated and incorporated in plantain flour. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.25219spa
dc.relation.referencesInstituto Colombiano Agropecuario. (2019). Resolución 17334 (17334).spa
dc.relation.referencesInstituto Colombiano de Bienestar Familiar. (2018). Tabla de composición de alimentos colombianos. Instituto Colombiano de Bienestar Familiar.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. (1976). Norma Técnica Colombiana [NTC] 1190.spa
dc.relation.referencesIraporda, C., Rubel, I. A., Managó, N., Manrique, G. D., Garrote, G. L., & Abraham, A. G. (2022). Inulin addition improved probiotic survival in soy-based fermented beverage. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 38(8). https://doi.org/10.1007/s11274-022-03322-4spa
dc.relation.referencesIshwarya, S. P., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171–180. https://doi.org/10.1016/j.jfoodeng.2014.10.011spa
dc.relation.referencesJalgaonkar, K., Mahawar, M. K., Vishwakarma, R. K., Shivhare, U. S., & Nambi, V. E. (2020). Optimization of process condition for preparation of sapota bar using Refractance window drying method. Drying Technology, 38(3), 269–278. https://doi.org/10.1080/07373937.2018.1482314spa
dc.relation.referencesJaniszewska-Turak, E., Dellarosa, N., Tylewicz, U., Laghi, L., Romani, S., Dalla Rosa, M., & Witrowa-Rajchert, D. (2017). The influence of carrier material on some physical and structural properties of carrot juice microcapsules. Food Chemistry, 236, 134–141. https://doi.org/10.1016/j.foodchem.2017.03.134spa
dc.relation.referencesKandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012spa
dc.relation.referencesKaragül, Ö., & EL, S. N. (2024). Cereal-based fermented synbiotic instant powders: a dessert practice. Ege Üniversitesi Ziraat Fakültesi Dergisi, 60(4), 571–579. https://doi.org/10.20289/zfdergi.1336843spa
dc.relation.referencesKareem, S. O., Adio, O. Q., & Osho, M. B. (2014). Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix. Enzyme Research, 2014, 1–7. https://doi.org/10.1155/2014/967056spa
dc.relation.referencesKatina, K., Liukkonen, K.-H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.-M., Lampi, A.-M., Pihlava, J.-M., & Poutanen, K. (2007). Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3), 348–355. https://doi.org/10.1016/j.jcs.2007.07.006spa
dc.relation.referencesKelly, G. S. (2003). Bovine colostrums: a review of clinical uses. Alternative Medicine Review : A Journal of Clinical Therapeutic, 8(4), 378–394.spa
dc.relation.referencesKelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F., & Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019spa
dc.relation.referencesKhalesi, S., Sun, J., Buys, N., & Jayasinghe, R. (2014). Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension, 64(4), 897–903. https://doi.org/10.1161/HYPERTENSIONAHA.114.03469spa
dc.relation.referencesKingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., & Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT - Food Science and Technology, 62(1), 847–853. https://doi.org/10.1016/j.lwt.2014.12.007spa
dc.relation.referencesKober, M.-M., & Bowe, W. P. (2015). The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women’s Dermatology, 1(2), 85–89. https://doi.org/10.1016/j.ijwd.2015.02.001spa
dc.relation.referencesKoç, B., Sakin-Yılmazer, M., Kaymak-Ertekin, F., & Balkır, P. (2014). Physical properties of yoghurt powder produced by spray drying. Journal of Food Science and Technology, 51(7), 1377–1383. https://doi.org/10.1007/s13197-012-0653-8spa
dc.relation.referencesKrumbeck, J. A., Maldonado-Gomez, M. X., Martínez, I., Frese, S. A., Burkey, T. E., Rasineni, K., Ramer-Tait, A. E., Harris, E. N., Hutkins, R. W., & Walter, J. (2015). In vivo selection to identify bacterial strains with enhanced ecological performance in synbiotic applications. Applied and Environmental Microbiology, 81(7), 2455–2465. https://doi.org/10.1128/AEM.03903-14spa
dc.relation.referencesKumar, B., Vijayendra, S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products - a review. Journal of Food Science and Technology, 52(10), 6112–6124. https://doi.org/10.1007/s13197-015-1795-2spa
dc.relation.referencesKumar, H., Dhalaria, R., Guleria, S., Cimler, R., Choudhary, R., Dhanjal, D. S., Singh, R., Kimta, N., Dulta, K., Pathera, A. K., Khan, A., Nausad, M., Alomar, S. Y., Manickam, S., & Kuča, K. (2023). To exploring the role of probiotics, plant-based fermented products, and paraprobiotics as anti-inflammatory agents in promoting human health. Journal of Agriculture and Food Research, 14, 100896. https://doi.org/10.1016/j.jafr.2023.100896spa
dc.relation.referencesKumar, P. S., Saravanan, A., Sheeba, N., & Uma, S. (2019). Structural, functional characterization and physicochemical properties of green banana flour from dessert and plantain bananas (Musa spp.). LWT, 116, 108524. https://doi.org/10.1016/j.lwt.2019.108524spa
dc.relation.referencesKumar, P. S., Thayumanavan, S., Pushpavalli, S., Saraswathi, M. S., Backiyarani, S., Mohanasundaram, A., & Uma, S. (2023). Comparing physico‐chemical characteristics, antioxidant properties, glycemic response, and volatile profiles of eleven banana varieties. International Journal of Food Science & Technology, 58(6), 2893–2908. https://doi.org/10.1111/ijfs.16392spa
dc.relation.referencesKumar, S., Rattu, G., Mitharwal, S., Chandra, A., Kumar, S., Kaushik, A., Mishra, V., & Nema, P. K. (2022). Trends in non‐dairy‐based probiotic food products: Advances and challenges. Journal of Food Processing and Preservation, 46(9). https://doi.org/10.1111/jfpp.16578spa
dc.relation.referencesLacerda, E. C. Q., Calado, V. M. de A., Monteiro, M., Finotelli, P. V., Torres, A. G., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/j.carbpol.2016.05.093spa
dc.relation.referencesLaksmi Suryaatmadja Jenie, B. S., Yusup Saputra, M., & Widaningrum, dan. (2013). SENSORY EVALUATION AND SURVIVAL OF PROBIOTICS IN MODIFIED BANANA FLOUR YOGHURT DURING STORAGE. Jurnal Teknologi Dan Industri Pangan, 24(1), 40–47. https://doi.org/10.6066/jtip.2013.24.1.40spa
dc.relation.referencesLamiki, P., Tsuchiya, J., Pathak, S., Okura, R., Solimene, U., Jain, S., Kawakita, S., & Marotta, F. (2010). Probiotics in diverticular disease of the colon: an open label study. Journal of Gastrointestinal and Liver Diseases : JGLD, 19(1), 31–36. http://www.ncbi.nlm.nih.gov/pubmed/20361072spa
dc.relation.referencesLapsiri, W., Bhandari, B., & Wanchaitanawong, P. (2012). Viability of Lactobacillus plantarum TISTR 2075 in Different Protectants during Spray Drying and Storage. Drying Technology, 30(13), 1407–1412. https://doi.org/10.1080/07373937.2012.684226spa
dc.relation.referencesLe Leu, R. K., Hu, Y., Brown, I. L., Woodman, R. J., & Young, G. P. (2010). Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis, 31(2), 246–251. https://doi.org/10.1093/carcin/bgp197spa
dc.relation.referencesLee, A., Cheng, K.-C., & Liu, J.-R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLOS ONE, 12(8), e0182220. https://doi.org/10.1371/journal.pone.0182220spa
dc.relation.referencesLee, N., Park, Y.-S., Kang, D.-K., & Paik, H.-D. (2023). Paraprobiotics: definition, manufacturing methods, and functionality. Food Science and Biotechnology, 32(14), 1981–1991. https://doi.org/10.1007/s10068-023-01378-yspa
dc.relation.referencesLiu, Liong, Chung, Huang, Peng, Cheng, Lin, Wu, & Tsai. (2019). Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 11(4), 820. https://doi.org/10.3390/nu11040820spa
dc.relation.referencesLong-Smith, C., O’Riordan, K. J., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2020). Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 60(1), 477–502. https://doi.org/10.1146/annurev-pharmtox-010919-023628spa
dc.relation.referencesLopetuso, L. R., Giorgio, M. E., Saviano, A., Scaldaferri, F., Gasbarrini, A., & Cammarota, G. (2019). Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? International Journal of Molecular Sciences, 20(1), 183. https://doi.org/10.3390/ijms20010183spa
dc.relation.referencesLópez-Esparza, R., Balderas Altamirano, M. A., Pérez, E., & Gama Goicochea, A. (2015). Importance of Molecular Interactions in Colloidal Dispersions. Advances in Condensed Matter Physics, 2015, 1–8. https://doi.org/10.1155/2015/683716spa
dc.relation.referencesLouis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661–672. https://doi.org/10.1038/nrmicro3344spa
dc.relation.referencesMahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., & Srivastav, P. P. (2021). Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods, 3, 100024. https://doi.org/10.1016/j.fufo.2021.100024spa
dc.relation.referencesMäkeläinen, H., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. (2010). Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Beneficial Microbes, 1(2), 139–148. https://doi.org/10.3920/BM2009.0029spa
dc.relation.referencesMalfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021a). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study. Phytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074spa
dc.relation.referencesMalfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021b). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study. Phytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074spa
dc.relation.referencesMandale, N. M., Attkan, A. K., Kumar, S., & Kumar, N. (2023). Drying kinetics and quality assessment of refractance window dried beetroot. Journal of Food Process Engineering, 46(7). https://doi.org/10.1111/jfpe.14332spa
dc.relation.referencesManderino, L., Carroll, I., Azcarate-Peril, M. A., Rochette, A., Heinberg, L., Peat, C., Steffen, K., Mitchell, J., & Gunstad, J. (2017). Preliminary Evidence for an Association Between the Composition of the Gut Microbiome and Cognitive Function in Neurologically Healthy Older Adults. Journal of the International Neuropsychological Society, 23(8), 700–705. https://doi.org/10.1017/S1355617717000492spa
dc.relation.referencesMangiola, F. (2016). Gut microbiota in autism and mood disorders. World Journal of Gastroenterology, 22(1), 361. https://doi.org/10.3748/wjg.v22.i1.361spa
dc.relation.referencesMantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2018). Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods, 8(1), 4. https://doi.org/10.3390/foods8010004spa
dc.relation.referencesMarín-Arango, Z. T., Cortés R., M., Gil G., J., & Agudelo-Laverde, L. M. (2023). Biofortified andean blackberry (rubus glaucus benth) powder with Lacticaseibacillus casei: process and formulation effects. F1000Research, 12, 479. https://doi.org/10.12688/f1000research.132767.1spa
dc.relation.referencesMartinez Pantoja, D. F., Acosta Castaño, M., Alvarez Barreto, C. I., & Castellanos Galeano, F. J. (2022). Fritura por inmersión al vacío de rodajas de plátano verde con recubrimientos comestibles. INGENIERÍA Y COMPETITIVIDAD, 25(1), 14. https://doi.org/10.25100/iyc.v25i1.11970spa
dc.relation.referencesMartínez-Navarrete, N., Andrés Grau, A., Chiralt Boix, A., & Fito Maupoey, P. (1998). Termodinámica y cinética de sistemas alimento-entorno. Universidad Politécnica de Valencia.spa
dc.relation.referencesMartins, E. M. F., Ramos, A. M., Vanzela, E. S. L., Stringheta, P. C., de Oliveira Pinto, C. L., & Martins, J. M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51(2), 764–770. https://doi.org/10.1016/j.foodres.2013.01.047spa
dc.relation.referencesMelo Sabogal, D. V., Torres Grisales, Y., Serna jiménez, J. A., & Torres Valenzuela, L. S. (2015). APROVECHAMIENTO DE PULPA Y CÁSCARA DE PLÁTANO(Musa paradisiaca spp) PARA LA OBTENCIÓN DE MALTODEXTRINA. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 13(2), 76. https://doi.org/10.18684/BSAA(13)76-85spa
dc.relation.referencesMendes, A. C., & Chronakis, I. S. (2021). Electrohydrodynamic encapsulation of probiotics: A review. Food Hydrocolloids, 117, 106688. https://doi.org/10.1016/j.foodhyd.2021.106688 Metchnikoff, E. (1910). The Prolongation of Life: Optimistic Studies (P. C. Mitchell, Ed.). G P Putnam’s Sons.spa
dc.relation.referencesMichail, S. K., Stolfi, A., Johnson, T., & Onady, G. M. (2008). Efficacy of probiotics in the treatment of pediatric atopic dermatitis: a meta-analysis of randomized controlled trials. Annals of Allergy, Asthma & Immunology, 101(5), 508–516. https://doi.org/10.1016/S1081-1206(10)60290-6spa
dc.relation.referencesMin, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019a). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760spa
dc.relation.referencesMin, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019b). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2017). Evaluaciones agropecuarias municipales: plátano.spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2021). Cadena de plátano. Dirección de cadenas agrícolas y forestales Junio 2021.spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2021). Resolución 810.spa
dc.relation.referencesMitharwal, S., Kumar, S., & Chauhan, K. (2021a). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382spa
dc.relation.referencesMitharwal, S., Kumar, S., & Chauhan, K. (2021b). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382spa
dc.relation.referencesMontoya, J. (2020). Formulación de una matriz alimentaria a base de harina de plátano Dominico Hartón (Musa paradisiaca L.) para el diseño de alimentos funcionales libres de gluten. 1–217. https://repositorio.unal.edu.co/handle/unal/78569spa
dc.relation.referencesMontoya, J., Rodriguez-Barona, S., & Giraldo, G. (2016). CARACTERISITICAS FISICOQUÍMICAS DE LA HARINA DE PLÁTANO (Musa Paradisiaca) DOMINICO HARTON Y HARINA DE TRIGO COMERCIAL CON TENDENCIAS FUNCIONALES. Vitae, 23, 396–399.spa
dc.relation.referencesMujumdar, A. S., & Xiao, H.-W. (2019). Advanced Drying Technologies for Foods (CRC Press). Taylor & Francis Group. https://cloudflare-ipfs.com/ipfs/bafykbzacedi3guxgccvbjaqaltnkgyetubxd7gizgn4ty4s4z545jreyjpwpo?filename=Arun S Mujumdar %28Editor%29_ Hong-Wei Xiao %28Editor%29 - Advanced Drying Technologies for Foods-CRC Press %282019%29.pdfspa
dc.relation.referencesMuyonga, J. H., Natocho, J., Kigozi, J., Baidhe, E., & Nansereko, S. (2022). Drying behaviour and optimization of drying conditions of pineapple puree and slices using refractance window drying technology. Journal of Food Science and Technology, 59(7), 2794–2803. https://doi.org/10.1007/s13197-021-05302-2spa
dc.relation.referencesNakamura, F., Ishida, Y., Aihara, K., Sawada, D., Ashida, N., Sugawara, T., Aoki, Y., Takehara, I., Takano, K., & Fujiwara, S. (2016). Effect of fragmented Lactobacillus amylovorus CP1563 on lipid metabolism in overweight and mildly obese individuals: a randomized controlled trial. Microbial Ecology in Health & Disease, 27(0). https://doi.org/10.3402/mehd.v27.30312spa
dc.relation.referencesNaseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., & Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility, 26(8), 1155–1162. https://doi.org/10.1111/nmo.12378spa
dc.relation.referencesNguyen, T. D. T., Kang, J. H., & Lee, M. S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology, 113(3), 358–361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015spa
dc.relation.referencesNindo, C. I., & Tang, J. (2007). Refractance Window Dehydration Technology: A Novel Contact Drying Method. Drying Technology, 25(1), 37–48. https://doi.org/10.1080/07373930601152673spa
dc.relation.referencesNinkov, A., Frank, J. R., & Maggio, L. A. (2021). Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 11(3), 173–176. https://doi.org/10.1007/S40037-021-00695-4spa
dc.relation.referencesNunes, G. L., Motta, M. H., Cichoski, A. J., Wagner, R., Muller, É. I., Codevilla, C. F., da Silva, C. D. B., & de Menezes, C. R. (2018). Encapsulation of lactobacillus acidophilus la-5 and bifidobacterium bb-12 by spray drying and evaluation of its resistance in simulated gastrointestinal conditions, thermal treatments and storage conditions. Ciencia Rural, 48(6), 1–11. https://doi.org/10.1590/0103-8478cr20180035spa
dc.relation.referencesNuñez, H., Jaques, A., Belmonte, K., Elitin, J., Valdenegro, M., Ramírez, C., & Córdova, A. (2024). Development of an Apple Snack Enriched with Probiotic Lacticaseibacillus rhamnosus: Evaluation of the Refractance Window Drying Process on Cell Viability. Foods, 13(11), 1756. https://doi.org/10.3390/foods13111756spa
dc.relation.referencesOchoa-Martínez, C. I., Quintero, P. T., Ayala, A. A., & Ortiz, M. J. (2012). Drying characteristics of mango slices using the Refractance WindowTM technique. Journal of Food Engineering, 109(1), 69–75. https://doi.org/10.1016/j.jfoodeng.2011.09.032spa
dc.relation.referencesOcoró-Zamora, M. U., & Ayala-Aponte, A. A. (2013). Influencia del espesor en secado de puré de papaya (Carica papaya L.) por tecnología de ventana de refractanciaspi®. DYNA (Colombia), 80(182), 147–154.spa
dc.relation.referencesOhkawara, S., Furuya, H., Nagashima, K., Asanuma, N., & Hino, T. (2005). Oral Administration of Butyrivibrio fibrisolvens, a Butyrate-Producing Bacterium, Decreases the Formation of Aberrant Crypt Foci in the Colon and Rectum of Mice. The Journal of Nutrition, 135(12), 2878–2883. https://doi.org/10.1093/jn/135.12.2878spa
dc.relation.referencesOlivares, A., Soto, C., Caballero, E., & Altamirano, C. (2019). Survival of microencapsulated Lactobacillus casei (prepared by vibration technology) in fruit juice during cold storage. Electronic Journal of Biotechnology, 42, 42–48. https://doi.org/10.1016/j.ejbt.2019.10.002spa
dc.relation.referencesOlugbuyi, A. O., Malomo, S. A., Ijarotimi, O. S., & Fagbemi, T. N. (2023). Amino Acids Profile,Glyceamic Index/load, In-vitro Antioxidant and Sensory Attributes of Optimized Dough Meal from the Blends of Plantain, Soycake and Rice-bran Flours. Journal of Culinary Science & Technology, 21(5), 795–817. https://doi.org/10.1080/15428052.2021.2016530spa
dc.relation.referencesOluwajuyitan, T. D., & Ijarotimi, O. S. (2019). Nutritional, antioxidant, glycaemic index and Antihyperglycaemic properties of improved traditional plantain-based (Musa AAB) dough meal enriched with tigernut (Cyperus esculentus) and defatted soybean (Glycine max) flour for diabetic patients. Heliyon, 5(4), e01504. https://doi.org/10.1016/j.heliyon.2019.e01504spa
dc.relation.referencesOlveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482–494. https://doi.org/10.1016/j.endonu.2016.07.006spa
dc.relation.referencesOrganización Mundial de Gastroenterología. (2023). Directrices mundiales de la Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2023.pdfspa
dc.relation.referencesOrmaza-Zapata, Á. M., Días-Arango, F. O., & Rodríguez-Barona, S. (2019). EVALUATION OF PROBIOTIC MICROENCAPSULATION IN A PREBIOTIC WITH COFFEE EXTRACT. Coffe Science, 14(3), 394–406.spa
dc.relation.referencesOrtega-Rivas, E., Yang, H., Juliano, P., & Barbosa-Canovas, G. V. (2005). Food Powders: Physical properties, processing and functionality (Springer Science & Business Media, Ed.). Springer US. https://doi.org/10.1007/0-387-27613-0spa
dc.relation.referencesOrtiz-Jerez, M. J., & Ochoa-Martínez, C. I. (2015). Heat Transfer Mechanisms in Conductive Hydro-Drying of Pumpkin ( Cucurbita maxima ) Pieces. Drying Technology, 33(8), 965–972. https://doi.org/10.1080/07373937.2015.1009538spa
dc.relation.referencesOuwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek, 82(1–4), 279–289.spa
dc.relation.referencesOvando-Martinez, M., Sáyago-Ayerdi, S., Agama-Acevedo, E., Goñi, I., & Bello-Pérez, L. A. (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry, 113(1), 121–126. https://doi.org/10.1016/j.foodchem.2008.07.035spa
dc.relation.referencesOzuna, L. E. (1992). Elaboración de puré de plátano por un método alternativo [Master’s degree]. Universidad de Sonora.spa
dc.relation.referencesPadhi, S., & Dwivedi, M. (2022). Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of Refractance window drying. Future Foods, 5, 100101. https://doi.org/10.1016/j.fufo.2021.100101spa
dc.relation.referencesPadhi, S., Murakonda, S., & Dwivedi, M. (2022). Investigation of drying characteristics and nutritional retention of unripe green banana flour by refractance window drying technology using statistical approach. Journal of Food Measurement and Characterization, 16(3), 2375–2385. https://doi.org/10.1007/s11694-022-01349-7spa
dc.relation.referencesPallares Pallares, A., Estupiñán A, M. R., Perea Villamil, J. A., & López Giraldo, L. J. (2017). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51. Revista ION, 29(2), 7–21. https://doi.org/10.18273/revion.v29n2-2016001spa
dc.relation.referencesPandey, Kavita. R., Naik, Suresh. R., & Vakil, Babu. V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1spa
dc.relation.referencesPanghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018a). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003spa
dc.relation.referencesPanghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018b). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003spa
dc.relation.referencesPavan, M. A., Schmidt, S. J., & Feng, H. (2012). Water sorption behavior and thermal analysis of freeze-dried, Refractance Window-dried and hot-air dried açaí (Euterpe oleracea Martius) juice. LWT - Food Science and Technology, 48(1), 75–81. https://doi.org/10.1016/j.lwt.2012.02.024spa
dc.relation.referencesPedersen, L. L., Owusu-Kwarteng, J., Thorsen, L., & Jespersen, L. (2012). Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 159(2), 144–151. https://doi.org/10.1016/j.ijfoodmicro.2012.08.016spa
dc.relation.referencesPereira, A. L. F., Maciel, T. C., & Rodrigues, S. (2011). Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 44(5), 1276–1283. https://doi.org/10.1016/j.foodres.2010.11.035spa
dc.relation.referencesPerricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006spa
dc.relation.referencesPlayne, M. J., Bennett, L. E., & Smithers, G. W. (2003). Functional dairy foods and ingredients. Australian Journal of Dairy Technology, 58(3), 242.spa
dc.relation.referencesPowthong, P., Jantrapanukorn, B., Suntornthiticharoen, P., & Laohaphatanalert, K. (2020). Study of prebiotic properties of selected banana species in Thailand. Journal of Food Science and Technology, 57(7), 2490–2500. https://doi.org/10.1007/s13197-020-04284-xspa
dc.relation.referencesPrado, F. C., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Trends in non-dairy probiotic beverages. Food Research International, 41(2), 111–123. https://doi.org/10.1016/j.foodres.2007.10.010spa
dc.relation.referencesQuigley, E. M. M. (2010). Prebiotics and probiotics; modifying and mining the microbiota. Pharmacological Research, 61(3), 213–218. https://doi.org/10.1016/j.phrs.2010.01.004spa
dc.relation.referencesRajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance Window Drying of Apple Slices: Mass Transfer Phenomena and Quality Parameters. Food and Bioprocess Technology, 12(10), 1646–1658. https://doi.org/10.1007/s11947-019-02334-7spa
dc.relation.referencesRamani, R., & Ramani, V. (2018). PROBIOTIC MICROENCAPSULATION TECHNIQUES AND COATING MATERIALS: EBSCOhost. International Journal of Probiotics & Prebiotics, 13(4), 161–168. https://web-b-ebscohost-com.wdg.biblio.udg.mx:8443/ehost/detail/detail?vid=0&sid=363953fd-8220-475d-8972-2b57009c5f10%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3D%3D#AN=133492672&db=fsrspa
dc.relation.referencesRashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., & Jafari, S. M. (2020). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical Reviews in Food Science and Nutrition, 0(0), 1–25. https://doi.org/10.1080/10408398.2020.1854169spa
dc.relation.referencesRattanaprasert, M., Roos, S., Hutkins, R. W., & Walter, J. (2014). Quantitative evaluation of synbiotic strategies to improve persistence and metabolic activity of Lactobacillus reuteri DSM 17938 in the human gastrointestinal tract. Journal of Functional Foods, 10, 85–94. https://doi.org/10.1016/j.jff.2014.05.017spa
dc.relation.referencesRayo, L. M., Chaguri e Carvalho, L., Sardá, F. A. H., Dacanal, G. C., Menezes, E. W., & Tadini, C. C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration. LWT - Food Science and Technology, 63(1), 461–469. https://doi.org/10.1016/j.lwt.2015.03.059spa
dc.relation.referencesReis, J. M. C. dos, Pinheiro, M. F., Oti, A. T., Feitosa-Junior, D. J. S., Pantoja, M. de S., & Barros, R. S. M. (2016). TECHNOLOGICAL INFORMATION REGARDING PREBIOTICS AND PROBIOTICS NUTRITION VERSUS THE PATENT REGISTERS: WHAT IS NEW? ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 29(4), 279–281. https://doi.org/10.1590/0102-6720201600040016spa
dc.relation.referencesRivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1–11. https://doi.org/10.1016/j.fm.2008.06.008spa
dc.relation.referencesRodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. In Food Research International (Vol. 137). https://doi.org/10.1016/j.foodres.2020.109682spa
dc.relation.referencesRodríguez de Olmos, A., Garro, O. A., & Garro, M. S. (2022). Behavior study of Bifidobacterium longum using solid state fermentation from commercial soybean meal. LWT, 157, 113101. https://doi.org/10.1016/j.lwt.2022.113101spa
dc.relation.referencesRodríguez-Barona, S., Giraldo, G. I., & Montes, L. M. (2016). Encapsulación De Alimentos Probióticos Mediante Liofilización En Presencia De Prebióticos. Informacion Tecnologica, 27(6), 135–144. https://doi.org/10.4067/S0718-07642016000600014spa
dc.relation.referencesRodríguez-Barona, S., Giraldo, G. I., & Zuluaga, Y. P. (2015). Evaluación de la Incorporación de Fibra Prebiótica sobre la Viabilidad de LactobaciHus casei Impregnado en Matrices de Mora (Rubus glaucus). Información Tecnológica, 26(5), 25–34. https://doi.org/10.4067/S0718-07642015000500005spa
dc.relation.referencesRodríguez-Barona, S., Granada-Orozco, J., & Cruz-Ríos, D. (2014a). Comparación de sacarosa, inulina y fructo-oligosacáridos como agente4 osmóticos en mora de castilla (Rubus glaucus Benth.). Acta Horticulturae, 1016, 47–51. https://doi.org/10.17660/ActaHortic.2014.1016.4spa
dc.relation.referencesRodríguez-Barona, S., Granada-Orozco, J., & Cruz-Ríos, D. (2014b). COMPARACIÓN DE SACAROSA, INULINA Y FRUCTO-OLIGOSACÁRIDOS COMO AGENTES OSMÓTICOS EN MORA DE CASTILLA (RUBUS GLAUCUS BENTH.) -COMPARISON OF SUCROSE, INULIN AND FRUCTO-OLIGOSACCHARIDES AS OSMOTIC AGENTS IN THE ANDEAN BLACKBERRY (RUBUS GLAUCUS BENTH.). Acta Horticulturae, 1016, 47–51. https://doi.org/10.17660/ActaHortic.2014.1016.4spa
dc.relation.referencesRodríguez-Barona, S., Montes, L. M., & Ramírez, D. de J. (2012). Microencapsulación De Probióticos Mediante Secado Por Aspersión En Presencia De Prebióticos. Vitae, 19(1), S186–S188.spa
dc.relation.referencesRodríguez-Restrepo, Y. A., Giraldo, G. I., & Rodríguez-Barona, S. (2017a). Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: Application to microencapsulation of Bifidobacterium animalis subsp. lactis. Journal of Food Process Engineering, 40(6), 1–8. https://doi.org/10.1111/jfpe.12557spa
dc.relation.referencesRodríguez-Restrepo, Y. A., Giraldo, G. I., & Rodríguez-Barona, S. (2017b). Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: Application to microencapsulation of Bifidobacterium animalis subsp. lactis. Journal of Food Process Engineering, 40(6), e12557. https://doi.org/10.1111/jfpe.12557spa
dc.relation.referencesRomeo, J., Nova, E., Wärnberg, J., Gómez-Martínez, S., Díaz Ligia, L. E., & Marcos, A. (2010). Immunomodulatory effect of fibres, probiotics and synbiotics in different life-stages. Nutricion Hospitalaria, 25(3), 341–349.spa
dc.relation.referencesRostami, H., Dehnad, D., Jafari, S. M., & Tavakoli, H. R. (2018). Evaluation of physical, rheological, microbial, and organoleptic properties of meat powder produced by Refractance Window drying. Drying Technology, 36(9), 1076–1085. https://doi.org/10.1080/07373937.2017.1377224spa
dc.relation.referencesRowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8spa
dc.relation.referencesRubio, R., Aymerich, T., Bover-Cid, S., Guàrdia, M. D., Arnau, J., & Garriga, M. (2013). Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT - Food Science and Technology, 54(1), 51–56. https://doi.org/10.1016/j.lwt.2013.05.014spa
dc.relation.referencesRwubuzizi, R., Kim, H., Holzapfel, W. H., & Todorov, S. D. (2023). Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon, 9(4), e15610. https://doi.org/10.1016/j.heliyon.2023.e15610spa
dc.relation.referencesSalari, M., Razavi, S. H., & Gharibzahedi, S. M. T. (2015). Characterising the synbiotic beverages based on barley and malt flours fermented by Lactobacillus delbrueckii and paracasei strains. Quality Assurance and Safety of Crops & Foods, 7(3), 355–361. https://doi.org/10.3920/QAS2013.0390spa
dc.relation.referencesSalazar, B. C., Cortés, M., & Montoya, O. I. (2015). The impact of storage conditions on the stability of sugarcane powder biofortified with kefir grains. Revista Facultad Nacional de Agronomía Medellín, 68(2), 7703–7712. https://doi.org/10.15446/rfnam.v68n2.50987spa
dc.relation.referencesSampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M.-F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018spa
dc.relation.referencesSantos, S. de J. L., Canto, H. K. F., da Silva, L. H. M., & Rodrigues, A. M. da C. (2022). Characterization and properties of purple yam (Dioscorea trifida) powder obtained by refractance window drying. Drying Technology, 40(6), 1103–1113. https://doi.org/10.1080/07373937.2020.1847140spa
dc.relation.referencesSarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. W. J. (2016). Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends in Neurosciences, 39(11), 763–781. https://doi.org/10.1016/j.tins.2016.09.002spa
dc.relation.referencesSavassi, B., Cordeiro, B. F., Silva, S. H., Oliveira, E. R., Belo, G., Figueiroa, A. G., Alves Queiroz, M. I., Faria, A. M. C., Alves, J., Silva, T. F. da, Campos, G. M., Esmerino, E. A., Rocha, R. S., Freitas, M. Q., Silva, M. C., Cruz, A. G., Vital, K. D., Fernandes, S. O. A., Cardoso, V. N., … Azevedo, V. (2021). Lyophilized Symbiotic Mitigates Mucositis Induced by 5-Fluorouracil. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.755871spa
dc.relation.referencesSavlak, N., Türker, B., & Yeşilkanat, N. (2016). Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chemistry, 213, 180–186. https://doi.org/10.1016/j.foodchem.2016.06.064spa
dc.relation.referencesSawicki, C., McKay, D., McKeown, N., Dallal, G., Chen, C., & Blumberg, J. (2016). Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial. Nutrients, 8(12), 813. https://doi.org/10.3390/nu8120813spa
dc.relation.referencesSchepper, J. D., Irwin, R., Kang, J., Dagenais, K., Lemon, T., Shinouskis, A., Parameswaran, N., & McCabe, L. R. (2017). Probiotics in Gut-Bone Signaling (pp. 225–247). https://doi.org/10.1007/978-3-319-66653-2_11spa
dc.relation.referencesSeth, D., Mishra, H. N., & Deka, S. C. (2017). Functional and reconstitution properties of spray-dried sweetened yogurt powder as influenced by processing conditions. International Journal of Food Properties, 20(7), 1603–1611. https://doi.org/10.1080/10942912.2016.1214965spa
dc.relation.referencesSgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & Costa-Mattioli, M. (2019). Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron, 101(2), 246-259.e6. https://doi.org/10.1016/j.neuron.2018.11.018spa
dc.relation.referencesShaikh, S. S., Joshi, C., Malek, F., Malik, A., & Gandhi, M. (2024). Food Storage, Processing and Genetic Stability Studies of Bacillus (Heyndrickxia) coagulans BCP92 (MTCC 25460). Applied Food Biotechnology, 11(1). https://doi.org/10.22037/afb.v11i1.44919spa
dc.relation.referencesSharma, V., & Mishra, H. N. (2013). Fermentation of vegetable juice mixture by probiotic lactic acid bacteria. Nutrafoods, 12(1), 17–22. https://doi.org/10.1007/s13749-012-0050-y Shende, D., & Datta, A. K. (2020). Optimization study for refractance window drying process of Langra variety mango. Journal of Food Science and Technology, 57(2), 683–692. https://doi.org/10.1007/s13197-019-04101-0spa
dc.relation.referencesShori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/j.fbio.2015.11.001spa
dc.relation.referencesSidira, M., Kandylis, P., Kanellaki, M., & Kourkoutas, Y. (2016). Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chemistry, 201, 334–338. https://doi.org/10.1016/j.foodchem.2016.01.084spa
dc.relation.referencesSihra, N., Goodman, A., Zakri, R., Sahai, A., & Malde, S. (2018). Nonantibiotic prevention and management of recurrent urinary tract infection. Nature Reviews Urology, 15(12), 750–776. https://doi.org/10.1038/s41585-018-0106-xspa
dc.relation.referencesSilanikove, N., Leitner, G., & Merin, U. (2015). The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients, 7(9), 7312–7331. https://doi.org/10.3390/nu7095340spa
dc.relation.referencesSilva‐Espinoza, M. A., Salvador, A., Camacho, M. del M., & Martínez‐Navarrete, N. (2021). Impact of freeze‐drying conditions on the sensory perception of a freeze‐dried orange snack. Journal of the Science of Food and Agriculture, 101(11), 4585–4590. https://doi.org/10.1002/jsfa.11101spa
dc.relation.referencesSimova, E. D., Beshkova, D. B., & Dimitrov, Zh. P. (2009). Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. Journal of Applied Microbiology, 106(2), 692–701. https://doi.org/10.1111/j.1365-2672.2008.04052.xspa
dc.relation.referencesSingh, R., Ranvir, S., & Madan, S. (2017). Comparative Study of the Properties of Ripe Banana Flour, Unripe Banana Flour and Cooked Banana Flour Aiming Towards Effective Utilization of These Flours. International Journal of Current Microbiology and Applied Sciences, 6(8), 2003–2015. https://doi.org/10.20546/ijcmas.2017.608.239spa
dc.relation.referencesSlykerman, R. F., Hood, F., Wickens, K., Thompson, J. M. D., Barthow, C., Murphy, R., Kang, J., Rowden, J., Stone, P., Crane, J., Stanley, T., Abels, P., Purdie, G., Maude, R., & Mitchell, E. A. (2017). Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine, 24, 159–165. https://doi.org/10.1016/j.ebiom.2017.09.013spa
dc.relation.referencesStadnik, J., & Dolatowski, Z. J. (2014). Effect of Inoculation with Probiotics and Ageing Time on Selected Functional Properties and Oxidation of Proteins in Dry-Cured Pork Loins. International Journal of Food Properties, 17(4), 866–876. https://doi.org/10.1080/10942912.2012.685679spa
dc.relation.referencesStelmasiewicz, M., Świątek, Ł., & Ludwiczuk, A. (2021). Phytochemical Profile and Anticancer Potential of Endophytic Microorganisms from Liverwort Species, Marchantia polymorpha L. Molecules, 27(1), 153. https://doi.org/10.3390/molecules27010153spa
dc.relation.referencesSuwanangul, S., Jaichakan, P., Narkprasom, N., Kraithong, S., Narkprasom, K., & Sangsawad, P. (2023). Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion. Foods, 12(19), 3692. https://doi.org/10.3390/foods12193692spa
dc.relation.referencesSwieca, M., Kordowska-Wiater, M., Pytka, M., Gawlik-Dziki, U., Seczyk, L., Złotek, U., & Kapusta, I. (2019). Nutritional and pro-health quality of lentil and adzuki bean sprouts enriched with probiotic yeast Saccharomyces cerevisiae var. boulardii. LWT, 100, 220–226. https://doi.org/10.1016/j.lwt.2018.10.081spa
dc.relation.referencesTamnak, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., & Muhammad, K. (2016). Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 56, 405–416. https://doi.org/10.1016/j.foodhyd.2015.12.033spa
dc.relation.referencesTan, Y. X., Mok, W. K., & Chen, W. N. (2021). In Vitro Evaluation of Enriched Brewers’ Spent Grains Using Bacillus subtilis WX-17 as Potential Functional Food Ingredients. Applied Biochemistry and Biotechnology, 193(2), 349–362. https://doi.org/10.1007/s12010-020-03424-5spa
dc.relation.referencesTarnaud, F., Gaucher, F., do Carmo, F. L. R., Illikoud, N., Jardin, J., Briard-Bion, V., Guyomarc’h, F., Gagnaire, V., & Jan, G. (2020). Differential Adaptation of Propionibacterium freudenreichii CIRM-BIA129 to Cow’s Milk Versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.549027spa
dc.relation.referencesTejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G. R., & Rowland, I. (2013). Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe, 24, 60–65. https://doi.org/10.1016/j.anaerobe.2013.09.011spa
dc.relation.referencesTissier, H. (1900). Recherches sur la flore intestinale normale et pathologique du nourrisson. Université de Paris.spa
dc.relation.referencesTontul, İ., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018a). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176. https://doi.org/10.1016/j.idairyj.2018.06.002spa
dc.relation.referencesTontul, İ., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018b). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176. https://doi.org/10.1016/j.idairyj.2018.06.002spa
dc.relation.referencesTontul, I., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2021). The impact of refractance window drying conditions on the physical and microbiological properties of kefir powder. Food Bioscience, 43, 101317. https://doi.org/10.1016/j.fbio.2021.101317spa
dc.relation.referencesTontul, I., & Topuz, A. (2017). Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT, 80, 294–303. https://doi.org/10.1016/j.lwt.2017.02.035spa
dc.relation.referencesTontul, I., & Topuz, A. (2019). Storage stability of bioactive compounds of pomegranate leather (pestil) produced by refractance window drying. Journal of Food Process Engineering, 42(2). https://doi.org/10.1111/jfpe.12973spa
dc.relation.referencesTorres Rodelo, M. del R. (2018). Evaluación tecnológica del proceso de obtención de biomasa de microorganismos probióticos en medio de cultivo formulado con suero lácteo suplementado. 1–129.spa
dc.relation.referencesTribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Perez, L. A., & Tadini, C. C. (2009). Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT - Food Science and Technology, 42(5), 1022–1025. https://doi.org/10.1016/j.lwt.2008.12.017spa
dc.relation.referencesTripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241. https://doi.org/10.1016/j.jff.2014.04.030spa
dc.relation.referencesTurroni, F., Milani, C., Duranti, S., Ferrario, C., Lugli, G. A., Mancabelli, L., van Sinderen, D., & Ventura, M. (2018). Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cellular and Molecular Life Sciences, 75(1), 103–118. https://doi.org/10.1007/s00018-017-2672-0spa
dc.relation.referencesUnidad de Planificación Rural Agropecuaria. (2023). Resultados Evaluaciones Agropecuarias 2023. https://upra.gov.co/es-co/Evas_Documentos/Resultados%20Evaluaciones%20Agropecuarias%202023.pdfspa
dc.relation.referencesUrgesi, R., Casale, C., Pistelli, R., Rapaccini, G. L., & de Vitis, I. (2014). A randomized double-blind placebo-controlled clinical trial on efficacy and safety of association of simethicone and Bacillus coagulans (Colinox®) in patients with irritable bowel syndrome. European Review for Medical and Pharmacological Sciences, 18(9), 1344–1353. http://www.ncbi.nlm.nih.gov/pubmed/24867512spa
dc.relation.referencesVieira, K. C. de O., Ferreira, C. D. S., Bueno, E. B. T., De Moraes, Y. A., Toledo, A. C. C. G., Nakagaki, W. R., Pereira, V. C., & Winkelstroter, L. K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT, 130, 109637. https://doi.org/10.1016/j.lwt.2020.109637spa
dc.relation.referencesVillarroel, P., Gómez, C., Vera, C., & Torres, J. (2018). Almidón resistente: Características tecnológicas e intereses fisiológicos. Revista Chilena de Nutrición, 45(3), 271–278. https://doi.org/10.4067/s0717-75182018000400271spa
dc.relation.referencesVillegas, B. M., Villa, G. C., Torres, J. M., Ospina, S., Rocha, L. A., & Laverde, J. F. (2012). BANANUT PLUS: HARINA DE BANANO VERDE ENRIQUECIDA CON MICRONUTRIENTES. Vitae. https://www.redalyc.org/articulo.oa?id=169823914062spa
dc.relation.referencesVitaglione, P., Napolitano, A., & Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology, 19(9), 451–463. https://doi.org/10.1016/j.tifs.2008.02.005spa
dc.relation.referencesVrese, M. De. (2001). Probiotics, prebiotics, and synbiotics—approaching a definition 1–3. 73(14).spa
dc.relation.referencesWang, S., Chelikani, V., & Serventi, L. (2018). Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT, 97, 570–572. https://doi.org/10.1016/j.lwt.2018.07.067spa
dc.relation.referencesWang, Z., Feng, Y., Yang, N., Jiang, T., Xu, H., & Lei, H. (2022). Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chemistry, 373, 131455. https://doi.org/10.1016/j.foodchem.2021.131455spa
dc.relation.referencesWardy, W., Pujols Martínez, K. D., Xu, Z., No, H. K., & Prinyawiwatkul, W. (2014). Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology, 55(1), 67–73. https://doi.org/10.1016/j.lwt.2013.07.013spa
dc.relation.referencesWatanabe, F. F. F., Marques, C., Farias, F. O., Ellenderser, L. N., & Masson, M. L. (2020). Yacon-based Beverage as Non-dairy Vehicle for Bifidobacterium animalis ssp. lactis: Stability and In vitro Probiotic Viability. Biointerface Research in Applied Chemistry, 11(4), 11458–11472. https://doi.org/10.33263/BRIAC114.1145811472spa
dc.relation.referencesWei, H., Loimaranta, V., Tenovuo, J., Rokka, S., Syväoja, E.-L., Korhonen, H., Joutsjoki, V., & Marnila, P. (2002). Stability and activity of specific antibodies against Streptococcus mutans and Streptococcus sobrinus in bovine milk fermented with Lactobacillus rhamnosus strain GG or treated at ultra-high temperature. Oral Microbiology and Immunology, 17(1), 9–15. https://doi.org/10.1046/j.0902-0055.2001.00084.xspa
dc.relation.referencesWellala, C. K. D., Bi, J., Liu, X., Liu, J., Lyu, J., Zhou, M., Marszałek, K., & Trych, U. (2020). Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innovative Food Science and Emerging Technologies, 60, 102279. https://doi.org/10.1016/j.ifset.2019.102279spa
dc.relation.referencesWollowski, I., Rechkemmer, G., & Pool-Zobel, B. L. (2001). Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 73(2), 451s–455s. https://doi.org/10.1093/ajcn/73.2.451sspa
dc.relation.referencesWongputtisin, P., Ramaraj, R., Unpaprom, Y., Kawaree, R., & Pongtrakul, N. (2015). Raffinose family oligosaccharides in seed of Glycine max cv. Chiang Mai60 and potential source of prebiotic substances. International Journal of Food Science & Technology, 50(8), 1750–1756. https://doi.org/10.1111/ijfs.12842spa
dc.relation.referencesWu, G., Zhang, C., Wu, H., Wang, R., Shen, J., Wang, L., Zhao, Y., Pang, X., Zhang, X., Zhao, L., & Zhang, M. (2017). Genomic microdiversity of Bifidobacterium pseudocatenulatum underlying differential strain-level responses to dietary carbohydrate intervention. MBio, 8(1). https://doi.org/10.1128/mBio.02348-16spa
dc.relation.referencesXiao, Y., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. In Clinical Nutrition (Vol. 39, Issue 5, pp. 1315–1323). Churchill Livingstone. https://doi.org/10.1016/j.clnu.2019.05.014spa
dc.relation.referencesYan, X.-T., Zhang, Z., Wang, Y., Zhang, W., Zhang, L., Liu, Y., Chen, D., Wang, W., Ma, W., Qian, J.-Y., & Gu, R. (2023). Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. Applied Biological Chemistry, 66(1), 7. https://doi.org/10.1186/s13765-022-00762-2spa
dc.relation.referencesYang, B., McCullough, M. L., Gapstur, S. M., Jacobs, E. J., Bostick, R. M., Fedirko, V., Flanders, W. D., & Campbell, P. T. (2014). Calcium, Vitamin D, Dairy Products, and Mortality Among Colorectal Cancer Survivors: The Cancer Prevention Study-II Nutrition Cohort. Journal of Clinical Oncology, 32(22), 2335–2343. https://doi.org/10.1200/JCO.2014.55.3024spa
dc.relation.referencesYang, J., Zhou, F., Xiong, L., Mao, S., Hu, Y., & Lu, B. (2015). Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan [Carya cathayensis] at different stir-frying steps. LWT - Food Science and Technology, 62(1), 541–548. https://doi.org/10.1016/j.lwt.2014.09.049spa
dc.relation.referencesYao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874. https://doi.org/10.1111/1541-4337.12532spa
dc.relation.referencesYarabbi, H., Roshanak, S., & Milani, E. (2023). Production of the probiotic dessert containing sprouted quinoa milk and evaluation of physicochemical and microbial properties during storage. Food Science & Nutrition, 11(9), 5596–5608. https://doi.org/10.1002/fsn3.3517spa
dc.relation.referencesYoha, K. S., Anukiruthika, T., Anila, W., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT, 146, 111461. https://doi.org/10.1016/j.lwt.2021.111461spa
dc.relation.referencesYoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020a). Conductive hydro drying through refractance window drying–An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Drying Technology, 38(5–6), 610–620. https://doi.org/10.1080/07373937.2019.1624972spa
dc.relation.referencesYoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020b). Conductive hydro drying through refractance window drying–An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Drying Technology, 38(5–6), 610–620. https://doi.org/10.1080/07373937.2019.1624972spa
dc.relation.referencesYoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020c). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering, 283, 110033. https://doi.org/10.1016/j.jfoodeng.2020.110033spa
dc.relation.referencesYu, Z.-Y., Jiang, S.-W., Cao, X.-M., Jiang, S.-T., & Pan, L.-J. (2016). Effect of high pressure homogenization (HPH) on the physical properties of taro ( Colocasia esculenta (L). Schott) pulp. Journal of Food Engineering, 177, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.10.042spa
dc.relation.referencesZarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41–47. https://doi.org/10.1016/j.jssas.2013.06.002spa
dc.relation.referencesZelante, T., Iannitti, R. G., Cunha, C., DeLuca, A., Giovannini, G., Pieraccini, G., Zecchi, R., D’Angelo, C., Massi-Benedetti, C., Fallarino, F., Carvalho, A., Puccetti, P., & Romani, L. (2013). Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 39(2), 372–385. https://doi.org/10.1016/j.immuni.2013.08.003spa
dc.relation.referencesZhang, C., Quek, S. Y., Fu, N., Su, Y., Kilmartin, P. A., & Chen, X. D. (2020). Storage stability and in vitro digestion of microencapsulated powder containing fermented noni juice and probiotics. Food Bioscience, 37, 100740. https://doi.org/10.1016/j.fbio.2020.100740spa
dc.relation.referencesZhang, P., Whistler, R. L., BeMiller, J. N., & Hamaker, B. R. (2005). Banana starch: production, physicochemical properties, and digestibility—a review. Carbohydrate Polymers, 59(4), 443–458. https://doi.org/10.1016/j.carbpol.2004.10.014spa
dc.relation.referencesZhou, R., Xu, Y., Dong, D., Hu, J., Zhang, L., & Liu, H. (2023). The effects of microcapsules with different protein matrixes on the viability of probiotics during spray drying, gastrointestinal digestion, thermal treatment, and storage. EFood, 4(4). https://doi.org/10.1002/efd2.98spa
dc.relation.referencesZhu, D., Shen, Y., Wei, L., Xu, L., Cao, X., Liu, H., & Li, J. (2020). Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry, 328, 126967. https://doi.org/10.1016/j.foodchem.2020.126967spa
dc.relation.referencesZhu, W., Lyu, F., Naumovski, N., Ajlouni, S., & Ranadheera, C. S. (2020). Functional Efficacy of Probiotic Lactobacillus sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival. Beverages, 6(1), 13. https://doi.org/10.3390/beverages6010013spa
dc.relation.referencesZhu, Y. Y., Thakur, K., Feng, J. Y., Cai, J. S., Zhang, J. G., Hu, F., & Wei, Z. J. (2020). B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends in Food Science and Technology, 105(June), 43–55. https://doi.org/10.1016/j.tifs.2020.08.019spa
dc.relation.referencesZielińska, D., Rzepkowska, A., Radawska, A., & Zieliński, K. (2015). In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber. Current Microbiology, 70(2), 183–194. https://doi.org/10.1007/s00284-014-0699-0spa
dc.relation.referencesZorzela, L., Ardestani, S. K., McFarland, L. V., & Vohra, S. (2017). Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. Beneficial Microbes, 8(5), 739–754. https://doi.org/10.3920/BM2017.0032spa
dc.relation.referencesZotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2015). Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 69, 410–417. https://doi.org/10.1016/j.foodres.2015.01.013spa
dc.relation.referencesZotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technologyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocMusa paradisiaca
dc.subject.agrovocBacillus coagulans
dc.subject.agrovocAlimento funcional
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::602 - Misceláneaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc500 - Ciencias naturales y matemáticas::502 - Misceláneaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembHarina de plátano
dc.subject.lembDesarrollo científico y tecnológico
dc.subject.lembTecnología de alimentos
dc.subject.proposalMusa paradisiaca L.spa
dc.subject.proposalsecado por ventana de refractanciaspa
dc.subject.proposalBacillus coagulansspa
dc.subject.proposalalimentos funcionales probióticosspa
dc.subject.proposalalmacenamiento de producto en polvospa
dc.subject.proposalMusa paradisiaca L.eng
dc.subject.proposalrefractance window dryingeng
dc.subject.proposalBacillus coagulanseng
dc.subject.proposalfunctional probiotic foodseng
dc.subject.proposalstorage of powdered productseng
dc.titleDesarrollo tecnológico de una harina de plátano adicionada con probióticos y prebióticos utilizando el secado por ventana de refractanciaspa
dc.title.translatedTechnologic development of green banana flour added with probiotics and prebiotics using refractance window dryingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación de los cambios físicos, estructurales y funcionales ocurridos en el almidón durante la aplicación de tratamientos tecnológicos en el proceso de obtención de un alimento funcional probiótico a base de harina de plátano.spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameUniversidad de Caldasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053855212.2024.pdf
Tamaño:
2.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: