Desarrollo tecnológico de una harina de plátano adicionada con probióticos y prebióticos utilizando el secado por ventana de refractancia
dc.contributor.advisor | Rodriguez-Barona, Sneyder | |
dc.contributor.advisor | Cortés Rodríguez, Misael | |
dc.contributor.author | Londoño Sierra, Andrés Felipe | |
dc.contributor.researchgroup | Bacterias Acido Lácticas y sus aplicaciones Biotecnologicasindustriales | spa |
dc.contributor.researchgroup | Gaf (Grupo de Alimentos Funcionales) | spa |
dc.date.accessioned | 2025-02-22T16:03:14Z | |
dc.date.available | 2025-02-22T16:03:14Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | El plátano es un alimento primordial en países tropicales, produciendo un impacto sobre la seguridad alimentaria. La generación de valor en la agrocadena a partir de la aplicación de nuevas tecnologías o tecnologías mejoradas contribuye a mejorar su competitividad, al desarrollar ingredientes alimentarios con múltiples aplicaciones y alimentos con potencial funcional y ente ellos alimentos funcionales probióticos (AFP). Estos han ganado popularidad en los últimos años debido a sus beneficios sobre la salud, sobre todo en las esferas digestiva, cardiovascular, inmunitaria y mental de los consumidores. El vehículo tradicional de los alimentos probióticos han sido las matrices lácteas, sin embargo, la intolerancia a la lactosa, cada vez más frecuente, limita su consumo. Esto ha impulsado la exploración de matrices no lácteas para la producción de AFP. La presente investigación fue desarrollada por los grupos de investigación en Bacterias Ácido Lácticas y sus Aplicaciones Biotecnológicas e Industriales (GIBALABI) y en Alimentos Funcionales (GAF), adscritos a la Universidad Nacional de Colombia, y en alianza con la Universidad de Caldas y Tecnoparque SENA seccional Caldas, en el marco del proyecto de investigación “Evaluación de los cambios físicos, estructurales y funcionales ocurridos en el almidón durante la aplicación de tratamientos tecnológicos en el proceso de obtención de un alimento funcional probiótico a base de harina de plátano”. El objetivo de la presente investigación fue desarrollar una harina de plátano adicionada con prebióticos y probióticos, usando la tecnología de ventana de secado, una tecnología de secado no convencional, que busca conservar las características fisicoquímicas, tecno-funcionales, microbiológicas y funcionales de los alimentos. Para lograr este objetivo, se plantea la realización de una revisión de literatura acerca de las matrices no lácteas empleadas para producir AFP en el capítulo 1, seguido de una etapa experimental para desarrollar la harina de plátano adicionada con prebióticos y probióticos en el capítulo 2. En el capítulo 1 se realizó una revisión bibliográfica reciente (últimos 10 años) acerca de las matrices alimenticias no lácteas que se han explorado para producir AFP. La revisión examina el estado del arte en términos de matrices no lácteas y su impacto sobre la viabilidad celular, además de abordar parámetros de selección y uso de probióticos en alimentos. También se mencionan aspectos generales acerca de los beneficios que otorgan los AFP sobre la salud y plantea perspectivas futuras que justifican la necesidad de seguir investigando en este campo del conocimiento, como es el caso del reciente descubrimiento de los paraprobióticos (probióticos no viables o sus fracciones y componentes celulares libres) y su efecto sobre las características fisiológicas mejoradas, constituyendo el inicio de la ruptura del paradigma de requerir garantizar alta viabilidad celular de los probióticos para la manifestación de beneficios fisiológicos en los consumidores. Estos hallazgos plantean nuevas perspectivas en el desarrollo de AFP en general, abriendo un campo de investigación poco explorado hasta el momento. En el capítulo 2 se llevó a cabo la investigación experimental de producción de harina de plátano adicionada con prebióticos y probióticos, desarrollada en tres fases a escala laboratorio. En la primera fase, se evaluó la estabilidad fisicoquímica de tres suspensiones de plátano verde sin probióticos (SPSP) formuladas con distintas fracciones másicas de sólidos totales aportados por el plátano (XTS) (0.18 – 0.24), y adicionada con encapsulantes (maltodextrina) (MD) (1,58 %p/p), prebiótico (inulina) (INU) (1,58 %p/p) y acidulante (ácido cítrico) (AC) (0,32 %p/p), utilizando un diseño unifactorial completamente aleatorizado, considerando las variables dependientes: humedad (Xw), sólidos totales (TS), sólidos solubles (SS), viscosidad (μ) y potencial Z (ζ). Los resultados de Xw, μ y ζ señalaron una mayor estabilidad fisicoquímica en las SPSP con XTS = 0.24 en comparación con 0.18 y 0.21, obteniendo una suspensión con los siguientes atributos fisicoquímicos: Xw = 75,3 ± 0,8%, TS = 24,7± 0,82%, SS = 4.6± 0.0°Bx, μ = 844,7 ± 25,3 cP y ζ = -25,2 ± 0,8 mV. Sin embargo, el ANOVA no mostró diferencias significativas (p<0.05) de ninguna variable dependiente con respecto a XTS, mientras que la prueba de Diferencia Mínima Significativa (LSD) mostró diferencias significativas (p<0.05) entre los valores de Xw y TS obtenidos a una XTS de 0.21 y 0.24. Esto indicó que las tres formulaciones se comportaron estadísticamente como un solo grupo homogéneo, por lo que XTS fue considerada como variable independiente en el diseño experimental del proceso de secado de la fase 2; En la segunda fase se desarrolló una harina de plátano adicionada con prebióticos y probióticos, utilizando la tecnología de secado por ventana de refractancia (RWD). Se evaluó el proceso de RWD de las SPSP, utilizando la metodología de superficie de respuesta con un diseño experimental central compuesto cara centrada (α=1) (20 experimentos), considerando las variables independientes: fracción másica de sólidos totales aportados por el plátano (XTS) (0.18 – 0.24), temperatura del agua de calentamiento (T) (50 – 70°C) y tiempo de secado (t) (2 – 3 h), y las variables dependientes: humedad (Xw), actividad de agua (aw), solubilidad (S), higroscopicidad (Hy), humectabilidad (We), tamaño de partícula (D[3,2]) y ángulo de reposo (α). El ANOVA demostró diferencias significativas (p<0.05) de la Xw, aw y Hy con respecto a XTS, T y t y a sus interacciones lineales, ya que altas T favorece la difusión del agua en el producto y, al mismo tiempo, bajos t produce una menor fuerza motriz a la transferencia de calor que deriva en la evaporación efectiva del agua, mientras la monocapa del producto queda saturada por falta de afinidad del almidón y otros carbohidratos de plátano hacia el agua, evitando beneficiar su capacidad de adsorción. Las condiciones óptimas de proceso de RWD fueron XTS=0.24, T=68°C, t=2 h, con las que se obtiene una harina de plátano sin probióticos (HPSP) con los siguientes atributos de calidad: Xw = 5,1%, aw = 0,163, S = 17,4%, Hy = 14,5%, We = 38,0 s, D[3,2] = 79,3 μm, α = 14,9°. Una vez obtenida la formulación con mejores características tecno-funcionales y las condiciones óptimas de proceso, se incorporó la biomasa probiótica (Bacillus coagulans ATCC 7050) al 2, 4, 6 y 8%p/p a la SPSP. La suspensión de plátano verde con probióticos (SPCP) fue secada a las condiciones óptimas del proceso de RWD para producir una harina de plátano verde con probióticos (HPCP) con una concentración celular probiótica (N) de 10,4 ± 0,6 Log UFC/g, y viabilidad celular máximas del 91,12% con un 8%p/p de biomasa adicionada; el mayor rendimiento de encapsulación (RE) (16.97%) fue obtenido al agregar un 2% p/p de biomasa a la HPSP; En la tercera fase se evaluó el almacenamiento de la HPCP obtenida con la mayor viabilidad, utilizando un diseño factorial completamente aleatorizado en función de las variables independientes: t (0, 1, 2, 3, 4, 5 y 6 meses) y temperatura de almacenamiento (T) (15, 25 y 35 °C), y de las variables dependientes: Xw, aw, S, Hy, We, α y N. La optimización del secado por ventana de refractancia de SPCP garantizó la conservación de los atributos fisicoquímicos, tecno-funcionales y funcionales probióticos de la HPCP durante todo el almacenamiento, mostrando las siguientes características a los 6 meses: Xw = 7,2 ± 0,08%, aw = 0,331 ± 0,002, S = 16,2 ± 0,91%, Hy = 5,91 ± 0,03, We = 100,35 ± 6,64 s y α = 16,02 ± 1,67°. N solo pudo ser evaluada hasta el quinto mes de almacenamiento, en el que arrojó un valor de 8.02 ± 0,73 Log UFC/g a 15°C. Este estudio representa una herramienta científica para el desarrollo de una harina de plátano fortificada con prebióticos y probióticos, en el que se incursionó en una metodología no convencional de procesamiento, se describió el efecto de las interacciones de los componentes del sistema y su relación con las características del polvo y se estimó la vida útil de la harina. Como conclusión general, la aplicación del secado por ventana de refractancia para la producción de una harina de plátano fortificada con prebióticos y probióticos generó un producto fisicoquímicamente estable en el tiempo, y logró desarrollar propiedades tecno-funcionales que le confieren versatilidad como insumo para diversos sectores de la industria agroalimentaria. (Tomado de la fuente) | spa |
dc.description.abstract | Plantains are a dietary mainstay in tropical countries, exerting a profound influence on food security. The generation of value in the agri-chain from the application of new or improved technologies contributes to an improvement in competitiveness by developing food ingredients with multiple applications and foods with functional potential, including probiotic functional foods (PFA). Such products have gained popularity in recent years due to their purported health benefits, particularly in digestive, cardiovascular, immune, and mental health. The conventional medium for probiotic foods has been dairy matrices. However, the rising prevalence of lactose intolerance has constrained their consumption. This has prompted the exploration of non-dairy matrices to produce probiotic foods. This research was conducted by the research groups in “Bacterias Ácido Lácticas y sus Aplicaciones Biotecnológicas e Industriales” (GIBALABI) and in “Alimentos Funcionales” (GAF), which are attached to the Universidad Nacional de Colombia, and in collaboration with the University de Caldas. As part of the research project "Evaluation of the physical, structural, and functional changes occurring in starch during the application of technological treatments in the production of a probiotic functional food based on banana flour," the Tecnoparque SENA Caldas section has conducted an analysis. The objective of this research was to develop a plantain flour fortified with prebiotics and probiotics, using the refractance window drying technology, a non-conventional drying technology, seeking to preserve the physicochemical, techno-functional, microbiological, and functional characteristics of foods. To achieve the proposed objective, a comprehensive literature review of non-dairy matrices utilized in the production of PFA will be conducted in Chapter 1. This will be followed by an experimental stage in Chapter 2, during which banana flour will be developed with the addition of prebiotics and probiotics. In Chapter 1, a comprehensive literature review was conducted on the recent (within the past ten years) exploration of non-dairy food matrices to produce PFA. The review examines the current state of the art in terms of non-dairy matrices and their impact on cell viability, as well as addressing the parameters of selection and use of probiotics in foods. Furthermore, the text mentions general aspects of the health benefits of PFAs and raises future perspectives that justify the need for further research in this field of knowledge. For example, the recent discovery of paraprobiotics (non-viable probiotics or their fractions and free cellular components) and their effect on improved physiological characteristics represents a significant departure from the traditional paradigm of requiring high cell viability of probiotics for the manifestation of physiological benefits in consumers. These findings introduce new avenues for the development of PFAs in general and provide a foundation for further research in this relatively unexplored field. In Chapter 2, the experimental research on producing banana flour with prebiotics and probiotics was carried out in three phases at a laboratory scale. In the initial phase, the physicochemical stability of three green plantain suspensions without probiotics (SPSP) formulated with varying mass fractions of total solids contributed by plantain (XTS) (0.18-0.24) and supplemented with an encapsulant (maltodextrin) (MD) (1.58% w/w), a prebiotic (inulin) (INU) (1.58 % w/w) and acidulant (citric acid) (AC) (0.32 % w/w). The experiment was conducted using a completely randomized one-factorial design. The dependent variables were moisture (Xw), total solids (TS), soluble solids (SS), viscosity (μ), and Z potential (ζ). The results of Xw, TS, and ζ measurements indicated a higher degree of physicochemical stability in the SPSPs with XTS = 0.24 compared to those with 0.18 and 0.21. The resulting suspensions exhibited the following physicochemical attributes: Xw = 75.3 ± 0.8%, TS = 24.7 ± 0.82%, SS = 4.6 ± 0.0°Bx, μ = 844.7 ± 25.3 cP and ζ = -25.2 ± 0.8 mV. Nevertheless, the ANOVA results indicated no statistically significant differences (p < 0.05) in any of the dependent variables concerning XTS. Conversely, the LSD test revealed that there were statistically significant differences (p < 0.05) between the Xw and TS values obtained at an XTS of 0.21 and 0.24. This indicated that the three formulations behaved statistically as a single homogeneous group. Consequently, XTS was considered an independent variable in the experimental design of the Phase 2 drying process. In the second phase of the study, an unripe plantain flour fortified with prebiotics and probiotics was developed using refractance window drying (RWD) technology. The suitability of the RWD process to produce SPSPs was evaluated using response surface methodology with a face-centered (α=1) central composite experimental design (20 experiments), considering the independent variables: mass fraction of total solids contributed by banana (XTS) (0. 18 - 0.24), water temperature (T) (50 - 70°C) and time (t) (2 - 3 h), and the dependent variables: moisture (Xw), water activity (aw), solubility (S), hygroscopicity (Hy), wettability (We), particle size (D[3,2]) and angle of repose (α). The ANOVA demonstrated statistically significant differences (p<0.05) in Xw, aw, and Hy concerning XTS, T, and t, as well as their linear interactions. High T facilitates the diffusion of water in the product, while simultaneously, low t results in a reduced driving force for heat transfer, leading to the effective evaporation of water. However, the monolayer of the product remains saturated due to the lack of affinity of starch and other plantain carbohydrates for water, which hinders the adsorption capacity. The optimal RWD process conditions were XTS=0.24, T=68°C, t=2 h, resulting in the production of a plantain flour without probiotics (HPSP) with the following quality attributes: Xw = 5,1%, aw = 0,163, S = 17,4%, Hy = 14,5%, We = 38,0 s, D[3,2] = 79,3 μm, α = 14,9°. Once the formulation with the optimal techno-functional characteristics and process conditions had been established, the probiotic biomass (Bacillus coagulans ATCC 7050) was incorporated at 2, 4, 6, and 8% w/w into the SPSP. The green plantain suspension with probiotics (SPCP) was subjected to an RWD process to produce a green plantain flour with probiotics (HPCP) with a probiotic cell concentration (N) of 10.4 ± 0.6 Log CFU/g and a maximum cell viability of 91.12% with 8% w/w of biomass added. The highest encapsulation yield (RE) (16.97%) was obtained by adding 2% w/w of biomass to the HPSP; In the third phase, the storage of HPCP obtained with the highest viability was evaluated using a completely randomized factorial design as a function of the independent variables, namely t (0, 1, 2, 2, 3, 4, 5, and 6 months) and storage temperature (T) (15, 25 and 35 °C), and the dependent variables: Xw, aw, S, Hy, We, α and N. The optimization of SPCP refractance window drying ensured the preservation of the probiotic's physicochemical, techno-functional, and functional attributes throughout the storage period. At six months, the following characteristics were observed: Xw = 7,2 ± 0,08%, aw = 0,331 ± 0,002, S = 16,2 ± 0,91%, Hy = 5,91 ± 0,03, We = 100,35 ± 6,64 s y α = 16,02 ± 1,67°. The evaluation of N was only possible until the fifth month of storage, at which point it yielded a value of 8.02 ± 0.73 Log CFU/g at 15°C. This study represents a scientific tool for the development of a banana flour fortified with prebiotics and probiotics, in which a non-conventional processing methodology was ventured, the effect of the interactions of the system components and their relationship with the characteristics of the powder was described, and the shelf life of the flour was estimated. As a general conclusion, the application of refractory window drying to produce a banana flour fortified with prebiotics and probiotics generated a product that is physicochemically stable over time and managed to develop techno-functional properties that confer versatility as an input for various sectors of the agri-food industry. | eng |
dc.description.curriculararea | Agro Ingeniería Y Alimentos.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | spa |
dc.description.notes | Contiene mapas, tablas, figuras, esquemas, fotografías, | spa |
dc.description.researcharea | Desarrollo de alimentos funcionales usando bacterias ácido-lácticas | spa |
dc.description.sponsorship | La Universidad de Caldas y la Universidad Nacional de Colombia sede Manizales apoyaron y financiaron parte de esta tesis de maestría a través del proyecto “Evaluación de los cambios físicos, estructurales y funcionales ocurridos en el almidón durante la aplicación de tratamientos tecnológicos en el proceso de obtención de un alimento funcional probiótico a base de harina de plátano” en el marco de la Convocatoria Conjunta de Desarrollo Tecnológico e Innovación 2021. Los recursos de esta convocatoria fueron obtenidos de la Estampilla Pro Universitaria del municipio de Manizales, Caldas, Colombia. | spa |
dc.format.extent | 159 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87530 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abiodun-Solanke, A., & Falade, K. (2011). A review of the uses and methods of processing banana and plantain (Musa spp.) into storable food products. Journal of Agricultural Research and Development, 9(2). https://doi.org/10.4314/jard.v9i2.66815 | spa |
dc.relation.references | Aboulfazli, F., Baba, A. S., & Misran, M. (2015). The Rheology and Physical Properties of Fermented Probiotic Ice Creams Made with Dairy Alternatives. International Journal of Food Engineering, 11(4), 493–504. https://doi.org/10.1515/ijfe-2014-0343 | spa |
dc.relation.references | Adams, C. A. (2010). The probiotic paradox: live and dead cells are biological response modifiers. Nutrition Research Reviews, 23(1), 37–46. https://doi.org/10.1017/S0954422410000090 | spa |
dc.relation.references | Agama-Acevedo, E., Rodriguez-Ambriz, S. L., García-Suárez, F. J., Gutierrez-Méraz, F., Pacheco-Vargas, G., & Bello-Pérez, L. A. (2014). Starch isolation and partial characterization of commercial cooking and dessert banana cultivars growing in Mexico. Starch - Stärke, 66(3–4), 337–344. https://doi.org/10.1002/star.201300125 | spa |
dc.relation.references | Ahmad, A., Prakash, O., Kumar, A., Chatterjee, R., Sharma, S., Kumar, V., Kulshreshtha, K., Li, C., & Eldin, E. M. T. (2022). A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying. Energies, 15(24), 9493. https://doi.org/10.3390/en15249493 | spa |
dc.relation.references | Aizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., & Kunugi, H. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal of Affective Disorders, 202, 254–257. https://doi.org/10.1016/j.jad.2016.05.038 | spa |
dc.relation.references | Alberti, K. G. M. M., Zimmet, P., & Shaw, J. (2007). International Diabetes Federation: A consensus on Type 2 diabetes prevention. Diabetic Medicine, 24(5), 451–463. https://doi.org/10.1111/j.1464-5491.2007.02157.x | spa |
dc.relation.references | Almada-Érix, C. N., Almada, C. N., Pedrosa, G. T. S., Biachi, J. P., Bonatto, M. S., Schmiele, M., Nabeshima, E. H., Clerici, M., Magnani, M., & Sant’Ana, A. S. (2022). Bread as probiotic carriers: Resistance of Bacillus coagulans GBI-30 6086 spores through processing steps. FOOD RESEARCH INTERNATIONAL, 155. https://doi.org/10.1016/j.foodres.2022.111040 | spa |
dc.relation.references | Almada-Érix, C. N., Almada, C. N., Souza Pedrosa, G. T., dos Santos, P., Schmiele, M., Clerici, M. T. P. S., Martinez, J., Lollo, P. C., Magnani, M., & Sant’Ana, A. S. (2021). Quantifying the impact of eight unit operations on the survival of eight Bacillus strains with claimed probiotic properties. Food Research International, 142(February). https://doi.org/10.1016/j.foodres.2021.110191 | spa |
dc.relation.references | Almanza-Benitez, S., Osorio-Díaz, P., Méndez-Montealvo, G., Islas-Hernández, J. J., & Bello-Perez, L. A. (2015). Addition of acid-treated unripe plantain flour modified the starch digestibility, indigestible carbohydrate content and antioxidant capacity of semolina spaghetti. LWT - Food Science and Technology, 62(2), 1127–1133. https://doi.org/10.1016/j.lwt.2015.02.031 | spa |
dc.relation.references | Ammor, S., Tauveron, G., Dufour, E., & Chevallier, I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control, 17(6), 454–461. https://doi.org/10.1016/j.foodcont.2005.02.006 | spa |
dc.relation.references | Anyasi, T. A., Jideani, A. I. O., & Mchau, G. R. A. (2015). Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chemistry, 172, 515–522. https://doi.org/10.1016/j.foodchem.2014.09.120 | spa |
dc.relation.references | Aradón, A., & Castellano, V. (2014). Regulation and guidelines of probiotics and prebiotics. In Probiotics and prebiotics in food, nutrition and health (pp. 91–113). CRC Press. | spa |
dc.relation.references | Aragón-Rojas, S., Quintanilla-Carvajal, M. X., Hernández-Sánchez, H., Hernández-Álvarez, A. J., & Moreno, F. L. (2019a). Encapsulation of Lactobacillus fermentum K73 by Refractance Window drying. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-42016-0 | spa |
dc.relation.references | Araújo, T. M. R., Farias, M. D. L., Afonso, M. R. A., Costa, J. M. C. da, & Eça, K. S. (2020). Maltodextrin on the flow properties of green coconut (Cocos nucifera L.) pulp powder. Ciência e Agrotecnologia, 44. https://doi.org/10.1590/1413-7054202044003220 | spa |
dc.relation.references | Arihara, K., & Ohata, M. (2011). Functional meat products. In Functional Foods (pp. 512–533). Elsevier. https://doi.org/10.1533/9780857092557.3.512 | spa |
dc.relation.references | Ashwar, B. A., Gani, A., Gani, A., Shah, A., & Masoodi, F. A. (2018). Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry, 239, 287–294. https://doi.org/10.1016/j.foodchem.2017.06.110 | spa |
dc.relation.references | Asif-Ul-Alam, S. M., Islam, M. Z., Hoque, M. M., & Monalisa, K. (2014). Effects of Drying on the Physicochemical and Functional Properties of Green Banana (Musa sapientum) Flour and Development of Baked Product. American Journal of Food Science and Technology, 2(4), 128–133. https://doi.org/10.12691/ajfst-2-4-4 | spa |
dc.relation.references | Asiimwe, A., Kigozi, J. B., Baidhe, E., & Muyonga, J. H. (2022). Optimization of refractance window drying conditions for passion fruit puree. LWT, 154, 112742. https://doi.org/10.1016/j.lwt.2021.112742 | spa |
dc.relation.references | Association of Official Analytical Chemist [AOAC]. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists (15th ed.). AOAC International. | spa |
dc.relation.references | Astudillo-Heras, L. L., & Sánchez-Salamea, A. L. (2019). Extracción de Almidón a partir del banano (plátano) de categoría II (Musa paradisiaca) en estado verde, para la elaboración de colada instantánea fortificada y utilización de su fibra para balanceado de ganado porcino [Tesis de grado]. Universidad de Cuencua. | spa |
dc.relation.references | Azad, Md. A. K., Sarker, M., Li, T., & Yin, J. (2018). Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/9478630 | spa |
dc.relation.references | Azizi, D., Jafari, S. M., Mirzaei, H., & Dehnad, D. (2017). The Influence of Refractance Window Drying on Qualitative Properties of Kiwifruit Slices. International Journal of Food Engineering, 13(2). https://doi.org/10.1515/ijfe-2016-0201 | spa |
dc.relation.references | Azizishafa, M., Basti, A. A., Sharifan, A., & Khanjari, A. (2023). Reformulation of traditional Iranian food (Doeeneh) using probiotics: Bifidobacterium animalis subsp. lactis BB-12, Lactobacillus acidophilus LA-5, Lacticaseibacillus rhamnosus LGG, and inulin and its effect on diabetic and non-diabetic rats. Food Quality and Safety, 7. https://doi.org/10.1093/fqsafe/fyad028 | spa |
dc.relation.references | Babolanimogadam, N., Akhondzadeh Basti, A., Khanjari, A., Sajjadi Alhashem, S. H., Babolani Moghadgam, K., & Ahadzadeh, S. (2024). Shelf life extending of probiotic beef patties with polylactic acid‐ajwain essential oil films and stress effects on Bacillus coagulans. Journal of Food Science, 89(2), 866–880. https://doi.org/10.1111/1750-3841.16864 | spa |
dc.relation.references | Badui, S. (2006). Química de los alimentos (E. Quintanar Duarte & M. B. Gutiérrez Hernández, Eds.; Cámara Nac). Pearson Educación de México, S.A. de C.V. https://itscv.edu.ec/wp-content/uploads/2019/06/QUIMICA-DE-LOS-ALIMENTOS-4ta-Edicion.pdf | spa |
dc.relation.references | Bamigbola, Y. A., Awolu, O. O., & Oluwalana, I. B. (2016). The effect of plantain and tigernut flours substitution on the antioxidant, physicochemical and pasting properties of wheat-based composite flours. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1245060 | spa |
dc.relation.references | Batra, N., Singh, J., Banerjee, U. C., Patnaik, P. R., & Sobti, R. C. (2002). Production and characterization of a thermostable β ‐galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36(1), 1–6. https://doi.org/10.1042/BA20010091 | spa |
dc.relation.references | Bell, K. J., Saad, S., Tillett, B. J., McGuire, H. M., Bordbar, S., Yap, Y. A., Nguyen, L. T., Wilkins, M. R., Corley, S., Brodie, S., Duong, S., Wright, C. J., Twigg, S., de St Groth, B. F., Harrison, L. C., Mackay, C. R., Gurzov, E. N., Hamilton-Williams, E. E., & Mariño, E. (2022). Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 10(1), 9. https://doi.org/10.1186/s40168-021-01193-9 | spa |
dc.relation.references | Bello‐Pérez, L. A., Pineda‐Tapia, F. J., Pacheco‐Vargas, G., Carmona‐Garcia, R., & Tovar, J. (2024a). Whole Unripe Plantain Flour as Unconventional Carbohydrate Source to Prepare Gluten‐Free Pasta with High Dietary Fiber Content and Reduced Starch Hydrolysis. Starch - Stärke, 76(1–2). https://doi.org/10.1002/star.202200222 | spa |
dc.relation.references | Bernat, N., Cháfer, M., González-Martínez, C., Rodríguez-García, J., & Chiralt, A. (2015). Optimisation of oat milk formulation to obtain fermented derivatives by using probiotic Lactobacillus reuteri microorganisms. Food Science and Technology International, 21(2), 145–157. https://doi.org/10.1177/1082013213518936 | spa |
dc.relation.references | Bhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of food powders. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672 | spa |
dc.relation.references | Bharwani, A., Mian, M. F., Foster, J. A., Surette, M. G., Bienenstock, J., & Forsythe, P. (2016). Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology, 63, 217–227. https://doi.org/10.1016/j.psyneuen.2015.10.001 | spa |
dc.relation.references | Bonik, S. K., Tamanna, S. T., Happy, T. A., Haque, Md. N., Islam, S., & Faruque, Md. O. (2024). Formulation and evaluation of cereal-based breads fortified with natural prebiotics from green banana, moringa leaves powder and soya powder. Applied Food Research, 4(1), 100377. https://doi.org/10.1016/j.afres.2023.100377 | spa |
dc.relation.references | Cadena, R. S., Caimi, D., Jaunarena, I., Lorenzo, I., Vidal, L., Ares, G., Deliza, R., & Giménez, A. (2014). Comparison of rapid sensory characterization methodologies for the development of functional yogurts. Food Research International, 64, 446–455. https://doi.org/10.1016/j.foodres.2014.07.027 | spa |
dc.relation.references | Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428. https://doi.org/10.1016/j.ifset.2005.05.003 | spa |
dc.relation.references | Cano-Sarmiento, C., Téllez-Medina, D. I., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C. Y., García-Armenta, E., Alamilla-Beltrán, L., García, H. S., & Gutiérrez-López, G. F. (2018). Zeta Potential of Food Matrices. Food Engineering Reviews, 10(3), 113–138. https://doi.org/10.1007/s12393-018-9176-z | spa |
dc.relation.references | Cánovas Barbosa, & G.V y Vega Mercado, H. (1996). Dehydration of Foods Dehydration of Foods Series Editor (1st ed.). | spa |
dc.relation.references | Cao, J., Yu, Z., Liu, W., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods, 64(October), 103643. https://doi.org/10.1016/j.jff.2019.103643 | spa |
dc.relation.references | Cao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2 | spa |
dc.relation.references | Capela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203–211. https://doi.org/10.1016/j.foodres.2005.07.007 | spa |
dc.relation.references | Cardoso, P. I. F. da C., Grisi, C. V. B., Vieira, É. de A., de Almeida, D. K. L., & Cardarelli, H. R. (2024). Cereal flours with Bacillus coagulans and beta-glucan: Technological properties and sensory acceptability. Food Chemistry, 448, 139146. https://doi.org/10.1016/j.foodchem.2024.139146 | spa |
dc.relation.references | Castaño-Peláez, H. I., Cortes-Rodríguez, M., Gil-González, J., & Gallón-Bedoya, M. (2022). Influence of gum arabic and homogenization process on the physicochemical stability of strawberry suspensions. Food Science and Technology, 42. https://doi.org/10.1590/fst.58020 | spa |
dc.relation.references | Castaño-Peláez, H., Rodríguez, M. C., Gil G., J. H., López, G. L., & Ortega-Toro, R. (2022). Optimization of spray-drying process parameters on strawberry (Fragaria ananassa D.) extracts microcapsules quality. Journal of Berry Research, 12(4), 531–550. https://doi.org/10.3233/JBR-220047 | spa |
dc.relation.references | Castellanos-Galeano, F. J., & Lucas-Aguirre, J. C. (2011). Caracterización física del fruto en variedades de plátano cultivadas en la zona cafetera de Colombia. Acta Agronómica, 60(2). | spa |
dc.relation.references | Castoldi, M., Zotarelli, M. F., Durigon, A., Carciofi, B. A. M., & Laurindo, J. B. (2015). Production of Tomato Powder by Refractance Window Drying. Drying Technology, 33(12), 1463–1473. https://doi.org/10.1080/07373937.2014.989327 | spa |
dc.relation.references | Castellanos-Galeano, F. J., Chavez-Salazar, A., & Martínez-Hernández, L. J. (2017). Effect of process variables in the production of fried green plantain in vacuum. Revista Vitae, 38–46. https://doi.org/10.17533/udea.vitae.v24n1a05 | spa |
dc.relation.references | Cayra, E., Dávila, J. H., Villalta, J. M., & Rosales, Y. (2017). Evaluación de la Estabilidad y Viabilidad de Dos Cepas Probióticas Microencapsuladas por Lecho Fluidizado. Información Tecnológica, 28(6), 35–44. https://doi.org/10.4067/S0718-07642017000600005 | spa |
dc.relation.references | Champagne, C. P., Tompkins, T. A., Buckley, N. D., & Green-Johnson, J. M. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiology, 27(7), 968–972. https://doi.org/10.1016/j.fm.2010.06.003 | spa |
dc.relation.references | Chandanasree, D., Gul, K., & Riar, C. S. (2016). Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydrocolloids, 52, 175–182. https://doi.org/10.1016/j.foodhyd.2015.06.024 | spa |
dc.relation.references | Charalampopoulos, D., Pandiella, S. S., & Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology, 82(2), 133–141. https://doi.org/10.1016/S0168-1605(02)00248-9 | spa |
dc.relation.references | Chávez‐Salazar, A., Castellanos‐Galeano, F. J., Álvarez‐Barreto, C. I., Bello‐Pérez, L. A., Cortés‐Rodríguez, M., & Hoyos‐Leyva, J. D. (2019). Optimization of the Spray Drying Process of the Esterified Plantain Starch by Response Surface Methodology. Starch - Stärke, 71(7–8). https://doi.org/10.1002/star.201800330 | spa |
dc.relation.references | Chen, Q., Bi, J., Zhou, Y., Liu, X., Wu, X., & Chen, R. (2014). Multi-objective Optimization of Spray Drying of Jujube (Zizyphus jujuba Miller) Powder Using Response Surface Methodology. Food and Bioprocess Technology, 7(6), 1807–1818. https://doi.org/10.1007/s11947-013-1171-z | spa |
dc.relation.references | Chen, X., Yang, G., Song, J.-H., Xu, H., Li, D., Goldsmith, J., Zeng, H., Parsons-Wingerter, P. A., Reinecker, H.-C., & Kelly, C. P. (2013). Probiotic Yeast Inhibits VEGFR Signaling and Angiogenesis in Intestinal Inflammation. PLoS ONE, 8(5), e64227. https://doi.org/10.1371/journal.pone.0064227 | spa |
dc.relation.references | Chmielewska, A., & Szajewska, H. (2010). Systematic review of randomised controlled trials: probiotics for functional constipation. World Journal of Gastroenterology, 16(1), 69–75. https://doi.org/10.3748/wjg.v16.i1.69 | spa |
dc.relation.references | Chugh, B., & Kamal-Eldin, A. (2020). Bioactive compounds produced by probiotics in food products. Current Opinion in Food Science, 32, 76–82. https://doi.org/10.1016/j.cofs.2020.02.003 | spa |
dc.relation.references | Coelho, S. R., Lima, Í. A., Martins, M. L., Benevenuto Júnior, A. A., Torres Filho, R. de A., Ramos, A. de L. S., & Ramos, E. M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT, 102, 254–259. https://doi.org/10.1016/j.lwt.2018.12.045 | spa |
dc.relation.references | Colica, C., Avolio, E., Bollero, P., Costa de Miranda, R., Ferraro, S., Sinibaldi Salimei, P., De Lorenzo, A., & Di Renzo, L. (2017). Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediators of Inflammation, 2017, 1–10. https://doi.org/10.1155/2017/5650627 | spa |
dc.relation.references | Cordeiro, B. F., Alves, J. L., Belo, G. A., Oliveira, E. R., Braga, M. P., da Silva, S. H., Lemos, L., Guimarães, J. T., Silva, R., Rocha, R. S., Jan, G., Le Loir, Y., Silva, M. C., Freitas, M. Q., Esmerino, E. A., Gala-García, A., Ferreira, E., Faria, A. M. C., Cruz, A. G., … do Carmo, F.L. R. (2021). Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.623920 | spa |
dc.relation.references | Cortés-Rodríguez, M., Hernández, G., & Estrada M, E. M. (2017). OPTIMIZATION OF THE SPRAY DRYING PROCESS FOR OBTAINING CAPE GOOSEBERRY POWDER: AN INNOVATIVE AND PROMISING FUNCTIONAL FOOD. Revista Vitae, 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07 | spa |
dc.relation.references | Dadhaneeya, H., Nayak, P. K., Saikia, D., Kondareddy, R., Ray, S., & Kesavan, R. krishnan. (2023). The impact of refractance window drying on the physicochemical properties and bioactive compounds of malbhog banana slice and pulp. Applied Food Research, 3(1), 100279. https://doi.org/10.1016/j.afres.2023.100279 | spa |
dc.relation.references | Dahdouh, L., Delalonde, M., Ricci, J., Ruiz, E., & Wisnewski, C. (2018). Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies, 48(March), 304–312. https://doi.org/10.1016/j.ifset.2018.07.006 | spa |
dc.relation.references | Day, L., Seymour, R. B., Pitts, K. F., Konczak, I., & Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science and Technology, 20(9), 388–395. https://doi.org/10.1016/j.tifs.2008.05.002 | spa |
dc.relation.references | Daza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29. https://doi.org/10.1016/j.fbp.2015.10.001 | spa |
dc.relation.references | de Oliveira, P. M., Leite Júnior, B. R. de C., Martins, E. M. F., Martins, M. L., Vieira, É. N. R., de Barros, F. A. R., Cristianini, M., de Almeida Costa, N., & Ramos, A. M. (2021). Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. Journal of Food Science and Technology, 58(1), 98–109. https://doi.org/10.1007/s13197-020-04518-y | spa |
dc.relation.references | Di Stefano, E., White, J., Seney, S., Hekmat, S., McDowell, T., Sumarah, M., & Reid, G. (2017). A Novel Millet-Based Probiotic Fermented Food for the Developing World. Nutrients, 9(5), 529. https://doi.org/10.3390/nu9050529 | spa |
dc.relation.references | Diaz‐Vela, J., Totosaus, A., Cruz‐Guerrero, A. E., & de Lourdes Pérez‐Chabela, M. (2013). In vitro evaluation of the fermentation of added‐value agroindustrial by‐products: cactus pear ( <scp>O</scp> puntia ficus‐indica <scp>L</scp> .) peel and pineapple ( <scp>A</scp> nanas comosus ) peel as functional ingredients. International Journal of Food Science & Technology, 48(7), 1460–1467. https://doi.org/10.1111/ijfs.12113 | spa |
dc.relation.references | Do, T. V. T., & Fan, L. (2019). Probiotic Viability, Qualitative Characteristics, and Sensory Acceptability of Vegetable Juice Mixture Fermented with &lt;i&gt;Lactobacillus&lt;/i&gt; Strains. Food and Nutrition Sciences, 10(04), 412–427. https://doi.org/10.4236/fns.2019.104031 | spa |
dc.relation.references | Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2007). α-Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chemistry, 104(1), 10–20. https://doi.org/10.1016/j.foodchem.2006.10.065 | spa |
dc.relation.references | Dunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E. M., O’Sullivan, G. C., Shanahan, F., & Collins, J. K. (1999). Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek, 76(1–4), 279–292. http://www.ncbi.nlm.nih.gov/pubmed/10532384 | spa |
dc.relation.references | Duru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019a). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102 | spa |
dc.relation.references | Duru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019b). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102 | spa |
dc.relation.references | Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46 Suppl 2, S33-50. | spa |
dc.relation.references | Enujiugha, Victor. N., & Badejo, A. A. (2017). Probiotic potentials of cereal-based beverages. Critical Reviews in Food Science and Nutrition, 57(4), 790–804. https://doi.org/10.1080/10408398.2014.930018 | spa |
dc.relation.references | Eraso-Grisales, S., Cortés-Rodríguez, M., Gallón-Bedoya, M., Herrera-Herrera, E., & Ortega-Toro, R. (2023a). A powdered mix of cape gooseberry-based pulp, seed, and peel: Optimization of formulation and spray-drying process. Journal of Berry Research, 13(2), 107–120. https://doi.org/10.3233/JBR-220079 | spa |
dc.relation.references | Eraso-Grisales, S., Cortés-Rodríguez, M., Gallón-Bedoya, M., Herrera-Herrera, E., & Ortega-Toro, R. (2023b). A powdered mix of cape gooseberry-based pulp, seed, and peel: Optimization of formulation and spray-drying process. Journal of Berry Research, 13(2), 107–120. https://doi.org/10.3233/JBR-220079 | spa |
dc.relation.references | Ermis, E. (2021). A review of drying methods for improving the quality of probiotic powders and characterization. Drying Technology, 0(0), 1–18. https://doi.org/10.1080/07373937.2021.1950169 | spa |
dc.relation.references | Ermiş, E. (Ed.). (2021). Food Powders Properties and Characterization. Springer International Publishing. https://doi.org/10.1007/978-3-030-48908-3 | spa |
dc.relation.references | Espin, J. C., & Balberan, F. T. (2005). Alimentos funcionales (EUFIC). In Constituyentes bioactivos no nutricionales de alimentos de origen vegetal y su aplicacion en alimentos funcionales. http://www.eufic.org/article/es/expid/basics-alimentos-funcionales/ | spa |
dc.relation.references | Espinosa Solis, V. (2012). PROPIEDADES DE DIGESTIÓN DE ALMIDONES NATIVOS Y MODIFICADOS DE PLÁTANO Y MANGO. https://tesis.ipn.mx/bitstream/handle/123456789/13426/Tesis%202012%20Vicente%20Espinosa%20Solis.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Falcomer, A. L., Riquette, R. F. R., de Lima, B. R., Ginani, V. C., & Zandonadi, R. P. (2019). Health Benefits of Green Banana Consumption: A Systematic Review. Nutrients, 11(6), 1222. https://doi.org/10.3390/nu11061222 | spa |
dc.relation.references | FAO. (2022). FAOSTAT - Crops and livestock products: Plantains and cooking bananas. https://www.fao.org/faostat/en/#data/QCL/visualize | spa |
dc.relation.references | FAO, E., & OMS, E. (2006). Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. Estudios FAO Alimentación y Nutrición, 85, 52. file:///C:/Users/Acer/Documents/paty/homework1/PROBIOTICOS OPS 2006.pdf | spa |
dc.relation.references | Fernández-Abascal, B., Suárez-Pinilla, P., Cobo-Corrales, C., Crespo-Facorro, B., & Suárez-Pinilla, M. (2021). In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episod. Neuroscience & Biobehavioral Reviews, 125, 535–568. https://doi.org/10.1016/j.neubiorev.2021.01.005 | spa |
dc.relation.references | Ford, A. C., Quigley, E. M. M., Lacy, B. E., Lembo, A. J., Saito, Y. A., Schiller, L. R., Soffer, E. E., Spiegel, B. M. R., & Moayyedi, P. (2014). Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. The American Journal of Gastroenterology, 109(10), 1547–1562. https://doi.org/10.1038/ajg.2014.202 | spa |
dc.relation.references | Franceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197–207. https://doi.org/10.1080/07373937.2013.814664 | spa |
dc.relation.references | Fustier, P., Taherian, A. R., & Ramaswamy, H. S. (2010). Emulsion Delivery Systems for Functional Foods. In Functional Food Product Development (pp. 79–97). Wiley-Blackwell. https://doi.org/10.1002/9781444323351.ch4 | spa |
dc.relation.references | García-Tejeda, Y. V., Zamudio-Flores, P. B., Bello-Pérez, L. A., Romero-Bastida, C. A., & Solorza-Feria, J. (2011). OXIDACIÓN DEL ALMIDÓN NATIVO DE PLÁTANO PARA SU USO POTENCIAL EN LA FABRICACIÓN DE MATERIALES DE EMPAQUE BIODEGRADABLES: CARACTERIZACIÓN FÍSICA, QUÍMICA, TÉRMICA Y MORFOLÓGICA. In Rev. Iberoam. Polim (Vol. 12, Issue 3). https://reviberpol.files.wordpress.com/2019/07/2011-garcia-tejana.pdf | spa |
dc.relation.references | Genovese, D. B., & Lozano, J. E. (2001). The effect of hydrocolloids on the stability and viscosity of cloudy apple juices. Food Hydrocolloids, 15(1), 1–7. https://doi.org/10.1016/S0268-005X(00)00053-9 | spa |
dc.relation.references | Genovese, D. B., & Lozano, J. E. (2006). Contribution of colloidal forces to the viscosity and stability of cloudy apple juice. Food Hydrocolloids, 20(6), 767–773. https://doi.org/10.1016/j.foodhyd.2005.07.003 | spa |
dc.relation.references | George Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018a). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002 | spa |
dc.relation.references | George Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018b). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002 | spa |
dc.relation.references | Gibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401 | spa |
dc.relation.references | Giraldo-Gómez, G. I., Rodríguez-Barona, S., & Sanabria-González, N. R. (2019). Preparation of instant green banana flour powders by an extrusion process. Powder Technology, 353, 437–443. https://doi.org/10.1016/j.powtec.2019.05.050 | spa |
dc.relation.references | Glaser, R., & Venus, J. (2014). Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements. Biotechnology Reports, 4, 60–65. https://doi.org/10.1016/j.btre.2014.08.001 | spa |
dc.relation.references | Glaser, R., & Venus, J. (2017). Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium. New Biotechnology, 37, 180–193. https://doi.org/10.1016/j.nbt.2016.12.006 | spa |
dc.relation.references | Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004827.pub4 | spa |
dc.relation.references | Golubeva, A. V., Crampton, S., Desbonnet, L., Edge, D., O’Sullivan, O., Lomasney, K. W., Zhdanov, A. V., Crispie, F., Moloney, R. D., Borre, Y. E., Cotter, P. D., Hyland, N. P., O’Halloran, K. D., Dinan, T. G., O’Keeffe, G. W., & Cryan, J. F. (2015). Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology, 60, 58–74. https://doi.org/10.1016/j.psyneuen.2015.06.002 | spa |
dc.relation.references | Gómez, A., Anaya, J., Rodríguez, G., Lechón, A., Perugachi, I., Velásquez, C., Carlos, S., Miniet, A., & Lascano, R. (2022). Glycemic effect of a functional pancake made from an instant oat mix. Revista Espanola de Nutricion Humana y Dietetica, 26(3), 189–196. https://doi.org/10.14306/renhyd.26.3.1668 | spa |
dc.relation.references | Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292–302. https://doi.org/10.1111/j.1541-4337.2010.00110.x | spa |
dc.relation.references | Gray, G. M. (1992). Starch Digestion and Absorption in Nonruminants. The Journal of Nutrition, 122(1), 172–177. https://doi.org/10.1093/jn/122.1.172 | spa |
dc.relation.references | Grom, L. C., Rocha, R. S., Balthazar, C. F., Guimarães, J. T., Coutinho, N. M., Barros, C. P., Pimentel, T. C., Venâncio, E. L., Collopy Junior, I., Maciel, P. M. C., Silva, P. H. F., Granato, D., Freitas, M. Q., Esmerino, E. A., Silva, M. C., & Cruz, A. G. (2020). Postprandial glycemia in healthy subjects: Which probiotic dairy food is more adequate? Journal of Dairy Science, 103(2), 1110–1119. https://doi.org/10.3168/jds.2019-17401 | spa |
dc.relation.references | Guandalini, S. (2011). Probiotics for Prevention and Treatment of Diarrhea. Journal of Clinical Gastroenterology, 45, S149–S153. https://doi.org/10.1097/MCG.0b013e3182257e98 | spa |
dc.relation.references | Gupta, M., & Bajaj, B. K. (2017). Development of fermented oat flour beverage as a potential probiotic vehicle. Food Bioscience, 20, 104–109. https://doi.org/10.1016/j.fbio.2017.08.007 | spa |
dc.relation.references | Haffner, F. B., Diab, R., & Pasc, A. (2016). Encapsulation of probiotics: insights into academic and industrial approaches. AIMS Materials Science, 3(1), 114–136. https://doi.org/10.3934/matersci.2016.1.114 | spa |
dc.relation.references | Haider, C., & Palzer, S. (2016). Agglomeration in the Food Industry—A Result of Particle Contact Mechanisms. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21002-0 | spa |
dc.relation.references | Handique, J., Bora, S. J., & Sit, N. (2019). Optimization of banana juice extraction using combination of enzymes. Journal of Food Science and Technology, 56(8), 3732–3743. https://doi.org/10.1007/s13197-019-03845-z | spa |
dc.relation.references | Hernández-Santos, B., Martínez-Sánchez, C. E., Torruco-Uco, J. G., Rodríguez-Miranda, J., Ruiz-López, I. I., Vajando-Anaya, E. S., Carmona-García, R., & Herman-Lara, E. (2016). Evaluation of physical and chemical properties of carrots dried by Refractance Window drying. Drying Technology, 34(12), 1414–1422. https://doi.org/10.1080/07373937.2015.1118705 | spa |
dc.relation.references | Hijová, E. (2022). Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. In Metabolites (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/metabo12040313 | spa |
dc.relation.references | Homsuwan, N., Pruksasri, S., & Ngampanya, B. (2023). Bacillus siamensis FVP1 as a potential probiotic for enhancing nutritional aspects of soybean meal. International Journal of Food Science and Technology, 58(8), 4277–4287. https://doi.org/10.1111/ijfs.16527 | spa |
dc.relation.references | Hou, H., Chen, D., Zhang, K., Zhang, W., Liu, T., Wang, S., Dai, X., Wang, B., Zhong, W., & Cao, H. (2022). Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Letters, 526, 225–235. https://doi.org/10.1016/j.canlet.2021.11.027 | spa |
dc.relation.references | Huang, S., Méjean, S., Rabah, H., Dolivet, A., Le Loir, Y., Chen, X. D., Jan, G., Jeantet, R., & Schuck, P. (2017). Double use of concentrated sweet whey for growth and spray drying of probiotics: Towards maximal viability in pilot scale spray dryer. Journal of Food Engineering, 196, 11–17. https://doi.org/10.1016/j.jfoodeng.2016.10.017 | spa |
dc.relation.references | Huq, T., Khan, A., Khan, R. A., Riedl, B., & Lacroix, M. (2013). Encapsulation of Probiotic Bacteria in Biopolymeric System. Critical Reviews in Food Science and Nutrition, 53(9), 909–916. https://doi.org/10.1080/10408398.2011.573152 | spa |
dc.relation.references | İçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015a). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102 | spa |
dc.relation.references | İçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015b). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102 | spa |
dc.relation.references | Iguarán, E. C., Triviño-Valencia, J., & Rodríguez-Barona, S. (2020). Effect of storage and stress conditions on the counts of Bifidobacterium animalis microencapsulated and incorporated in plantain flour. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.25219 | spa |
dc.relation.references | Instituto Colombiano Agropecuario. (2019). Resolución 17334 (17334). | spa |
dc.relation.references | Instituto Colombiano de Bienestar Familiar. (2018). Tabla de composición de alimentos colombianos. Instituto Colombiano de Bienestar Familiar. | spa |
dc.relation.references | Instituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. (1976). Norma Técnica Colombiana [NTC] 1190. | spa |
dc.relation.references | Iraporda, C., Rubel, I. A., Managó, N., Manrique, G. D., Garrote, G. L., & Abraham, A. G. (2022). Inulin addition improved probiotic survival in soy-based fermented beverage. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 38(8). https://doi.org/10.1007/s11274-022-03322-4 | spa |
dc.relation.references | Ishwarya, S. P., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171–180. https://doi.org/10.1016/j.jfoodeng.2014.10.011 | spa |
dc.relation.references | Jalgaonkar, K., Mahawar, M. K., Vishwakarma, R. K., Shivhare, U. S., & Nambi, V. E. (2020). Optimization of process condition for preparation of sapota bar using Refractance window drying method. Drying Technology, 38(3), 269–278. https://doi.org/10.1080/07373937.2018.1482314 | spa |
dc.relation.references | Janiszewska-Turak, E., Dellarosa, N., Tylewicz, U., Laghi, L., Romani, S., Dalla Rosa, M., & Witrowa-Rajchert, D. (2017). The influence of carrier material on some physical and structural properties of carrot juice microcapsules. Food Chemistry, 236, 134–141. https://doi.org/10.1016/j.foodchem.2017.03.134 | spa |
dc.relation.references | Kandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012 | spa |
dc.relation.references | Karagül, Ö., & EL, S. N. (2024). Cereal-based fermented synbiotic instant powders: a dessert practice. Ege Üniversitesi Ziraat Fakültesi Dergisi, 60(4), 571–579. https://doi.org/10.20289/zfdergi.1336843 | spa |
dc.relation.references | Kareem, S. O., Adio, O. Q., & Osho, M. B. (2014). Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix. Enzyme Research, 2014, 1–7. https://doi.org/10.1155/2014/967056 | spa |
dc.relation.references | Katina, K., Liukkonen, K.-H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.-M., Lampi, A.-M., Pihlava, J.-M., & Poutanen, K. (2007). Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3), 348–355. https://doi.org/10.1016/j.jcs.2007.07.006 | spa |
dc.relation.references | Kelly, G. S. (2003). Bovine colostrums: a review of clinical uses. Alternative Medicine Review : A Journal of Clinical Therapeutic, 8(4), 378–394. | spa |
dc.relation.references | Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F., & Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019 | spa |
dc.relation.references | Khalesi, S., Sun, J., Buys, N., & Jayasinghe, R. (2014). Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension, 64(4), 897–903. https://doi.org/10.1161/HYPERTENSIONAHA.114.03469 | spa |
dc.relation.references | Kingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., & Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT - Food Science and Technology, 62(1), 847–853. https://doi.org/10.1016/j.lwt.2014.12.007 | spa |
dc.relation.references | Kober, M.-M., & Bowe, W. P. (2015). The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women’s Dermatology, 1(2), 85–89. https://doi.org/10.1016/j.ijwd.2015.02.001 | spa |
dc.relation.references | Koç, B., Sakin-Yılmazer, M., Kaymak-Ertekin, F., & Balkır, P. (2014). Physical properties of yoghurt powder produced by spray drying. Journal of Food Science and Technology, 51(7), 1377–1383. https://doi.org/10.1007/s13197-012-0653-8 | spa |
dc.relation.references | Krumbeck, J. A., Maldonado-Gomez, M. X., Martínez, I., Frese, S. A., Burkey, T. E., Rasineni, K., Ramer-Tait, A. E., Harris, E. N., Hutkins, R. W., & Walter, J. (2015). In vivo selection to identify bacterial strains with enhanced ecological performance in synbiotic applications. Applied and Environmental Microbiology, 81(7), 2455–2465. https://doi.org/10.1128/AEM.03903-14 | spa |
dc.relation.references | Kumar, B., Vijayendra, S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products - a review. Journal of Food Science and Technology, 52(10), 6112–6124. https://doi.org/10.1007/s13197-015-1795-2 | spa |
dc.relation.references | Kumar, H., Dhalaria, R., Guleria, S., Cimler, R., Choudhary, R., Dhanjal, D. S., Singh, R., Kimta, N., Dulta, K., Pathera, A. K., Khan, A., Nausad, M., Alomar, S. Y., Manickam, S., & Kuča, K. (2023). To exploring the role of probiotics, plant-based fermented products, and paraprobiotics as anti-inflammatory agents in promoting human health. Journal of Agriculture and Food Research, 14, 100896. https://doi.org/10.1016/j.jafr.2023.100896 | spa |
dc.relation.references | Kumar, P. S., Saravanan, A., Sheeba, N., & Uma, S. (2019). Structural, functional characterization and physicochemical properties of green banana flour from dessert and plantain bananas (Musa spp.). LWT, 116, 108524. https://doi.org/10.1016/j.lwt.2019.108524 | spa |
dc.relation.references | Kumar, P. S., Thayumanavan, S., Pushpavalli, S., Saraswathi, M. S., Backiyarani, S., Mohanasundaram, A., & Uma, S. (2023). Comparing physico‐chemical characteristics, antioxidant properties, glycemic response, and volatile profiles of eleven banana varieties. International Journal of Food Science & Technology, 58(6), 2893–2908. https://doi.org/10.1111/ijfs.16392 | spa |
dc.relation.references | Kumar, S., Rattu, G., Mitharwal, S., Chandra, A., Kumar, S., Kaushik, A., Mishra, V., & Nema, P. K. (2022). Trends in non‐dairy‐based probiotic food products: Advances and challenges. Journal of Food Processing and Preservation, 46(9). https://doi.org/10.1111/jfpp.16578 | spa |
dc.relation.references | Lacerda, E. C. Q., Calado, V. M. de A., Monteiro, M., Finotelli, P. V., Torres, A. G., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/j.carbpol.2016.05.093 | spa |
dc.relation.references | Laksmi Suryaatmadja Jenie, B. S., Yusup Saputra, M., & Widaningrum, dan. (2013). SENSORY EVALUATION AND SURVIVAL OF PROBIOTICS IN MODIFIED BANANA FLOUR YOGHURT DURING STORAGE. Jurnal Teknologi Dan Industri Pangan, 24(1), 40–47. https://doi.org/10.6066/jtip.2013.24.1.40 | spa |
dc.relation.references | Lamiki, P., Tsuchiya, J., Pathak, S., Okura, R., Solimene, U., Jain, S., Kawakita, S., & Marotta, F. (2010). Probiotics in diverticular disease of the colon: an open label study. Journal of Gastrointestinal and Liver Diseases : JGLD, 19(1), 31–36. http://www.ncbi.nlm.nih.gov/pubmed/20361072 | spa |
dc.relation.references | Lapsiri, W., Bhandari, B., & Wanchaitanawong, P. (2012). Viability of Lactobacillus plantarum TISTR 2075 in Different Protectants during Spray Drying and Storage. Drying Technology, 30(13), 1407–1412. https://doi.org/10.1080/07373937.2012.684226 | spa |
dc.relation.references | Le Leu, R. K., Hu, Y., Brown, I. L., Woodman, R. J., & Young, G. P. (2010). Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis, 31(2), 246–251. https://doi.org/10.1093/carcin/bgp197 | spa |
dc.relation.references | Lee, A., Cheng, K.-C., & Liu, J.-R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLOS ONE, 12(8), e0182220. https://doi.org/10.1371/journal.pone.0182220 | spa |
dc.relation.references | Lee, N., Park, Y.-S., Kang, D.-K., & Paik, H.-D. (2023). Paraprobiotics: definition, manufacturing methods, and functionality. Food Science and Biotechnology, 32(14), 1981–1991. https://doi.org/10.1007/s10068-023-01378-y | spa |
dc.relation.references | Liu, Liong, Chung, Huang, Peng, Cheng, Lin, Wu, & Tsai. (2019). Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 11(4), 820. https://doi.org/10.3390/nu11040820 | spa |
dc.relation.references | Long-Smith, C., O’Riordan, K. J., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2020). Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 60(1), 477–502. https://doi.org/10.1146/annurev-pharmtox-010919-023628 | spa |
dc.relation.references | Lopetuso, L. R., Giorgio, M. E., Saviano, A., Scaldaferri, F., Gasbarrini, A., & Cammarota, G. (2019). Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? International Journal of Molecular Sciences, 20(1), 183. https://doi.org/10.3390/ijms20010183 | spa |
dc.relation.references | López-Esparza, R., Balderas Altamirano, M. A., Pérez, E., & Gama Goicochea, A. (2015). Importance of Molecular Interactions in Colloidal Dispersions. Advances in Condensed Matter Physics, 2015, 1–8. https://doi.org/10.1155/2015/683716 | spa |
dc.relation.references | Louis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661–672. https://doi.org/10.1038/nrmicro3344 | spa |
dc.relation.references | Mahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., & Srivastav, P. P. (2021). Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods, 3, 100024. https://doi.org/10.1016/j.fufo.2021.100024 | spa |
dc.relation.references | Mäkeläinen, H., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. (2010). Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Beneficial Microbes, 1(2), 139–148. https://doi.org/10.3920/BM2009.0029 | spa |
dc.relation.references | Malfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021a). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study. Phytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074 | spa |
dc.relation.references | Malfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021b). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study. | spa |
dc.relation.references | Phytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074 Mandale, N. M., Attkan, A. K., Kumar, S., & Kumar, N. (2023). Drying kinetics and quality assessment of refractance window dried beetroot. Journal of Food Process Engineering, 46(7). https://doi.org/10.1111/jfpe.14332 | spa |
dc.relation.references | Manderino, L., Carroll, I., Azcarate-Peril, M. A., Rochette, A., Heinberg, L., Peat, C., Steffen, K., Mitchell, J., & Gunstad, J. (2017). Preliminary Evidence for an Association Between the Composition of the Gut Microbiome and Cognitive Function in Neurologically Healthy Older Adults. Journal of the International Neuropsychological Society, 23(8), 700–705. https://doi.org/10.1017/S1355617717000492 | spa |
dc.relation.references | Mangiola, F. (2016). Gut microbiota in autism and mood disorders. World Journal of Gastroenterology, 22(1), 361. https://doi.org/10.3748/wjg.v22.i1.361 | spa |
dc.relation.references | Mantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2018). Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods, 8(1), 4. https://doi.org/10.3390/foods8010004 | spa |
dc.relation.references | Marín-Arango, Z. T., Cortés R., M., Gil G., J., & Agudelo-Laverde, L. M. (2023). Biofortified andean blackberry (rubus glaucus benth) powder with Lacticaseibacillus casei: process and formulation effects. F1000Research, 12, 479. https://doi.org/10.12688/f1000research.132767.1 | spa |
dc.relation.references | Martinez Pantoja, D. F., Acosta Castaño, M., Alvarez Barreto, C. I., & Castellanos Galeano, F. J. (2022). Fritura por inmersión al vacío de rodajas de plátano verde con recubrimientos comestibles. INGENIERÍA Y COMPETITIVIDAD, 25(1), 14. https://doi.org/10.25100/iyc.v25i1.11970 | spa |
dc.relation.references | Martínez-Navarrete, N., Andrés Grau, A., Chiralt Boix, A., & Fito Maupoey, P. (1998). Termodinámica y cinética de sistemas alimento-entorno. Universidad Politécnica de Valencia. | spa |
dc.relation.references | Martins, E. M. F., Ramos, A. M., Vanzela, E. S. L., Stringheta, P. C., de Oliveira Pinto, C. L., & Martins, J. M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51(2), 764–770. https://doi.org/10.1016/j.foodres.2013.01.047 | spa |
dc.relation.references | Melo Sabogal, D. V., Torres Grisales, Y., Serna jiménez, J. A., & Torres Valenzuela, L. S. (2015). APROVECHAMIENTO DE PULPA Y CÁSCARA DE PLÁTANO(Musa paradisiaca spp) PARA LA OBTENCIÓN DE MALTODEXTRINA. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 13(2), 76. https://doi.org/10.18684/BSAA(13)76-85 | spa |
dc.relation.references | Mendes, A. C., & Chronakis, I. S. (2021). Electrohydrodynamic encapsulation of probiotics: A review. Food Hydrocolloids, 117, 106688. https://doi.org/10.1016/j.foodhyd.2021.106688 Metchnikoff, E. (1910). The Prolongation of Life: Optimistic Studies (P. C. Mitchell, Ed.). G P Putnam’s Sons. | spa |
dc.relation.references | Michail, S. K., Stolfi, A., Johnson, T., & Onady, G. M. (2008). Efficacy of probiotics in the treatment of pediatric atopic dermatitis: a meta-analysis of randomized controlled trials. Annals of Allergy, Asthma & Immunology, 101(5), 508–516. https://doi.org/10.1016/S1081-1206(10)60290-6 | spa |
dc.relation.references | Min, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019a). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760 | spa |
dc.relation.references | Min, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019b). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2017). Evaluaciones agropecuarias municipales: plátano. | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2021). Cadena de plátano. Dirección de cadenas agrícolas y forestales Junio 2021. | spa |
dc.relation.references | Ministerio de Salud y Protección Social. (2021). Resolución 810. | spa |
dc.relation.references | Mitharwal, S., Kumar, S., & Chauhan, K. (2021a). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382 | spa |
dc.relation.references | Mitharwal, S., Kumar, S., & Chauhan, K. (2021b). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382 | spa |
dc.relation.references | Montoya, J. (2020). Formulación de una matriz alimentaria a base de harina de plátano Dominico Hartón (Musa paradisiaca L.) para el diseño de alimentos funcionales libres de gluten. 1–217. https://repositorio.unal.edu.co/handle/unal/78569 | spa |
dc.relation.references | Montoya, J., Rodriguez-Barona, S., & Giraldo, G. (2016). CARACTERISITICAS FISICOQUÍMICAS DE LA HARINA DE PLÁTANO (Musa Paradisiaca) DOMINICO HARTON Y HARINA DE TRIGO COMERCIAL CON TENDENCIAS FUNCIONALES. Vitae, 23, 396–399. | spa |
dc.relation.references | Mujumdar, A. S., & Xiao, H.-W. (2019). Advanced Drying Technologies for Foods (CRC Press). Taylor & Francis Group. https://cloudflare-ipfs.com/ipfs/bafykbzacedi3guxgccvbjaqaltnkgyetubxd7gizgn4ty4s4z545jreyjpwpo?filename=Arun S Mujumdar %28Editor%29_ Hong-Wei Xiao %28Editor%29 - Advanced Drying Technologies for Foods-CRC Press %282019%29.pdf | spa |
dc.relation.references | Muyonga, J. H., Natocho, J., Kigozi, J., Baidhe, E., & Nansereko, S. (2022). Drying behaviour and optimization of drying conditions of pineapple puree and slices using refractance window drying technology. Journal of Food Science and Technology, 59(7), 2794–2803. https://doi.org/10.1007/s13197-021-05302-2 | spa |
dc.relation.references | Nakamura, F., Ishida, Y., Aihara, K., Sawada, D., Ashida, N., Sugawara, T., Aoki, Y., Takehara, I., Takano, K., & Fujiwara, S. (2016). Effect of fragmented Lactobacillus amylovorus CP1563 on lipid metabolism in overweight and mildly obese individuals: a randomized controlled trial. Microbial Ecology in Health & Disease, 27(0). https://doi.org/10.3402/mehd.v27.30312 | spa |
dc.relation.references | Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., & Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility, 26(8), 1155–1162. https://doi.org/10.1111/nmo.12378 | spa |
dc.relation.references | Nguyen, T. D. T., Kang, J. H., & Lee, M. S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology, 113(3), 358–361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015 | spa |
dc.relation.references | Nindo, C. I., & Tang, J. (2007). Refractance Window Dehydration Technology: A Novel Contact Drying Method. Drying Technology, 25(1), 37–48. https://doi.org/10.1080/07373930601152673 | spa |
dc.relation.references | Ninkov, A., Frank, J. R., & Maggio, L. A. (2021). Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 11(3), 173–176. https://doi.org/10.1007/S40037-021-00695-4 | spa |
dc.relation.references | Nunes, G. L., Motta, M. H., Cichoski, A. J., Wagner, R., Muller, É. I., Codevilla, C. F., da Silva, C. D. B., & de Menezes, C. R. (2018). Encapsulation of lactobacillus acidophilus la-5 and bifidobacterium bb-12 by spray drying and evaluation of its resistance in simulated gastrointestinal conditions, thermal treatments and storage conditions. Ciencia Rural, 48(6), 1–11. https://doi.org/10.1590/0103-8478cr20180035 | spa |
dc.relation.references | Nuñez, H., Jaques, A., Belmonte, K., Elitin, J., Valdenegro, M., Ramírez, C., & Córdova, A. (2024). Development of an Apple Snack Enriched with Probiotic Lacticaseibacillus rhamnosus: Evaluation of the Refractance Window Drying Process on Cell Viability. Foods, 13(11), 1756. https://doi.org/10.3390/foods13111756 | spa |
dc.relation.references | Ochoa-Martínez, C. I., Quintero, P. T., Ayala, A. A., & Ortiz, M. J. (2012). Drying characteristics of mango slices using the Refractance WindowTM technique. Journal of Food Engineering, 109(1), 69–75. https://doi.org/10.1016/j.jfoodeng.2011.09.032 | spa |
dc.relation.references | Ocoró-Zamora, M. U., & Ayala-Aponte, A. A. (2013). Influencia del espesor en secado de puré de papaya (Carica papaya L.) por tecnología de ventana de refractanciaspi®. DYNA (Colombia), 80(182), 147–154. | spa |
dc.relation.references | Ohkawara, S., Furuya, H., Nagashima, K., Asanuma, N., & Hino, T. (2005). Oral Administration of Butyrivibrio fibrisolvens, a Butyrate-Producing Bacterium, Decreases the Formation of Aberrant Crypt Foci in the Colon and Rectum of Mice. The Journal of Nutrition, 135(12), 2878–2883. https://doi.org/10.1093/jn/135.12.2878 | spa |
dc.relation.references | Olivares, A., Soto, C., Caballero, E., & Altamirano, C. (2019). Survival of microencapsulated Lactobacillus casei (prepared by vibration technology) in fruit juice during cold storage. Electronic Journal of Biotechnology, 42, 42–48. https://doi.org/10.1016/j.ejbt.2019.10.002 | spa |
dc.relation.references | Olugbuyi, A. O., Malomo, S. A., Ijarotimi, O. S., & Fagbemi, T. N. (2023). Amino Acids Profile,Glyceamic Index/load, In-vitro Antioxidant and Sensory Attributes of Optimized Dough Meal from the Blends of Plantain, Soycake and Rice-bran Flours. Journal of Culinary Science & Technology, 21(5), 795–817. https://doi.org/10.1080/15428052.2021.2016530 | spa |
dc.relation.references | Oluwajuyitan, T. D., & Ijarotimi, O. S. (2019). Nutritional, antioxidant, glycaemic index and Antihyperglycaemic properties of improved traditional plantain-based (Musa AAB) dough meal enriched with tigernut (Cyperus esculentus) and defatted soybean (Glycine max) flour for diabetic patients. Heliyon, 5(4), e01504. https://doi.org/10.1016/j.heliyon.2019.e01504 | spa |
dc.relation.references | Olveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482–494. https://doi.org/10.1016/j.endonu.2016.07.006 | spa |
dc.relation.references | Organización Mundial de Gastroenterología. (2023). Directrices mundiales de la Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2023.pdf | spa |
dc.relation.references | Ormaza-Zapata, Á. M., Días-Arango, F. O., & Rodríguez-Barona, S. (2019). EVALUATION OF PROBIOTIC MICROENCAPSULATION IN A PREBIOTIC WITH COFFEE EXTRACT. Coffe Science, 14(3), 394–406. | spa |
dc.relation.references | Ortega-Rivas, E., Yang, H., Juliano, P., & Barbosa-Canovas, G. V. (2005). Food Powders: Physical properties, processing and functionality (Springer Science & Business Media, Ed.). Springer US. https://doi.org/10.1007/0-387-27613-0 | spa |
dc.relation.references | Ortiz-Jerez, M. J., & Ochoa-Martínez, C. I. (2015). Heat Transfer Mechanisms in Conductive Hydro-Drying of Pumpkin ( Cucurbita maxima ) Pieces. Drying Technology, 33(8), 965–972. https://doi.org/10.1080/07373937.2015.1009538 | spa |
dc.relation.references | Ouwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek, 82(1–4), 279–289. | spa |
dc.relation.references | Ovando-Martinez, M., Sáyago-Ayerdi, S., Agama-Acevedo, E., Goñi, I., & Bello-Pérez, L. A. (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry, 113(1), 121–126. https://doi.org/10.1016/j.foodchem.2008.07.035 | spa |
dc.relation.references | Ozuna, L. E. (1992). Elaboración de puré de plátano por un método alternativo [Master’s degree]. Universidad de Sonora. | spa |
dc.relation.references | Padhi, S., & Dwivedi, M. (2022). Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of Refractance window drying. Future Foods, 5, 100101. https://doi.org/10.1016/j.fufo.2021.100101 | spa |
dc.relation.references | Padhi, S., Murakonda, S., & Dwivedi, M. (2022). Investigation of drying characteristics and nutritional retention of unripe green banana flour by refractance window drying technology using statistical approach. Journal of Food Measurement and Characterization, 16(3), 2375–2385. https://doi.org/10.1007/s11694-022-01349-7 | spa |
dc.relation.references | Pallares Pallares, A., Estupiñán A, M. R., Perea Villamil, J. A., & López Giraldo, L. J. (2017). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51. Revista ION, 29(2), 7–21. https://doi.org/10.18273/revion.v29n2-2016001 | spa |
dc.relation.references | Pandey, Kavita. R., Naik, Suresh. R., & Vakil, Babu. V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1 | spa |
dc.relation.references | Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018a). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003 | spa |
dc.relation.references | Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018b). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003 | spa |
dc.relation.references | Pavan, M. A., Schmidt, S. J., & Feng, H. (2012). Water sorption behavior and thermal analysis of freeze-dried, Refractance Window-dried and hot-air dried açaí (Euterpe oleracea Martius) juice. LWT - Food Science and Technology, 48(1), 75–81. https://doi.org/10.1016/j.lwt.2012.02.024 | spa |
dc.relation.references | Pedersen, L. L., Owusu-Kwarteng, J., Thorsen, L., & Jespersen, L. (2012). Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 159(2), 144–151. https://doi.org/10.1016/j.ijfoodmicro.2012.08.016 | spa |
dc.relation.references | Pereira, A. L. F., Maciel, T. C., & Rodrigues, S. (2011). Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 44(5), 1276–1283. https://doi.org/10.1016/j.foodres.2010.11.035 | spa |
dc.relation.references | Perricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006 | spa |
dc.relation.references | Playne, M. J., Bennett, L. E., & Smithers, G. W. (2003). Functional dairy foods and ingredients. Australian Journal of Dairy Technology, 58(3), 242. | spa |
dc.relation.references | Powthong, P., Jantrapanukorn, B., Suntornthiticharoen, P., & Laohaphatanalert, K. (2020). Study of prebiotic properties of selected banana species in Thailand. Journal of Food Science and Technology, 57(7), 2490–2500. https://doi.org/10.1007/s13197-020-04284-x | spa |
dc.relation.references | Prado, F. C., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Trends in non-dairy probiotic beverages. Food Research International, 41(2), 111–123. https://doi.org/10.1016/j.foodres.2007.10.010 | spa |
dc.relation.references | Quigley, E. M. M. (2010). Prebiotics and probiotics; modifying and mining the microbiota. Pharmacological Research, 61(3), 213–218. https://doi.org/10.1016/j.phrs.2010.01.004 | spa |
dc.relation.references | Rajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance Window Drying of Apple Slices: Mass Transfer Phenomena and Quality Parameters. Food and Bioprocess Technology, 12(10), 1646–1658. https://doi.org/10.1007/s11947-019-02334-7 | spa |
dc.relation.references | Ramani, R., & Ramani, V. (2018). PROBIOTIC MICROENCAPSULATION TECHNIQUES AND COATING MATERIALS: EBSCOhost. International Journal of Probiotics & Prebiotics, 13(4), 161–168. https://web-b-ebscohost-com.wdg.biblio.udg.mx:8443/ehost/detail/detail?vid=0&sid=363953fd-8220-475d-8972-2b57009c5f10%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3D%3D#AN=133492672&db=fsr | spa |
dc.relation.references | Rashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., & Jafari, S. M. (2020). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical Reviews in Food Science and Nutrition, 0(0), 1–25. https://doi.org/10.1080/10408398.2020.1854169 | spa |
dc.relation.references | Rattanaprasert, M., Roos, S., Hutkins, R. W., & Walter, J. (2014). Quantitative evaluation of synbiotic strategies to improve persistence and metabolic activity of Lactobacillus reuteri DSM 17938 in the human gastrointestinal tract. Journal of Functional Foods, 10, 85–94. https://doi.org/10.1016/j.jff.2014.05.017 | spa |
dc.relation.references | Rayo, L. M., Chaguri e Carvalho, L., Sardá, F. A. H., Dacanal, G. C., Menezes, E. W., & Tadini, C. C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration. LWT - Food Science and Technology, 63(1), 461–469. https://doi.org/10.1016/j.lwt.2015.03.059 | spa |
dc.relation.references | Reis, J. M. C. dos, Pinheiro, M. F., Oti, A. T., Feitosa-Junior, D. J. S., Pantoja, M. de S., & Barros, R. S. M. (2016). TECHNOLOGICAL INFORMATION REGARDING PREBIOTICS AND PROBIOTICS NUTRITION VERSUS THE PATENT REGISTERS: WHAT IS NEW? ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 29(4), 279–281. https://doi.org/10.1590/0102-6720201600040016 | spa |
dc.relation.references | Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1–11. https://doi.org/10.1016/j.fm.2008.06.008 | spa |
dc.relation.references | Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. In Food Research International (Vol. 137). https://doi.org/10.1016/j.foodres.2020.109682 | spa |
dc.relation.references | Rodríguez de Olmos, A., Garro, O. A., & Garro, M. S. (2022). Behavior study of Bifidobacterium longum using solid state fermentation from commercial soybean meal. LWT, 157, 113101. https://doi.org/10.1016/j.lwt.2022.113101 | spa |
dc.relation.references | Rodríguez-Barona, S., Giraldo, G. I., & Montes, L. M. (2016). Encapsulación De Alimentos Probióticos Mediante Liofilización En Presencia De Prebióticos. Informacion Tecnologica, 27(6), 135–144. https://doi.org/10.4067/S0718-07642016000600014 | spa |
dc.relation.references | Rodríguez-Barona, S., Giraldo, G. I., & Zuluaga, Y. P. (2015). Evaluación de la Incorporación de Fibra Prebiótica sobre la Viabilidad de LactobaciHus casei Impregnado en Matrices de Mora (Rubus glaucus). Información Tecnológica, 26(5), 25–34. https://doi.org/10.4067/S0718-07642015000500005 | spa |
dc.relation.references | Rodríguez-Barona, S., Granada-Orozco, J., & Cruz-Ríos, D. (2014a). Comparación de sacarosa, inulina y fructo-oligosacáridos como agente4 osmóticos en mora de castilla (Rubus glaucus Benth.). Acta Horticulturae, 1016, 47–51. https://doi.org/10.17660/ActaHortic.2014.1016.4 | spa |
dc.relation.references | Rodríguez-Barona, S., Granada-Orozco, J., & Cruz-Ríos, D. (2014b). COMPARACIÓN DE SACAROSA, INULINA Y FRUCTO-OLIGOSACÁRIDOS COMO AGENTES OSMÓTICOS EN MORA DE CASTILLA (RUBUS GLAUCUS BENTH.) -COMPARISON OF SUCROSE, INULIN AND FRUCTO-OLIGOSACCHARIDES AS OSMOTIC AGENTS IN THE ANDEAN BLACKBERRY (RUBUS GLAUCUS BENTH.). Acta Horticulturae, 1016, 47–51. https://doi.org/10.17660/ActaHortic.2014.1016.4 | spa |
dc.relation.references | Rodríguez-Barona, S., Montes, L. M., & Ramírez, D. de J. (2012). Microencapsulación De Probióticos Mediante Secado Por Aspersión En Presencia De Prebióticos. Vitae, 19(1), S186–S188. | spa |
dc.relation.references | Rodríguez-Restrepo, Y. A., Giraldo, G. I., & Rodríguez-Barona, S. (2017a). Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: Application to microencapsulation of Bifidobacterium animalis subsp. lactis. Journal of Food Process Engineering, 40(6), 1–8. https://doi.org/10.1111/jfpe.12557 | spa |
dc.relation.references | Romeo, J., Nova, E., Wärnberg, J., Gómez-Martínez, S., Díaz Ligia, L. E., & Marcos, A. (2010). Immunomodulatory effect of fibres, probiotics and synbiotics in different life-stages. Nutricion Hospitalaria, 25(3), 341–349. | spa |
dc.relation.references | Rostami, H., Dehnad, D., Jafari, S. M., & Tavakoli, H. R. (2018). Evaluation of physical, rheological, microbial, and organoleptic properties of meat powder produced by Refractance Window drying. Drying Technology, 36(9), 1076–1085. https://doi.org/10.1080/07373937.2017.1377224 | spa |
dc.relation.references | Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8 | spa |
dc.relation.references | Rubio, R., Aymerich, T., Bover-Cid, S., Guàrdia, M. D., Arnau, J., & Garriga, M. (2013). Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT - Food Science and Technology, 54(1), 51–56. https://doi.org/10.1016/j.lwt.2013.05.014 | spa |
dc.relation.references | Rwubuzizi, R., Kim, H., Holzapfel, W. H., & Todorov, S. D. (2023). Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon, 9(4), e15610. https://doi.org/10.1016/j.heliyon.2023.e15610 | spa |
dc.relation.references | Salari, M., Razavi, S. H., & Gharibzahedi, S. M. T. (2015). Characterising the synbiotic beverages based on barley and malt flours fermented by Lactobacillus delbrueckii and paracasei strains.Quality Assurance and Safety of Crops & Foods, 7(3), 355–361. https://doi.org/10.3920/QAS2013.0390 | spa |
dc.relation.references | Salazar, B. C., Cortés, M., & Montoya, O. I. (2015). The impact of storage conditions on the stability of sugarcane powder biofortified with kefir grains. Revista Facultad Nacional de Agronomía Medellín, 68(2), 7703–7712. https://doi.org/10.15446/rfnam.v68n2.50987 | spa |
dc.relation.references | Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M.-F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018 | spa |
dc.relation.references | Santos, S. de J. L., Canto, H. K. F., da Silva, L. H. M., & Rodrigues, A. M. da C. (2022). Characterization and properties of purple yam (Dioscorea trifida) powder obtained by refractance window drying. Drying Technology, 40(6), 1103–1113. https://doi.org/10.1080/07373937.2020.1847140 | spa |
dc.relation.references | Sarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. W. J. (2016). Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends in Neurosciences, 39(11), 763–781. https://doi.org/10.1016/j.tins.2016.09.002 | spa |
dc.relation.references | Savassi, B., Cordeiro, B. F., Silva, S. H., Oliveira, E. R., Belo, G., Figueiroa, A. G., Alves Queiroz, M. I., Faria, A. M. C., Alves, J., Silva, T. F. da, Campos, G. M., Esmerino, E. A., Rocha, R. S., Freitas, M. Q., Silva, M. C., Cruz, A. G., Vital, K. D., Fernandes, S. O. A., Cardoso, V. N., … Azevedo, V. (2021). Lyophilized Symbiotic Mitigates Mucositis Induced by 5-Fluorouracil. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.755871 | spa |
dc.relation.references | Savlak, N., Türker, B., & Yeşilkanat, N. (2016). Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chemistry, 213, 180–186. https://doi.org/10.1016/j.foodchem.2016.06.064 | spa |
dc.relation.references | Sawicki, C., McKay, D., McKeown, N., Dallal, G., Chen, C., & Blumberg, J. (2016). Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial. Nutrients, 8(12), 813. https://doi.org/10.3390/nu8120813 | spa |
dc.relation.references | Schepper, J. D., Irwin, R., Kang, J., Dagenais, K., Lemon, T., Shinouskis, A., Parameswaran, N., & McCabe, L. R. (2017). Probiotics in Gut-Bone Signaling (pp. 225–247). https://doi.org/10.1007/978-3-319-66653-2_11 | spa |
dc.relation.references | Seth, D., Mishra, H. N., & Deka, S. C. (2017). Functional and reconstitution properties of spray-dried sweetened yogurt powder as influenced by processing conditions. International Journal of Food Properties, 20(7), 1603–1611. https://doi.org/10.1080/10942912.2016.1214965 | spa |
dc.relation.references | Sgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & Costa-Mattioli, M. (2019). Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron, 101(2), 246-259.e6. https://doi.org/10.1016/j.neuron.2018.11.018 | spa |
dc.relation.references | Shaikh, S. S., Joshi, C., Malek, F., Malik, A., & Gandhi, M. (2024). Food Storage, Processing and Genetic Stability Studies of Bacillus (Heyndrickxia) coagulans BCP92 (MTCC 25460). Applied Food Biotechnology, 11(1). https://doi.org/10.22037/afb.v11i1.44919 | spa |
dc.relation.references | Sharma, V., & Mishra, H. N. (2013). Fermentation of vegetable juice mixture by probiotic lactic acid bacteria. Nutrafoods, 12(1), 17–22. https://doi.org/10.1007/s13749-012-0050-y | spa |
dc.relation.references | Shende, D., & Datta, A. K. (2020). Optimization study for refractance window drying process of Langra variety mango. Journal of Food Science and Technology, 57(2), 683–692. https://doi.org/10.1007/s13197-019-04101-0 | spa |
dc.relation.references | Shori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/j.fbio.2015.11.001 | spa |
dc.relation.references | Sidira, M., Kandylis, P., Kanellaki, M., & Kourkoutas, Y. (2016). Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chemistry, 201, 334–338. https://doi.org/10.1016/j.foodchem.2016.01.084 | spa |
dc.relation.references | Sihra, N., Goodman, A., Zakri, R., Sahai, A., & Malde, S. (2018). Nonantibiotic prevention and management of recurrent urinary tract infection. Nature Reviews Urology, 15(12), 750–776. https://doi.org/10.1038/s41585-018-0106-x | spa |
dc.relation.references | Silanikove, N., Leitner, G., & Merin, U. (2015). The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients, 7(9), 7312–7331. https://doi.org/10.3390/nu7095340 | spa |
dc.relation.references | Silva‐Espinoza, M. A., Salvador, A., Camacho, M. del M., & Martínez‐Navarrete, N. (2021). Impact of freeze‐drying conditions on the sensory perception of a freeze‐dried orange snack. Journal of the Science of Food and Agriculture, 101(11), 4585–4590. https://doi.org/10.1002/jsfa.11101 | spa |
dc.relation.references | Simova, E. D., Beshkova, D. B., & Dimitrov, Zh. P. (2009). Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. Journal of Applied Microbiology, 106(2), 692–701. https://doi.org/10.1111/j.1365-2672.2008.04052.x | spa |
dc.relation.references | Singh, R., Ranvir, S., & Madan, S. (2017). Comparative Study of the Properties of Ripe Banana Flour, Unripe Banana Flour and Cooked Banana Flour Aiming Towards Effective Utilization of These Flours. International Journal of Current Microbiology and Applied Sciences, 6(8), 2003–2015. https://doi.org/10.20546/ijcmas.2017.608.239 | spa |
dc.relation.references | Slykerman, R. F., Hood, F., Wickens, K., Thompson, J. M. D., Barthow, C., Murphy, R., Kang, J., Rowden, J., Stone, P., Crane, J., Stanley, T., Abels, P., Purdie, G., Maude, R., & Mitchell, E.A. (2017). Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine, 24, 159–165. https://doi.org/10.1016/j.ebiom.2017.09.013 | spa |
dc.relation.references | Stadnik, J., & Dolatowski, Z. J. (2014). Effect of Inoculation with Probiotics and Ageing Time on Selected Functional Properties and Oxidation of Proteins in Dry-Cured Pork Loins. International Journal of Food Properties, 17(4), 866–876. https://doi.org/10.1080/10942912.2012.685679 | spa |
dc.relation.references | Stelmasiewicz, M., Świątek, Ł., & Ludwiczuk, A. (2021). Phytochemical Profile and Anticancer Potential of Endophytic Microorganisms from Liverwort Species, Marchantia polymorpha L. Molecules, 27(1), 153. https://doi.org/10.3390/molecules27010153 | spa |
dc.relation.references | Suwanangul, S., Jaichakan, P., Narkprasom, N., Kraithong, S., Narkprasom, K., & Sangsawad, P. (2023). Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion. Foods, 12(19), 3692. https://doi.org/10.3390/foods12193692 | spa |
dc.relation.references | Swieca, M., Kordowska-Wiater, M., Pytka, M., Gawlik-Dziki, U., Seczyk, L., Złotek, U., & Kapusta, I. (2019). Nutritional and pro-health quality of lentil and adzuki bean sprouts enriched with probiotic yeast Saccharomyces cerevisiae var. boulardii. LWT, 100, 220–226. https://doi.org/10.1016/j.lwt.2018.10.081 | spa |
dc.relation.references | Tamnak, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., & Muhammad, K. (2016). Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 56, 405–416. https://doi.org/10.1016/j.foodhyd.2015.12.033 | spa |
dc.relation.references | Tan, Y. X., Mok, W. K., & Chen, W. N. (2021). In Vitro Evaluation of Enriched Brewers’ Spent Grains Using Bacillus subtilis WX-17 as Potential Functional Food Ingredients. Applied Biochemistry and Biotechnology, 193(2), 349–362. https://doi.org/10.1007/s12010-020-03424-5 | spa |
dc.relation.references | Tarnaud, F., Gaucher, F., do Carmo, F. L. R., Illikoud, N., Jardin, J., Briard-Bion, V., Guyomarc’h, F., Gagnaire, V., & Jan, G. (2020). Differential Adaptation of Propionibacterium freudenreichii CIRM-BIA129 to Cow’s Milk Versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.549027 | spa |
dc.relation.references | Tejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G. R., & Rowland, I. (2013). Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe, 24, 60–65. https://doi.org/10.1016/j.anaerobe.2013.09.011 | spa |
dc.relation.references | Tissier, H. (1900). Recherches sur la flore intestinale normale et pathologique du nourrisson. Université de Paris. | spa |
dc.relation.references | Tontul, İ., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018a). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176. https://doi.org/10.1016/j.idairyj.2018.06.002 | spa |
dc.relation.references | Tontul, İ., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018b). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176. https://doi.org/10.1016/j.idairyj.2018.06.002 | spa |
dc.relation.references | Tontul, I., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2021). The impact of refractance window drying conditions on the physical and microbiological properties of kefir powder. Food Bioscience, 43, 101317. https://doi.org/10.1016/j.fbio.2021.101317 | spa |
dc.relation.references | Tontul, I., & Topuz, A. (2017). Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT, 80, 294–303. https://doi.org/10.1016/j.lwt.2017.02.035 | spa |
dc.relation.references | Tontul, I., & Topuz, A. (2019). Storage stability of bioactive compounds of pomegranate leather (pestil) produced by refractance window drying. Journal of Food Process Engineering, 42(2). https://doi.org/10.1111/jfpe.12973 | spa |
dc.relation.references | Torres Rodelo, M. del R. (2018). Evaluación tecnológica del proceso de obtención de biomasa de microorganismos probióticos en medio de cultivo formulado con suero lácteo suplementado. 1–129. | spa |
dc.relation.references | Tribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Perez, L. A., & Tadini, C. C. (2009). Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT - Food Science and Technology, 42(5), 1022–1025. https://doi.org/10.1016/j.lwt.2008.12.017 | spa |
dc.relation.references | Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241. https://doi.org/10.1016/j.jff.2014.04.030 | spa |
dc.relation.references | Turroni, F., Milani, C., Duranti, S., Ferrario, C., Lugli, G. A., Mancabelli, L., van Sinderen, D., & Ventura, M. (2018). Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cellular and Molecular Life Sciences, 75(1), 103–118. https://doi.org/10.1007/s00018-017-2672-0 | spa |
dc.relation.references | Unidad de Planificación Rural Agropecuaria. (2023). Resultados Evaluaciones Agropecuarias 2023. https://upra.gov.co/es-co/Evas_Documentos/Resultados%20Evaluaciones%20Agropecuarias%202023.pdf | spa |
dc.relation.references | Urgesi, R., Casale, C., Pistelli, R., Rapaccini, G. L., & de Vitis, I. (2014). A randomized double-blind placebo-controlled clinical trial on efficacy and safety of association of simethicone and Bacillus coagulans (Colinox®) in patients with irritable bowel syndrome. European Review for Medical and Pharmacological Sciences, 18(9), 1344–1353. http://www.ncbi.nlm.nih.gov/pubmed/24867512 | spa |
dc.relation.references | Vieira, K. C. de O., Ferreira, C. D. S., Bueno, E. B. T., De Moraes, Y. A., Toledo, A. C. C. G., Nakagaki, W. R., Pereira, V. C., & Winkelstroter, L. K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT, 130, 109637. https://doi.org/10.1016/j.lwt.2020.109637 | spa |
dc.relation.references | Villarroel, P., Gómez, C., Vera, C., & Torres, J. (2018). Almidón resistente: Características tecnológicas e intereses fisiológicos. Revista Chilena de Nutrición, 45(3), 271–278. https://doi.org/10.4067/s0717-75182018000400271 | spa |
dc.relation.references | Villegas, B. M., Villa, G. C., Torres, J. M., Ospina, S., Rocha, L. A., & Laverde, J. F. (2012). BANANUT PLUS: HARINA DE BANANO VERDE ENRIQUECIDA CON MICRONUTRIENTES. Vitae. https://www.redalyc.org/articulo.oa?id=169823914062 | spa |
dc.relation.references | Vitaglione, P., Napolitano, A., & Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology, 19(9), 451–463. https://doi.org/10.1016/j.tifs.2008.02.005 | spa |
dc.relation.references | Vrese, M. De. (2001). Probiotics, prebiotics, and synbiotics—approaching a definition 1–3. 73(14). | spa |
dc.relation.references | Wang, S., Chelikani, V., & Serventi, L. (2018). Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT, 97, 570–572. https://doi.org/10.1016/j.lwt.2018.07.067 | spa |
dc.relation.references | Wang, Z., Feng, Y., Yang, N., Jiang, T., Xu, H., & Lei, H. (2022). Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chemistry, 373, 131455. https://doi.org/10.1016/j.foodchem.2021.131455 | spa |
dc.relation.references | Wardy, W., Pujols Martínez, K. D., Xu, Z., No, H. K., & Prinyawiwatkul, W. (2014). Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology, 55(1), 67–73. https://doi.org/10.1016/j.lwt.2013.07.013 | spa |
dc.relation.references | Watanabe, F. F. F., Marques, C., Farias, F. O., Ellenderser, L. N., & Masson, M. L. (2020). Yacon-based Beverage as Non-dairy Vehicle for Bifidobacterium animalis ssp. lactis: Stability and In vitro Probiotic Viability. Biointerface Research in Applied Chemistry, 11(4), 11458–11472. https://doi.org/10.33263/BRIAC114.1145811472 | spa |
dc.relation.references | Wei, H., Loimaranta, V., Tenovuo, J., Rokka, S., Syväoja, E.-L., Korhonen, H., Joutsjoki, V., & Marnila, P. (2002). Stability and activity of specific antibodies against Streptococcus mutans and Streptococcus sobrinus in bovine milk fermented with Lactobacillus rhamnosus strain GG or treated at ultra-high temperature. Oral Microbiology and Immunology, 17(1), 9–15. https://doi.org/10.1046/j.0902-0055.2001.00084.x | spa |
dc.relation.references | Wellala, C. K. D., Bi, J., Liu, X., Liu, J., Lyu, J., Zhou, M., Marszałek, K., & Trych, U. (2020). Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innovative Food Science and Emerging Technologies, 60, 102279. https://doi.org/10.1016/j.ifset.2019.102279 | spa |
dc.relation.references | Wollowski, I., Rechkemmer, G., & Pool-Zobel, B. L. (2001). Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 73(2), 451s–455s. https://doi.org/10.1093/ajcn/73.2.451s | spa |
dc.relation.references | Wongputtisin, P., Ramaraj, R., Unpaprom, Y., Kawaree, R., & Pongtrakul, N. (2015). Raffinose family oligosaccharides in seed of Glycine max cv. Chiang Mai60 and potential source of prebiotic substances. International Journal of Food Science & Technology, 50(8), 1750–1756. https://doi.org/10.1111/ijfs.12842 | spa |
dc.relation.references | Wu, G., Zhang, C., Wu, H., Wang, R., Shen, J., Wang, L., Zhao, Y., Pang, X., Zhang, X., Zhao, L., & Zhang, M. (2017). Genomic microdiversity of Bifidobacterium pseudocatenulatum underlying differential strain-level responses to dietary carbohydrate intervention. MBio, 8(1). https://doi.org/10.1128/mBio.02348-16 | spa |
dc.relation.references | Xiao, Y., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. In Clinical Nutrition (Vol. 39, Issue 5, pp. 1315–1323). Churchill Livingstone. https://doi.org/10.1016/j.clnu.2019.05.014 | spa |
dc.relation.references | Yan, X.-T., Zhang, Z., Wang, Y., Zhang, W., Zhang, L., Liu, Y., Chen, D., Wang, W., Ma, W., Qian, J.-Y., & Gu, R. (2023). Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. Applied Biological Chemistry, 66(1), 7. https://doi.org/10.1186/s13765-022-00762-2 | spa |
dc.relation.references | Yang, B., McCullough, M. L., Gapstur, S. M., Jacobs, E. J., Bostick, R. M., Fedirko, V., Flanders, W. D., & Campbell, P. T. (2014). Calcium, Vitamin D, Dairy Products, and Mortality Among Colorectal Cancer Survivors: The Cancer Prevention Study-II Nutrition Cohort. Journal of Clinical Oncology, 32(22), 2335–2343. https://doi.org/10.1200/JCO.2014.55.3024 | spa |
dc.relation.references | Yang, J., Zhou, F., Xiong, L., Mao, S., Hu, Y., & Lu, B. (2015). Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan [Carya cathayensis] at different stir-frying steps. LWT - Food Science and Technology, 62(1), 541–548. https://doi.org/10.1016/j.lwt.2014.09.049 | spa |
dc.relation.references | Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874. https://doi.org/10.1111/1541-4337.12532 | spa |
dc.relation.references | Yarabbi, H., Roshanak, S., & Milani, E. (2023). Production of the probiotic dessert containing sprouted quinoa milk and evaluation of physicochemical and microbial properties during storage. Food Science & Nutrition, 11(9), 5596–5608. https://doi.org/10.1002/fsn3.3517 | spa |
dc.relation.references | Yoha, K. S., Anukiruthika, T., Anila, W., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT, 146, 111461. https://doi.org/10.1016/j.lwt.2021.111461 | spa |
dc.relation.references | Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020a). Conductive hydro drying through refractance window drying–An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Drying Technology, 38(5–6), 610–620. https://doi.org/10.1080/07373937.2019.1624972 | spa |
dc.relation.references | Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020b). Conductive hydro drying through refractance window drying–An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Drying Technology, 38(5–6), 610–620. https://doi.org/10.1080/07373937.2019.1624972 | spa |
dc.relation.references | Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020c). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering, 283, 110033. https://doi.org/10.1016/j.jfoodeng.2020.110033 | spa |
dc.relation.references | Yu, Z.-Y., Jiang, S.-W., Cao, X.-M., Jiang, S.-T., & Pan, L.-J. (2016). Effect of high pressure homogenization (HPH) on the physical properties of taro ( Colocasia esculenta (L). Schott) pulp. Journal of Food Engineering, 177, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.10.042 | spa |
dc.relation.references | Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41–47. https://doi.org/10.1016/j.jssas.2013.06.002 | spa |
dc.relation.references | Zelante, T., Iannitti, R. G., Cunha, C., DeLuca, A., Giovannini, G., Pieraccini, G., Zecchi, R., D’Angelo, C., Massi-Benedetti, C., Fallarino, F., Carvalho, A., Puccetti, P., & Romani, L. (2013). Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 39(2), 372–385. https://doi.org/10.1016/j.immuni.2013.08.003 | spa |
dc.relation.references | Zhang, C., Quek, S. Y., Fu, N., Su, Y., Kilmartin, P. A., & Chen, X. D. (2020). Storage stability and in vitro digestion of microencapsulated powder containing fermented noni juice and probiotics. Food Bioscience, 37, 100740. https://doi.org/10.1016/j.fbio.2020.100740 | spa |
dc.relation.references | Zhang, P., Whistler, R. L., BeMiller, J. N., & Hamaker, B. R. (2005). Banana starch: production, physicochemical properties, and digestibility—a review. Carbohydrate Polymers, 59(4), 443–458. https://doi.org/10.1016/j.carbpol.2004.10.014 | spa |
dc.relation.references | Zhou, R., Xu, Y., Dong, D., Hu, J., Zhang, L., & Liu, H. (2023). The effects of microcapsules with different protein matrixes on the viability of probiotics during spray drying, gastrointestinal digestion, thermal treatment, and storage. EFood, 4(4). https://doi.org/10.1002/efd2.98 | spa |
dc.relation.references | Zhu, D., Shen, Y., Wei, L., Xu, L., Cao, X., Liu, H., & Li, J. (2020). Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry, 328, 126967. https://doi.org/10.1016/j.foodchem.2020.126967 | spa |
dc.relation.references | Zhu, W., Lyu, F., Naumovski, N., Ajlouni, S., & Ranadheera, C. S. (2020). Functional Efficacy of Probiotic Lactobacillus sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival. Beverages, 6(1), 13. https://doi.org/10.3390/beverages6010013 | spa |
dc.relation.references | Zhu, Y. Y., Thakur, K., Feng, J. Y., Cai, J. S., Zhang, J. G., Hu, F., & Wei, Z. J. (2020). B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends in Food Science and Technology, 105(June), 43–55. https://doi.org/10.1016/j.tifs.2020.08.019 | spa |
dc.relation.references | Zielińska, D., Rzepkowska, A., Radawska, A., & Zieliński, K. (2015). In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber. Current Microbiology, 70(2), 183–194. https://doi.org/10.1007/s00284-014-0699-0 | spa |
dc.relation.references | Zorzela, L., Ardestani, S. K., McFarland, L. V., & Vohra, S. (2017). Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. Beneficial Microbes, 8(5), 739–754. https://doi.org/10.3920/BM2017.0032 | spa |
dc.relation.references | Zotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2015). Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 69, 410–417. https://doi.org/10.1016/j.foodres.2015.01.013 | spa |
dc.relation.references | Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027 | spa |
dc.relation.references | Aboulfazli, F., Baba, A. S., & Misran, M. (2015). The Rheology and Physical Properties of Fermented Probiotic Ice Creams Made with Dairy Alternatives. International Journal of Food Engineering, 11(4), 493–504. https://doi.org/10.1515/ijfe-2014-0343 | spa |
dc.relation.references | Adams, C. A. (2010). The probiotic paradox: live and dead cells are biological response modifiers. Nutrition Research Reviews, 23(1), 37–46. https://doi.org/10.1017/S0954422410000090 | spa |
dc.relation.references | Aizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., & Kunugi, H. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal of Affective Disorders, 202, 254–257. https://doi.org/10.1016/j.jad.2016.05.038 | spa |
dc.relation.references | Ammor, S., Tauveron, G., Dufour, E., & Chevallier, I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control, 17(6), 454–461. https://doi.org/10.1016/j.foodcont.2005.02.006 | spa |
dc.relation.references | Aradón, A., & Castellano, V. (2014). Regulation and guidelines of probiotics and prebiotics. In Probiotics and prebiotics in food, nutrition and health (pp. 91–113). CRC Press. | spa |
dc.relation.references | Arihara, K., & Ohata, M. (2011). Functional meat products. In Functional Foods (pp. 512–533). Elsevier. https://doi.org/10.1533/9780857092557.3.512 | spa |
dc.relation.references | Ashwar, B. A., Gani, A., Gani, A., Shah, A., & Masoodi, F. A. (2018). Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry, 239, 287–294. https://doi.org/10.1016/j.foodchem.2017.06.110 | spa |
dc.relation.references | Azad, Md. A. K., Sarker, M., Li, T., & Yin, J. (2018). Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/9478630 | spa |
dc.relation.references | Bell, K. J., Saad, S., Tillett, B. J., McGuire, H. M., Bordbar, S., Yap, Y. A., Nguyen, L. T., Wilkins, M. R., Corley, S., Brodie, S., Duong, S., Wright, C. J., Twigg, S., de St Groth, B. F., Harrison, L. C., Mackay, C. R., Gurzov, E. N., Hamilton-Williams, E. E., & Mariño, E. (2022). Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 10(1), 9. https://doi.org/10.1186/s40168-021-01193-9 | spa |
dc.relation.references | Bernat, N., Cháfer, M., González-Martínez, C., Rodríguez-García, J., & Chiralt, A. (2015). Optimisation of oat milk formulation to obtain fermented derivatives by using probiotic Lactobacillus reuteri microorganisms. Food Science and Technology International, 21(2), 145–157. https://doi.org/10.1177/1082013213518936 | spa |
dc.relation.references | Bharwani, A., Mian, M. F., Foster, J. A., Surette, M. G., Bienenstock, J., & Forsythe, P. (2016). Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology, 63, 217–227. https://doi.org/10.1016/j.psyneuen.2015.10.001 | spa |
dc.relation.references | Cadena, R. S., Caimi, D., Jaunarena, I., Lorenzo, I., Vidal, L., Ares, G., Deliza, R., & Giménez, A. (2014). Comparison of rapid sensory characterization methodologies for the development of functional yogurts. Food Research International, 64, 446–455. https://doi.org/10.1016/j.foodres.2014.07.027 | spa |
dc.relation.references | Cao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2 | spa |
dc.relation.references | Champagne, C. P., Tompkins, T. A., Buckley, N. D., & Green-Johnson, J. M. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiology, 27(7), 968–972. https://doi.org/10.1016/j.fm.2010.06.003 | spa |
dc.relation.references | Charalampopoulos, D., Pandiella, S. S., & Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology, 82(2), 133–141. https://doi.org/10.1016/S0168-1605(02)00248-9 | spa |
dc.relation.references | Chen, X., Yang, G., Song, J.-H., Xu, H., Li, D., Goldsmith, J., Zeng, H., Parsons-Wingerter, P. A., Reinecker, H.-C., & Kelly, C. P. (2013). Probiotic Yeast Inhibits VEGFR Signaling and Angiogenesis in Intestinal Inflammation. PLoS ONE, 8(5), e64227. https://doi.org/10.1371/journal.pone.0064227 | spa |
dc.relation.references | Chmielewska, A., & Szajewska, H. (2010). Systematic review of randomised controlled trials: probiotics for functional constipation. World Journal of Gastroenterology, 16(1), 69–75. https://doi.org/10.3748/wjg.v16.i1.69 | spa |
dc.relation.references | Coelho, S. R., Lima, Í. A., Martins, M. L., Benevenuto Júnior, A. A., Torres Filho, R. de A., Ramos, A. de L. S., & Ramos, E. M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT, 102, 254–259. https://doi.org/10.1016/j.lwt.2018.12.045 | spa |
dc.relation.references | Colica, C., Avolio, E., Bollero, P., Costa de Miranda, R., Ferraro, S., Sinibaldi Salimei, P., De Lorenzo, A., & Di Renzo, L. (2017). Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediators of Inflammation, 2017, 1–10. https://doi.org/10.1155/2017/5650627 | spa |
dc.relation.references | Cordeiro, B. F., Alves, J. L., Belo, G. A., Oliveira, E. R., Braga, M. P., da Silva, S. H., Lemos, L., Guimarães, J. T., Silva, R., Rocha, R. S., Jan, G., Le Loir, Y., Silva, M. C., Freitas, M. Q., Esmerino, E. A., Gala-García, A., Ferreira, E., Faria, A. M. C., Cruz, A. G., … do Carmo, F. L. R. (2021). Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.623920 | spa |
dc.relation.references | de Oliveira, P. M., Leite Júnior, B. R. de C., Martins, E. M. F., Martins, M. L., Vieira, É. N. R., de Barros, F. A. R., Cristianini, M., de Almeida Costa, N., & Ramos, A. M. (2021). Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. Journal of Food Science and Technology, 58(1), 98–109. https://doi.org/10.1007/s13197-020-04518-y | spa |
dc.relation.references | Di Stefano, E., White, J., Seney, S., Hekmat, S., McDowell, T., Sumarah, M., & Reid, G. (2017). A Novel Millet-Based Probiotic Fermented Food for the Developing World. Nutrients, 9(5), 529. https://doi.org/10.3390/nu9050529 | spa |
dc.relation.references | Diaz‐Vela, J., Totosaus, A., Cruz‐Guerrero, A. E., & de Lourdes Pérez‐Chabela, M. (2013). In vitro evaluation of the fermentation of added‐value agroindustrial by‐products: cactus pear ( <scp>O</scp> puntia ficus‐indica <scp>L</scp> .) peel and pineapple ( <scp>A</scp> nanas comosus ) peel as functional ingredients. International Journal of Food Science & Technology, 48(7), 1460–1467. https://doi.org/10.1111/ijfs.12113 | spa |
dc.relation.references | Do, T. V. T., & Fan, L. (2019). Probiotic Viability, Qualitative Characteristics, and Sensory Acceptability of Vegetable Juice Mixture Fermented with &lt;i&gt;Lactobacillus&lt;/i&gt; Strains. Food and Nutrition Sciences, 10(04), 412–427. https://doi.org/10.4236/fns.2019.104031 | spa |
dc.relation.references | Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2007). α-Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chemistry, 104(1), 10–20. https://doi.org/10.1016/j.foodchem.2006.10.065 | spa |
dc.relation.references | Dunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E. M., O’Sullivan, G. C., Shanahan, F., & Collins, J. K. (1999). Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek, 76(1–4), 279–292. http://www.ncbi.nlm.nih.gov/pubmed/10532384 | spa |
dc.relation.references | Duru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019a). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102 | spa |
dc.relation.references | Duru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019b). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102 | spa |
dc.relation.references | Enujiugha, Victor. N., & Badejo, A. A. (2017). Probiotic potentials of cereal-based beverages. Critical Reviews in Food Science and Nutrition, 57(4), 790–804. https://doi.org/10.1080/10408398.2014.930018 | spa |
dc.relation.references | FAO, E., & OMS, E. (2006). Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. Estudios FAO Alimentación y Nutrición, 85, 52. file:///C:/Users/Acer/Documents/paty/homework1/PROBIOTICOS OPS 2006.pdf | spa |
dc.relation.references | Fernández-Abascal, B., Suárez-Pinilla, P., Cobo-Corrales, C., Crespo-Facorro, B., & Suárez-Pinilla, M. (2021). In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episod. Neuroscience & Biobehavioral Reviews, 125, 535–568. https://doi.org/10.1016/j.neubiorev.2021.01.005 | spa |
dc.relation.references | Ford, A. C., Quigley, E. M. M., Lacy, B. E., Lembo, A. J., Saito, Y. A., Schiller, L. R., Soffer, E. E., Spiegel, B. M. R., & Moayyedi, P. (2014). Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. The American Journal of Gastroenterology, 109(10), 1547–1562. https://doi.org/10.1038/ajg.2014.202 | spa |
dc.relation.references | George Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018a). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002 | spa |
dc.relation.references | George Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018b). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002 | spa |
dc.relation.references | Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004827.pub4 | spa |
dc.relation.references | Gómez, A., Anaya, J., Rodríguez, G., Lechón, A., Perugachi, I., Velásquez, C., Carlos, S., Miniet, A., & Lascano, R. (2022). Glycemic effect of a functional pancake made from an instant oat mix. Revista Espanola de Nutricion Humana y Dietetica, 26(3), 189–196. https://doi.org/10.14306/renhyd.26.3.1668 | spa |
dc.relation.references | Guandalini, S. (2011). Probiotics for Prevention and Treatment of Diarrhea. Journal of Clinical Gastroenterology, 45, S149–S153. https://doi.org/10.1097/MCG.0b013e3182257e98 Gupta, M., & Bajaj, B. K. (2017). Development of fermented oat flour beverage as a potential probiotic vehicle. Food Bioscience, 20, 104–109. https://doi.org/10.1016/j.fbio.2017.08.007 | spa |
dc.relation.references | Hijová, E. (2022). Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. In Metabolites (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/metabo12040313 | spa |
dc.relation.references | Hou, H., Chen, D., Zhang, K., Zhang, W., Liu, T., Wang, S., Dai, X., Wang, B., Zhong, W., & Cao, H. (2022). Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Letters, 526, 225–235. https://doi.org/10.1016/j.canlet.2021.11.027 | spa |
dc.relation.references | İçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015a). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102 | spa |
dc.relation.references | İçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015b). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102 | spa |
dc.relation.references | Ishwarya, S. P., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171–180. https://doi.org/10.1016/j.jfoodeng.2014.10.011 | spa |
dc.relation.references | Kandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012 | spa |
dc.relation.references | Karagül, Ö., & EL, S. N. (2024). Cereal-based fermented synbiotic instant powders: a dessert practice. Ege Üniversitesi Ziraat Fakültesi Dergisi, 60(4), 571–579. https://doi.org/10.20289/zfdergi.1336843 | spa |
dc.relation.references | Kareem, S. O., Adio, O. Q., & Osho, M. B. (2014). Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix. Enzyme Research, 2014, 1–7. https://doi.org/10.1155/2014/967056 | spa |
dc.relation.references | Katina, K., Liukkonen, K.-H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.-M., Lampi, A.-M., Pihlava, J.-M., & Poutanen, K. (2007). Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3), 348–355. https://doi.org/10.1016/j.jcs.2007.07.006 | spa |
dc.relation.references | Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F., & Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019 | spa |
dc.relation.references | Khalesi, S., Sun, J., Buys, N., & Jayasinghe, R. (2014). Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension, 64(4), 897–903. https://doi.org/10.1161/HYPERTENSIONAHA.114.03469 | spa |
dc.relation.references | Kober, M.-M., & Bowe, W. P. (2015). The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women’s Dermatology, 1(2), 85–89. https://doi.org/10.1016/j.ijwd.2015.02.001 | spa |
dc.relation.references | Kumar, B., Vijayendra, S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products - a review. Journal of Food Science and Technology, 52(10), 6112–6124. https://doi.org/10.1007/s13197-015-1795-2 | spa |
dc.relation.references | Kumar, H., Dhalaria, R., Guleria, S., Cimler, R., Choudhary, R., Dhanjal, D. S., Singh, R., Kimta, N., Dulta, K., Pathera, A. K., Khan, A., Nausad, M., Alomar, S. Y., Manickam, S., & Kuča, K. (2023). To exploring the role of probiotics, plant-based fermented products, and paraprobiotics as anti-inflammatory agents in promoting human health. Journal of Agriculture and Food Research, 14, 100896. https://doi.org/10.1016/j.jafr.2023.100896 | spa |
dc.relation.references | Kumar, S., Rattu, G., Mitharwal, S., Chandra, A., Kumar, S., Kaushik, A., Mishra, V., & Nema, P. K. (2022). Trends in non‐dairy‐based probiotic food products: Advances and challenges. Journal of Food Processing and Preservation, 46(9). https://doi.org/10.1111/jfpp.16578 | spa |
dc.relation.references | Lamiki, P., Tsuchiya, J., Pathak, S., Okura, R., Solimene, U., Jain, S., Kawakita, S., & Marotta, F. (2010). Probiotics in diverticular disease of the colon: an open label study. Journal of Gastrointestinal and Liver Diseases : JGLD, 19(1), 31–36. http://www.ncbi.nlm.nih.gov/pubmed/20361072 | spa |
dc.relation.references | Lee, A., Cheng, K.-C., & Liu, J.-R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLOS ONE, 12(8), e0182220. https://doi.org/10.1371/journal.pone.0182220 | spa |
dc.relation.references | Lee, N., Park, Y.-S., Kang, D.-K., & Paik, H.-D. (2023). Paraprobiotics: definition, manufacturing methods, and functionality. Food Science and Biotechnology, 32(14), 1981–1991. https://doi.org/10.1007/s10068-023-01378-y | spa |
dc.relation.references | Lopetuso, L. R., Giorgio, M. E., Saviano, A., Scaldaferri, F., Gasbarrini, A., & Cammarota, G. (2019). Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? International Journal of Molecular Sciences, 20(1), 183. https://doi.org/10.3390/ijms20010183 | spa |
dc.relation.references | Louis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661–672. https://doi.org/10.1038/nrmicro3344 | spa |
dc.relation.references | Mäkeläinen, H., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. (2010). Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Beneficial Microbes, 1(2), 139–148. https://doi.org/10.3920/BM2009.0029 | spa |
dc.relation.references | Malfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study. Phytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074 | spa |
dc.relation.references | Mantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2018). Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods, 8(1), 4. https://doi.org/10.3390/foods8010004 | spa |
dc.relation.references | Martins, E. M. F., Ramos, A. M., Vanzela, E. S. L., Stringheta, P. C., de Oliveira Pinto, C. L., & Martins, J. M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51(2), 764–770. https://doi.org/10.1016/j.foodres.2013.01.047 | spa |
dc.relation.references | Metchnikoff, E. (1910). The Prolongation of Life: Optimistic Studies (P. C. Mitchell, Ed.). G P Putnam’s Sons. | spa |
dc.relation.references | Min, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019a). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760 | spa |
dc.relation.references | Min, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019b). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760 | spa |
dc.relation.references | Mitharwal, S., Kumar, S., & Chauhan, K. (2021a). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382 | spa |
dc.relation.references | Mitharwal, S., Kumar, S., & Chauhan, K. (2021b). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382 | spa |
dc.relation.references | Nakamura, F., Ishida, Y., Aihara, K., Sawada, D., Ashida, N., Sugawara, T., Aoki, Y., Takehara, I., Takano, K., & Fujiwara, S. (2016). Effect of fragmented Lactobacillus amylovorus CP1563 on lipid metabolism in overweight and mildly obese individuals: a randomized controlled trial. Microbial Ecology in Health & Disease, 27(0). https://doi.org/10.3402/mehd.v27.30312 | spa |
dc.relation.references | Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., & Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility, 26(8), 1155–1162. https://doi.org/10.1111/nmo.12378 | spa |
dc.relation.references | Nguyen, T. D. T., Kang, J. H., & Lee, M. S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology, 113(3), 358–361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015 | spa |
dc.relation.references | Ninkov, A., Frank, J. R., & Maggio, L. A. (2021). Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 11(3), 173–176. https://doi.org/10.1007/S40037-021-00695-4 | spa |
dc.relation.references | Olivares, A., Soto, C., Caballero, E., & Altamirano, C. (2019). Survival of microencapsulated Lactobacillus casei (prepared by vibration technology) in fruit juice during cold storage. Electronic Journal of Biotechnology, 42, 42–48. https://doi.org/10.1016/j.ejbt.2019.10.002 | spa |
dc.relation.references | Olveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482–494. https://doi.org/10.1016/j.endonu.2016.07.006 | spa |
dc.relation.references | Organización Mundial de Gastroenterología. (2023). Directrices mundiales de la Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2023.pdf | spa |
dc.relation.references | Ouwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek, 82(1–4), 279–289. | spa |
dc.relation.references | Pallares Pallares, A., Estupiñán A, M. R., Perea Villamil, J. A., & López Giraldo, L. J. (2017). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51. Revista ION, 29(2), 7–21. https://doi.org/10.18273/revion.v29n2-2016001 | spa |
dc.relation.references | Pandey, Kavita. R., Naik, Suresh. R., & Vakil, Babu. V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1 | spa |
dc.relation.references | Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018a). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003 | spa |
dc.relation.references | Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018b). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003 | spa |
dc.relation.references | Pedersen, L. L., Owusu-Kwarteng, J., Thorsen, L., & Jespersen, L. (2012). Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 159(2), 144–151. https://doi.org/10.1016/j.ijfoodmicro.2012.08.016 | spa |
dc.relation.references | Pereira, A. L. F., Maciel, T. C., & Rodrigues, S. (2011). Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 44(5), 1276–1283. https://doi.org/10.1016/j.foodres.2010.11.035 | spa |
dc.relation.references | Perricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006 | spa |
dc.relation.references | Prado, F. C., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Trends in non-dairy probiotic beverages. Food Research International, 41(2), 111–123. https://doi.org/10.1016/j.foodres.2007.10.010 | spa |
dc.relation.references | Quigley, E. M. M. (2010). Prebiotics and probiotics; modifying and mining the microbiota. Pharmacological Research, 61(3), 213–218. https://doi.org/10.1016/j.phrs.2010.01.004 | spa |
dc.relation.references | Reis, J. M. C. dos, Pinheiro, M. F., Oti, A. T., Feitosa-Junior, D. J. S., Pantoja, M. de S., & Barros, R. S. M. (2016). TECHNOLOGICAL INFORMATION REGARDING PREBIOTICS AND PROBIOTICS NUTRITION VERSUS THE PATENT REGISTERS: WHAT IS NEW? ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 29(4), 279–281. https://doi.org/10.1590/0102-6720201600040016 | spa |
dc.relation.references | Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1–11. https://doi.org/10.1016/j.fm.2008.06.008 | spa |
dc.relation.references | Rodríguez de Olmos, A., Garro, O. A., & Garro, M. S. (2022). Behavior study of Bifidobacterium longum using solid state fermentation from commercial soybean meal. LWT, 157, 113101. https://doi.org/10.1016/j.lwt.2022.113101 | spa |
dc.relation.references | Rodríguez-Barona, S., Giraldo, G. I., & Montes, L. M. (2016). Encapsulación De Alimentos Probióticos Mediante Liofilización En Presencia De Prebióticos. Informacion Tecnologica, 27(6), 135–144. https://doi.org/10.4067/S0718-07642016000600014 | spa |
dc.relation.references | Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8 | spa |
dc.relation.references | Rubio, R., Aymerich, T., Bover-Cid, S., Guàrdia, M. D., Arnau, J., & Garriga, M. (2013). Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT - Food Science and Technology, 54(1), 51–56. https://doi.org/10.1016/j.lwt.2013.05.014 | spa |
dc.relation.references | Rwubuzizi, R., Kim, H., Holzapfel, W. H., & Todorov, S. D. (2023). Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon, 9(4), e15610. https://doi.org/10.1016/j.heliyon.2023.e15610 | spa |
dc.relation.references | Salari, M., Razavi, S. H., & Gharibzahedi, S. M. T. (2015). Characterising the synbiotic beverages based on barley and malt flours fermented by Lactobacillus delbrueckii and paracasei strains. Quality Assurance and Safety of Crops & Foods, 7(3), 355–361. https://doi.org/10.3920/QAS2013.0390 | spa |
dc.relation.references | Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M.-F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018 | spa |
dc.relation.references | Sawicki, C., McKay, D., McKeown, N., Dallal, G., Chen, C., & Blumberg, J. (2016). Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial. Nutrients, 8(12), 813. https://doi.org/10.3390/nu8120813 | spa |
dc.relation.references | Schepper, J. D., Irwin, R., Kang, J., Dagenais, K., Lemon, T., Shinouskis, A., Parameswaran, N., & McCabe, L. R. (2017). Probiotics in Gut-Bone Signaling (pp. 225–247). https://doi.org/10.1007/978-3-319-66653-2_11 | spa |
dc.relation.references | Sgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & Costa-Mattioli, M. (2019). Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron, 101(2), 246-259.e6. https://doi.org/10.1016/j.neuron.2018.11.018 | spa |
dc.relation.references | Sharma, V., & Mishra, H. N. (2013). Fermentation of vegetable juice mixture by probiotic lactic acid bacteria. Nutrafoods, 12(1), 17–22. https://doi.org/10.1007/s13749-012-0050-y Shori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/j.fbio.2015.11.001 | spa |
dc.relation.references | Sidira, M., Kandylis, P., Kanellaki, M., & Kourkoutas, Y. (2016). Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chemistry, 201, 334–338. https://doi.org/10.1016/j.foodchem.2016.01.084 | spa |
dc.relation.references | Sihra, N., Goodman, A., Zakri, R., Sahai, A., & Malde, S. (2018). Nonantibiotic prevention and management of recurrent urinary tract infection. Nature Reviews Urology, 15(12), 750–776. https://doi.org/10.1038/s41585-018-0106-x | spa |
dc.relation.references | Silanikove, N., Leitner, G., & Merin, U. (2015). The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients, 7(9), 7312–7331. https://doi.org/10.3390/nu7095340 | spa |
dc.relation.references | Simova, E. D., Beshkova, D. B., & Dimitrov, Zh. P. (2009). Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. Journal of Applied Microbiology, 106(2), 692–701. https://doi.org/10.1111/j.1365-2672.2008.04052.x | spa |
dc.relation.references | Slykerman, R. F., Hood, F., Wickens, K., Thompson, J. M. D., Barthow, C., Murphy, R., Kang, J., Rowden, J., Stone, P., Crane, J., Stanley, T., Abels, P., Purdie, G., Maude, R., & Mitchell, E. A. (2017). Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine, 24, 159–165. https://doi.org/10.1016/j.ebiom.2017.09.013 | spa |
dc.relation.references | Stadnik, J., & Dolatowski, Z. J. (2014). Effect of Inoculation with Probiotics and Ageing Time on Selected Functional Properties and Oxidation of Proteins in Dry-Cured Pork Loins. International Journal of Food Properties, 17(4), 866–876. https://doi.org/10.1080/10942912.2012.685679 | spa |
dc.relation.references | Swieca, M., Kordowska-Wiater, M., Pytka, M., Gawlik-Dziki, U., Seczyk, L., Złotek, U., & Kapusta, I. (2019). Nutritional and pro-health quality of lentil and adzuki bean sprouts enriched with probiotic yeast Saccharomyces cerevisiae var. boulardii. LWT, 100, 220–226. https://doi.org/10.1016/j.lwt.2018.10.081 | spa |
dc.relation.references | Tarnaud, F., Gaucher, F., do Carmo, F. L. R., Illikoud, N., Jardin, J., Briard-Bion, V., Guyomarc’h, F., Gagnaire, V., & Jan, G. (2020). Differential Adaptation of Propionibacterium freudenreichii CIRM-BIA129 to Cow’s Milk Versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.549027 | spa |
dc.relation.references | Tejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G. R., & Rowland, I. (2013). Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe, 24, 60–65. https://doi.org/10.1016/j.anaerobe.2013.09.011 | spa |
dc.relation.references | Tissier, H. (1900). Recherches sur la flore intestinale normale et pathologique du nourrisson. Université de Paris. | spa |
dc.relation.references | Turroni, F., Milani, C., Duranti, S., Ferrario, C., Lugli, G. A., Mancabelli, L., van Sinderen, D., & Ventura, M. (2018). Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cellular and Molecular Life Sciences, 75(1), 103–118. https://doi.org/10.1007/s00018-017-2672-0 | spa |
dc.relation.references | Urgesi, R., Casale, C., Pistelli, R., Rapaccini, G. L., & de Vitis, I. (2014). A randomized double-blind placebo-controlled clinical trial on efficacy and safety of association of simethicone and Bacillus coagulans (Colinox®) in patients with irritable bowel syndrome. European Review for Medical and Pharmacological Sciences, 18(9), 1344–1353. http://www.ncbi.nlm.nih.gov/pubmed/24867512 | spa |
dc.relation.references | Vieira, K. C. de O., Ferreira, C. D. S., Bueno, E. B. T., De Moraes, Y. A., Toledo, A. C. C. G., Nakagaki, W. R., Pereira, V. C., & Winkelstroter, L. K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT, 130, 109637. https://doi.org/10.1016/j.lwt.2020.109637 | spa |
dc.relation.references | Vitaglione, P., Napolitano, A., & Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology, 19(9), 451–463. https://doi.org/10.1016/j.tifs.2008.02.005 | spa |
dc.relation.references | Wang, S., Chelikani, V., & Serventi, L. (2018). Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT, 97, 570–572. https://doi.org/10.1016/j.lwt.2018.07.067 | spa |
dc.relation.references | Wang, Z., Feng, Y., Yang, N., Jiang, T., Xu, H., & Lei, H. (2022). Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chemistry, 373, 131455. https://doi.org/10.1016/j.foodchem.2021.131455 | spa |
dc.relation.references | Watanabe, F. F. F., Marques, C., Farias, F. O., Ellenderser, L. N., & Masson, M. L. (2020). Yacon-based Beverage as Non-dairy Vehicle for Bifidobacterium animalis ssp. lactis: Stability and In vitro Probiotic Viability. Biointerface Research in Applied Chemistry, 11(4), 11458–11472. https://doi.org/10.33263/BRIAC114.1145811472 | spa |
dc.relation.references | Wollowski, I., Rechkemmer, G., & Pool-Zobel, B. L. (2001). Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 73(2), 451s–455s. https://doi.org/10.1093/ajcn/73.2.451s | spa |
dc.relation.references | Wongputtisin, P., Ramaraj, R., Unpaprom, Y., Kawaree, R., & Pongtrakul, N. (2015). Raffinose family oligosaccharides in seed of Glycine max cv. Chiang Mai60 and potential source of prebiotic substances. International Journal of Food Science & Technology, 50(8), 1750–1756. https://doi.org/10.1111/ijfs.12842 | spa |
dc.relation.references | Xiao, Y., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. In Clinical Nutrition (Vol. 39, Issue 5, pp. 1315–1323). Churchill Livingstone. https://doi.org/10.1016/j.clnu.2019.05.014 | spa |
dc.relation.references | Yan, X.-T., Zhang, Z., Wang, Y., Zhang, W., Zhang, L., Liu, Y., Chen, D., Wang, W., Ma, W., Qian, J.-Y., & Gu, R. (2023). Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. Applied Biological Chemistry, 66(1), 7. https://doi.org/10.1186/s13765-022-00762-2 | spa |
dc.relation.references | Yang, B., McCullough, M. L., Gapstur, S. M., Jacobs, E. J., Bostick, R. M., Fedirko, V., Flanders, W. D., & Campbell, P. T. (2014). Calcium, Vitamin D, Dairy Products, and Mortality Among Colorectal Cancer Survivors: The Cancer Prevention Study-II Nutrition Cohort. Journal of Clinical Oncology, 32(22), 2335–2343. https://doi.org/10.1200/JCO.2014.55.3024 | spa |
dc.relation.references | Yang, J., Zhou, F., Xiong, L., Mao, S., Hu, Y., & Lu, B. (2015). Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan [Carya cathayensis] at different stir-frying steps. LWT - Food Science and Technology, 62(1), 541–548. https://doi.org/10.1016/j.lwt.2014.09.049 | spa |
dc.relation.references | Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874. https://doi.org/10.1111/1541-4337.12532 | spa |
dc.relation.references | Yarabbi, H., Roshanak, S., & Milani, E. (2023). Production of the probiotic dessert containing sprouted quinoa milk and evaluation of physicochemical and microbial properties during storage. Food Science & Nutrition, 11(9), 5596–5608. https://doi.org/10.1002/fsn3.3517 | spa |
dc.relation.references | Zhang, C., Quek, S. Y., Fu, N., Su, Y., Kilmartin, P. A., & Chen, X. D. (2020). Storage stability and in vitro digestion of microencapsulated powder containing fermented noni juice and probiotics. Food Bioscience, 37, 100740. https://doi.org/10.1016/j.fbio.2020.100740 | spa |
dc.relation.references | Zhu, W., Lyu, F., Naumovski, N., Ajlouni, S., & Ranadheera, C. S. (2020). Functional Efficacy of Probiotic Lactobacillus sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival. Beverages, 6(1), 13. https://doi.org/10.3390/beverages6010013 | spa |
dc.relation.references | Zielińska, D., Rzepkowska, A., Radawska, A., & Zieliński, K. (2015). In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber. Current Microbiology, 70(2), 183–194. https://doi.org/10.1007/s00284-014-0699-0 | spa |
dc.relation.references | Zorzela, L., Ardestani, S. K., McFarland, L. V., & Vohra, S. (2017). Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. Beneficial Microbes, 8(5), 739–754. https://doi.org/10.3920/BM2017.0032 | spa |
dc.relation.references | Abiodun-Solanke, A., & Falade, K. (2011). A review of the uses and methods of processing banana and plantain (Musa spp.) into storable food products. Journal of Agricultural Research and Development, 9(2). https://doi.org/10.4314/jard.v9i2.66815 | spa |
dc.relation.references | Aboulfazli, F., Baba, A. S., & Misran, M. (2015). The Rheology and Physical Properties of Fermented Probiotic Ice Creams Made with Dairy Alternatives. International Journal of Food Engineering, 11(4), 493–504. https://doi.org/10.1515/ijfe-2014-0343 | spa |
dc.relation.references | Adams, C. A. (2010). The probiotic paradox: live and dead cells are biological response modifiers. Nutrition Research Reviews, 23(1), 37–46. https://doi.org/10.1017/S0954422410000090 | spa |
dc.relation.references | Agama-Acevedo, E., Rodriguez-Ambriz, S. L., García-Suárez, F. J., Gutierrez-Méraz, F., Pacheco-Vargas, G., & Bello-Pérez, L. A. (2014). Starch isolation and partial characterization of commercial cooking and dessert banana cultivars growing in Mexico. Starch - Stärke, 66(3–4), 337–344. https://doi.org/10.1002/star.201300125 | spa |
dc.relation.references | Ahmad, A., Prakash, O., Kumar, A., Chatterjee, R., Sharma, S., Kumar, V., Kulshreshtha, K., Li, C., & Eldin, E. M. T. (2022). A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying. Energies, 15(24), 9493. https://doi.org/10.3390/en15249493 | spa |
dc.relation.references | Aizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., & Kunugi, H. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal of Affective Disorders, 202, 254–257. https://doi.org/10.1016/j.jad.2016.05.038 | spa |
dc.relation.references | Alberti, K. G. M. M., Zimmet, P., & Shaw, J. (2007). International Diabetes Federation: A consensus on Type 2 diabetes prevention. Diabetic Medicine, 24(5), 451–463. https://doi.org/10.1111/j.1464-5491.2007.02157.x | spa |
dc.relation.references | Almada-Érix, C. N., Almada, C. N., Pedrosa, G. T. S., Biachi, J. P., Bonatto, M. S., Schmiele, M., Nabeshima, E. H., Clerici, M., Magnani, M., & Sant’Ana, A. S. (2022). Bread as probiotic carriers: Resistance of Bacillus coagulans GBI-30 6086 spores through processing steps. FOOD RESEARCH INTERNATIONAL, 155. https://doi.org/10.1016/j.foodres.2022.111040 | spa |
dc.relation.references | Almada-Érix, C. N., Almada, C. N., Souza Pedrosa, G. T., dos Santos, P., Schmiele, M., Clerici, M. T. P. S., Martinez, J., Lollo, P. C., Magnani, M., & Sant’Ana, A. S. (2021). Quantifying the impact of eight unit operations on the survival of eight Bacillus strains with claimed probiotic properties. Food Research International, 142(February). https://doi.org/10.1016/j.foodres.2021.110191 | spa |
dc.relation.references | Almanza-Benitez, S., Osorio-Díaz, P., Méndez-Montealvo, G., Islas-Hernández, J. J., & Bello-Perez, L. A. (2015). Addition of acid-treated unripe plantain flour modified the starch digestibility, indigestible carbohydrate content and antioxidant capacity of semolina spaghetti. LWT - Food Science and Technology, 62(2), 1127–1133. https://doi.org/10.1016/j.lwt.2015.02.031 | spa |
dc.relation.references | Ammor, S., Tauveron, G., Dufour, E., & Chevallier, I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control, 17(6), 454–461. https://doi.org/10.1016/j.foodcont.2005.02.006 | spa |
dc.relation.references | Anyasi, T. A., Jideani, A. I. O., & Mchau, G. R. A. (2015). Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chemistry, 172, 515–522. https://doi.org/10.1016/j.foodchem.2014.09.120 | spa |
dc.relation.references | Aradón, A., & Castellano, V. (2014). Regulation and guidelines of probiotics and prebiotics. In Probiotics and prebiotics in food, nutrition and health (pp. 91–113). CRC Press. | spa |
dc.relation.references | Aragón-Rojas, S., Quintanilla-Carvajal, M. X., Hernández-Sánchez, H., Hernández-Álvarez, A. J., & Moreno, F. L. (2019a). Encapsulation of Lactobacillus fermentum K73 by Refractance Window drying. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-42016-0 | spa |
dc.relation.references | Araújo, T. M. R., Farias, M. D. L., Afonso, M. R. A., Costa, J. M. C. da, & Eça, K. S. (2020). Maltodextrin on the flow properties of green coconut (Cocos nucifera L.) pulp powder. Ciência e Agrotecnologia, 44. https://doi.org/10.1590/1413-7054202044003220 | spa |
dc.relation.references | Arihara, K., & Ohata, M. (2011). Functional meat products. In Functional Foods (pp. 512–533). Elsevier. https://doi.org/10.1533/9780857092557.3.512 | spa |
dc.relation.references | Ashwar, B. A., Gani, A., Gani, A., Shah, A., & Masoodi, F. A. (2018). Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry, 239, 287–294. https://doi.org/10.1016/j.foodchem.2017.06.110 | spa |
dc.relation.references | Asif-Ul-Alam, S. M., Islam, M. Z., Hoque, M. M., & Monalisa, K. (2014). Effects of Drying on the Physicochemical and Functional Properties of Green Banana (Musa sapientum) Flour and Development of Baked Product. American Journal of Food Science and Technology, 2(4), 128–133. https://doi.org/10.12691/ajfst-2-4-4 | spa |
dc.relation.references | Asiimwe, A., Kigozi, J. B., Baidhe, E., & Muyonga, J. H. (2022). Optimization of refractance window drying conditions for passion fruit puree. LWT, 154, 112742. https://doi.org/10.1016/j.lwt.2021.112742 | spa |
dc.relation.references | Association of Official Analytical Chemist [AOAC]. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists (15th ed.). AOAC International | spa |
dc.relation.references | Astudillo-Heras, L. L., & Sánchez-Salamea, A. L. (2019). Extracción de Almidón a partir del banano (plátano) de categoría II (Musa paradisiaca) en estado verde, para la elaboración de colada instantánea fortificada y utilización de su fibra para balanceado de ganado porcino [Tesis de grado]. Universidad de Cuencua. | spa |
dc.relation.references | Azad, Md. A. K., Sarker, M., Li, T., & Yin, J. (2018). Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/9478630 | spa |
dc.relation.references | Azizi, D., Jafari, S. M., Mirzaei, H., & Dehnad, D. (2017). The Influence of Refractance Window Drying on Qualitative Properties of Kiwifruit Slices. International Journal of Food Engineering, 13(2). https://doi.org/10.1515/ijfe-2016-0201 | spa |
dc.relation.references | Azizishafa, M., Basti, A. A., Sharifan, A., & Khanjari, A. (2023). Reformulation of traditional Iranian food (Doeeneh) using probiotics: Bifidobacterium animalis subsp. lactis BB-12, Lactobacillus acidophilus LA-5, Lacticaseibacillus rhamnosus LGG, and inulin and its effect on diabetic and non-diabetic rats. Food Quality and Safety, 7. https://doi.org/10.1093/fqsafe/fyad028 | spa |
dc.relation.references | Babolanimogadam, N., Akhondzadeh Basti, A., Khanjari, A., Sajjadi Alhashem, S. H., Babolani Moghadgam, K., & Ahadzadeh, S. (2024). Shelf life extending of probiotic beef patties with polylactic acid‐ajwain essential oil films and stress effects on Bacillus coagulans. Journal of Food Science, 89(2), 866–880. https://doi.org/10.1111/1750-3841.16864 | spa |
dc.relation.references | Badui, S. (2006). Química de los alimentos (E. Quintanar Duarte & M. B. Gutiérrez Hernández, Eds.; Cámara Nac). Pearson Educación de México, S.A. de C.V. https://itscv.edu.ec/wp-content/uploads/2019/06/QUIMICA-DE-LOS-ALIMENTOS-4ta-Edicion.pdf | spa |
dc.relation.references | Bamigbola, Y. A., Awolu, O. O., & Oluwalana, I. B. (2016). The effect of plantain and tigernut flours substitution on the antioxidant, physicochemical and pasting properties of wheat-based composite flours. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1245060 | spa |
dc.relation.references | Batra, N., Singh, J., Banerjee, U. C., Patnaik, P. R., & Sobti, R. C. (2002). Production and characterization of a thermostable β ‐galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36(1), 1–6. https://doi.org/10.1042/BA20010091 | spa |
dc.relation.references | Bell, K. J., Saad, S., Tillett, B. J., McGuire, H. M., Bordbar, S., Yap, Y. A., Nguyen, L. T., Wilkins, M. R., Corley, S., Brodie, S., Duong, S., Wright, C. J., Twigg, S., de St Groth, B. F., Harrison, L. C., Mackay, C. R., Gurzov, E. N., Hamilton-Williams, E. E., & Mariño, E. (2022). Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 10(1), 9. https://doi.org/10.1186/s40168-021-01193-9 | spa |
dc.relation.references | Bello‐Pérez, L. A., Pineda‐Tapia, F. J., Pacheco‐Vargas, G., Carmona‐Garcia, R., & Tovar, J. (2024a). Whole Unripe Plantain Flour as Unconventional Carbohydrate Source to Prepare Gluten‐Free Pasta with High Dietary Fiber Content and Reduced Starch Hydrolysis. Starch - Stärke, 76(1–2). https://doi.org/10.1002/star.202200222 | spa |
dc.relation.references | Bernat, N., Cháfer, M., González-Martínez, C., Rodríguez-García, J., & Chiralt, A. (2015). Optimisation of oat milk formulation to obtain fermented derivatives by using probiotic Lactobacillus reuteri microorganisms. Food Science and Technology International, 21(2), 145–157. https://doi.org/10.1177/1082013213518936 | spa |
dc.relation.references | Bhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of food powders. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672 | spa |
dc.relation.references | Bharwani, A., Mian, M. F., Foster, J. A., Surette, M. G., Bienenstock, J., & Forsythe, P. (2016). Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology, 63, 217–227. https://doi.org/10.1016/j.psyneuen.2015.10.001 | spa |
dc.relation.references | Bonik, S. K., Tamanna, S. T., Happy, T. A., Haque, Md. N., Islam, S., & Faruque, Md. O. (2024). Formulation and evaluation of cereal-based breads fortified with natural prebiotics from green banana, moringa leaves powder and soya powder. Applied Food Research, 4(1), 100377. https://doi.org/10.1016/j.afres.2023.100377 | spa |
dc.relation.references | Cadena, R. S., Caimi, D., Jaunarena, I., Lorenzo, I., Vidal, L., Ares, G., Deliza, R., & Giménez, A. (2014). Comparison of rapid sensory characterization methodologies for the development of functional yogurts. Food Research International, 64, 446–455. https://doi.org/10.1016/j.foodres.2014.07.027 | spa |
dc.relation.references | Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428. https://doi.org/10.1016/j.ifset.2005.05.003 | spa |
dc.relation.references | Cano-Sarmiento, C., Téllez-Medina, D. I., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C. Y., García-Armenta, E., Alamilla-Beltrán, L., García, H. S., & Gutiérrez-López, G. F. (2018). Zeta Potential of Food Matrices. Food Engineering Reviews, 10(3), 113–138. https://doi.org/10.1007/s12393-018-9176-z | spa |
dc.relation.references | Cánovas Barbosa, & G.V y Vega Mercado, H. (1996). Dehydration of Foods Dehydration of Foods Series Editor (1st ed.). | spa |
dc.relation.references | Cao, J., Yu, Z., Liu, W., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods, 64(October), 103643. https://doi.org/10.1016/j.jff.2019.103643 | spa |
dc.relation.references | Cao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2 | spa |
dc.relation.references | Capela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203–211. https://doi.org/10.1016/j.foodres.2005.07.007 | spa |
dc.relation.references | Cardoso, P. I. F. da C., Grisi, C. V. B., Vieira, É. de A., de Almeida, D. K. L., & Cardarelli, H. R. (2024). Cereal flours with Bacillus coagulans and beta-glucan: Technological properties and sensory acceptability. Food Chemistry, 448, 139146. https://doi.org/10.1016/j.foodchem.2024.139146 | spa |
dc.relation.references | Castaño-Peláez, H. I., Cortes-Rodríguez, M., Gil-González, J., & Gallón-Bedoya, M. (2022). Influence of gum arabic and homogenization process on the physicochemical stability of strawberry suspensions. Food Science and Technology, 42. https://doi.org/10.1590/fst.58020 | spa |
dc.relation.references | Castaño-Peláez, H., Rodríguez, M. C., Gil G., J. H., López, G. L., & Ortega-Toro, R. (2022). Optimization of spray-drying process parameters on strawberry (Fragaria ananassa D.) extracts microcapsules quality. Journal of Berry Research, 12(4), 531–550. https://doi.org/10.3233/JBR-220047 | spa |
dc.relation.references | Castellanos-Galeano, F. J., & Lucas-Aguirre, J. C. (2011). Caracterización física del fruto en variedades de plátano cultivadas en la zona cafetera de Colombia. Acta Agronómica, 60(2). | spa |
dc.relation.references | Castoldi, M., Zotarelli, M. F., Durigon, A., Carciofi, B. A. M., & Laurindo, J. B. (2015). Production of Tomato Powder by Refractance Window Drying. Drying Technology, 33(12), 1463–1473. https://doi.org/10.1080/07373937.2014.989327 | spa |
dc.relation.references | Catellanos-Galeano, F. J., Chavez-Salazar, A., & Martínez-Hernández, L. J. (2017). Effect of process variables in the production of fried green plantain in vacuum. Revista Vitae, 38–46. https://doi.org/10.17533/udea.vitae.v24n1a05 | spa |
dc.relation.references | Cayra, E., Dávila, J. H., Villalta, J. M., & Rosales, Y. (2017). Evaluación de la Estabilidad y Viabilidad de Dos Cepas Probióticas Microencapsuladas por Lecho Fluidizado. Información Tecnológica, 28(6), 35–44. https://doi.org/10.4067/S0718-07642017000600005 | spa |
dc.relation.references | Champagne, C. P., Tompkins, T. A., Buckley, N. D., & Green-Johnson, J. M. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiology, 27(7), 968–972. https://doi.org/10.1016/j.fm.2010.06.003 | spa |
dc.relation.references | Chandanasree, D., Gul, K., & Riar, C. S. (2016). Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydrocolloids, 52, 175–182. https://doi.org/10.1016/j.foodhyd.2015.06.024 | spa |
dc.relation.references | Charalampopoulos, D., Pandiella, S. S., & Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology, 82(2), 133–141. https://doi.org/10.1016/S0168-1605(02)00248-9 | spa |
dc.relation.references | Chávez‐Salazar, A., Castellanos‐Galeano, F. J., Álvarez‐Barreto, C. I., Bello‐Pérez, L. A., Cortés‐Rodríguez, M., & Hoyos‐Leyva, J. D. (2019). Optimization of the Spray Drying Process of the Esterified Plantain Starch by Response Surface Methodology. Starch - Stärke, 71(7–8). https://doi.org/10.1002/star.201800330 | spa |
dc.relation.references | Chen, Q., Bi, J., Zhou, Y., Liu, X., Wu, X., & Chen, R. (2014). Multi-objective Optimization of Spray Drying of Jujube (Zizyphus jujuba Miller) Powder Using Response Surface Methodology. Food and Bioprocess Technology, 7(6), 1807–1818. https://doi.org/10.1007/s11947-013-1171-z | spa |
dc.relation.references | Chen, X., Yang, G., Song, J.-H., Xu, H., Li, D., Goldsmith, J., Zeng, H., Parsons-Wingerter, P. A., Reinecker, H.-C., & Kelly, C. P. (2013). Probiotic Yeast Inhibits VEGFR Signaling and Angiogenesis in Intestinal Inflammation. PLoS ONE, 8(5), e64227. https://doi.org/10.1371/journal.pone.0064227 | spa |
dc.relation.references | Chmielewska, A., & Szajewska, H. (2010). Systematic review of randomised controlled trials: probiotics for functional constipation. World Journal of Gastroenterology, 16(1), 69–75. https://doi.org/10.3748/wjg.v16.i1.69 | spa |
dc.relation.references | Chugh, B., & Kamal-Eldin, A. (2020). Bioactive compounds produced by probiotics in food products. Current Opinion in Food Science, 32, 76–82. https://doi.org/10.1016/j.cofs.2020.02.003 | spa |
dc.relation.references | Coelho, S. R., Lima, Í. A., Martins, M. L., Benevenuto Júnior, A. A., Torres Filho, R. de A., Ramos, A. de L. S., & Ramos, E. M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT, 102, 254–259. https://doi.org/10.1016/j.lwt.2018.12.045 | spa |
dc.relation.references | Colica, C., Avolio, E., Bollero, P., Costa de Miranda, R., Ferraro, S., Sinibaldi Salimei, P., De Lorenzo, A., & Di Renzo, L. (2017). Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediators of Inflammation, 2017, 1–10. https://doi.org/10.1155/2017/5650627 | spa |
dc.relation.references | Cordeiro, B. F., Alves, J. L., Belo, G. A., Oliveira, E. R., Braga, M. P., da Silva, S. H., Lemos, L., Guimarães, J. T., Silva, R., Rocha, R. S., Jan, G., Le Loir, Y., Silva, M. C., Freitas, M. Q., Esmerino, E. A., Gala-García, A., Ferreira, E., Faria, A. M. C., Cruz, A. G., … do Carmo, F. L. R. (2021). Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.623920 | spa |
dc.relation.references | Cortés-Rodríguez, M., Hernández, G., & Estrada M, E. M. (2017). OPTIMIZATION OF THE SPRAY DRYING PROCESS FOR OBTAINING CAPE GOOSEBERRY POWDER: AN INNOVATIVE AND PROMISING FUNCTIONAL FOOD. Revista Vitae, 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07 | spa |
dc.relation.references | Dadhaneeya, H., Nayak, P. K., Saikia, D., Kondareddy, R., Ray, S., & Kesavan, R. krishnan. (2023). The impact of refractance window drying on the physicochemical properties and bioactive compounds of malbhog banana slice and pulp. Applied Food Research, 3(1), 100279. https://doi.org/10.1016/j.afres.2023.100279 | spa |
dc.relation.references | Dahdouh, L., Delalonde, M., Ricci, J., Ruiz, E., & Wisnewski, C. (2018). Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies, 48(March), 304–312. https://doi.org/10.1016/j.ifset.2018.07.006 | spa |
dc.relation.references | Day, L., Seymour, R. B., Pitts, K. F., Konczak, I., & Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science and Technology, 20(9), 388–395. https://doi.org/10.1016/j.tifs.2008.05.002 | spa |
dc.relation.references | Daza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29. https://doi.org/10.1016/j.fbp.2015.10.001 | spa |
dc.relation.references | de Oliveira, P. M., Leite Júnior, B. R. de C., Martins, E. M. F., Martins, M. L., Vieira, É. N. R., de Barros, F. A. R., Cristianini, M., de Almeida Costa, N., & Ramos, A. M. (2021). Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. Journal of Food Science and Technology, 58(1), 98–109. https://doi.org/10.1007/s13197-020-04518-y | spa |
dc.relation.references | Di Stefano, E., White, J., Seney, S., Hekmat, S., McDowell, T., Sumarah, M., & Reid, G. (2017). A Novel Millet-Based Probiotic Fermented Food for the Developing World. Nutrients, 9(5), 529. https://doi.org/10.3390/nu9050529 | spa |
dc.relation.references | Diaz‐Vela, J., Totosaus, A., Cruz‐Guerrero, A. E., & de Lourdes Pérez‐Chabela, M. (2013). In vitro evaluation of the fermentation of added‐value agroindustrial by‐products: cactus pear ( <scp>O</scp> puntia ficus‐indica <scp>L</scp> .) peel and pineapple ( <scp>A</scp> nanas comosus ) peel as functional ingredients. International Journal of Food Science & Technology, 48(7), 1460–1467. https://doi.org/10.1111/ijfs.12113 | spa |
dc.relation.references | Do, T. V. T., & Fan, L. (2019). Probiotic Viability, Qualitative Characteristics, and Sensory Acceptability of Vegetable Juice Mixture Fermented with &lt;i&gt;Lactobacillus&lt;/i&gt; Strains. Food and Nutrition Sciences, 10(04), 412–427. https://doi.org/10.4236/fns.2019.104031 | spa |
dc.relation.references | Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2007). α-Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chemistry, 104(1), 10–20. https://doi.org/10.1016/j.foodchem.2006.10.065 | spa |
dc.relation.references | Dunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E. M., O’Sullivan, G. C., Shanahan, F., & Collins, J. K. (1999). Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek, 76(1–4), 279–292. http://www.ncbi.nlm.nih.gov/pubmed/10532384 | spa |
dc.relation.references | Duru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019a). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102 | spa |
dc.relation.references | Duru, K. C., Kovaleva, ElenaG., Danilova, IrinaG., & Belousova, AnnaV. (2019b). Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT, 111, 9–15. https://doi.org/10.1016/j.lwt.2019.04.102 | spa |
dc.relation.references | Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46 Suppl 2, S33-50. | spa |
dc.relation.references | Enujiugha, Victor. N., & Badejo, A. A. (2017). Probiotic potentials of cereal-based beverages. Critical Reviews in Food Science and Nutrition, 57(4), 790–804. https://doi.org/10.1080/10408398.2014.930018 | spa |
dc.relation.references | Eraso-Grisales, S., Cortés-Rodríguez, M., Gallón-Bedoya, M., Herrera-Herrera, E., & Ortega-Toro, R. (2023a). A powdered mix of cape gooseberry-based pulp, seed, and peel: Optimization of formulation and spray-drying process. Journal of Berry Research, 13(2), 107–120. https://doi.org/10.3233/JBR-220079 | spa |
dc.relation.references | Eraso-Grisales, S., Cortés-Rodríguez, M., Gallón-Bedoya, M., Herrera-Herrera, E., & Ortega-Toro, R. (2023b). A powdered mix of cape gooseberry-based pulp, seed, and peel: Optimization of formulation and spray-drying process. Journal of Berry Research, 13(2), 107–120. https://doi.org/10.3233/JBR-220079 | spa |
dc.relation.references | Ermis, E. (2021). A review of drying methods for improving the quality of probiotic powders and characterization. Drying Technology, 0(0), 1–18. https://doi.org/10.1080/07373937.2021.1950169 | spa |
dc.relation.references | Ermiş, E. (Ed.). (2021). Food Powders Properties and Characterization. Springer International Publishing. https://doi.org/10.1007/978-3-030-48908-3 | spa |
dc.relation.references | Espin, J. C., & Balberan, F. T. (2005). Alimentos funcionales (EUFIC). In Constituyentes bioactivos no nutricionales de alimentos de origen vegetal y su aplicacion en alimentos funcionales. http://www.eufic.org/article/es/expid/basics-alimentos-funcionales/ | spa |
dc.relation.references | Espinosa Solis, V. (2012). PROPIEDADES DE DIGESTIÓN DE ALMIDONES NATIVOS Y MODIFICADOS DE PLÁTANO Y MANGO. https://tesis.ipn.mx/bitstream/handle/123456789/13426/Tesis%202012%20Vicente%20Espinosa%20Solis.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Falcomer, A. L., Riquette, R. F. R., de Lima, B. R., Ginani, V. C., & Zandonadi, R. P. (2019). Health Benefits of Green Banana Consumption: A Systematic Review. Nutrients, 11(6), 1222. https://doi.org/10.3390/nu11061222 | spa |
dc.relation.references | FAO. (2022). FAOSTAT - Crops and livestock products: Plantains and cooking bananas. https://www.fao.org/faostat/en/#data/QCL/visualize | spa |
dc.relation.references | FAO, E., & OMS, E. (2006). Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. Estudios FAO Alimentación y Nutrición, 85, 52. file:///C:/Users/Acer/Documents/paty/homework1/PROBIOTICOS OPS 2006.pdf | spa |
dc.relation.references | Fernández-Abascal, B., Suárez-Pinilla, P., Cobo-Corrales, C., Crespo-Facorro, B., & Suárez-Pinilla, M. (2021). In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episod. Neuroscience & Biobehavioral Reviews, 125, 535–568. https://doi.org/10.1016/j.neubiorev.2021.01.005 | spa |
dc.relation.references | Ford, A. C., Quigley, E. M. M., Lacy, B. E., Lembo, A. J., Saito, Y. A., Schiller, L. R., Soffer, E. E., Spiegel, B. M. R., & Moayyedi, P. (2014). Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. The American Journal of Gastroenterology, 109(10), 1547–1562. https://doi.org/10.1038/ajg.2014.202 | spa |
dc.relation.references | Franceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197–207. https://doi.org/10.1080/07373937.2013.814664 | spa |
dc.relation.references | Fustier, P., Taherian, A. R., & Ramaswamy, H. S. (2010). Emulsion Delivery Systems for Functional Foods. In Functional Food Product Development (pp. 79–97). Wiley-Blackwell. https://doi.org/10.1002/9781444323351.ch4 | spa |
dc.relation.references | García-Tejeda, Y. V., Zamudio-Flores, P. B., Bello-Pérez, L. A., Romero-Bastida, C. A., & Solorza-Feria, J. (2011). OXIDACIÓN DEL ALMIDÓN NATIVO DE PLÁTANO PARA SU USO POTENCIAL EN LA FABRICACIÓN DE MATERIALES DE EMPAQUE BIODEGRADABLES: CARACTERIZACIÓN FÍSICA, QUÍMICA, TÉRMICA Y MORFOLÓGICA. In Rev. Iberoam. Polim (Vol. 12, Issue 3). https://reviberpol.files.wordpress.com/2019/07/2011-garcia-tejana.pdf | spa |
dc.relation.references | Genovese, D. B., & Lozano, J. E. (2001). The effect of hydrocolloids on the stability and viscosity of cloudy apple juices. Food Hydrocolloids, 15(1), 1–7. https://doi.org/10.1016/S0268-005X(00)00053-9 | spa |
dc.relation.references | Genovese, D. B., & Lozano, J. E. (2006). Contribution of colloidal forces to the viscosity and stability of cloudy apple juice. Food Hydrocolloids, 20(6), 767–773. https://doi.org/10.1016/j.foodhyd.2005.07.003 | spa |
dc.relation.references | George Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018a). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002 | spa |
dc.relation.references | George Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018b). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002 | spa |
dc.relation.references | Gibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401 | spa |
dc.relation.references | Giraldo-Gómez, G. I., Rodríguez-Barona, S., & Sanabria-González, N. R. (2019). Preparation of instant green banana flour powders by an extrusion process. Powder Technology, 353, 437–443. https://doi.org/10.1016/j.powtec.2019.05.050 | spa |
dc.relation.references | Glaser, R., & Venus, J. (2014). Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements. Biotechnology Reports, 4, 60–65. https://doi.org/10.1016/j.btre.2014.08.001 | spa |
dc.relation.references | Glaser, R., & Venus, J. (2017). Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium. New Biotechnology, 37, 180–193. https://doi.org/10.1016/j.nbt.2016.12.006 | spa |
dc.relation.references | Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004827.pub4 | spa |
dc.relation.references | Golubeva, A. V., Crampton, S., Desbonnet, L., Edge, D., O’Sullivan, O., Lomasney, K. W., Zhdanov, A. V., Crispie, F., Moloney, R. D., Borre, Y. E., Cotter, P. D., Hyland, N. P., O’Halloran, K. D., Dinan, T. G., O’Keeffe, G. W., & Cryan, J. F. (2015). Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology, 60, 58–74. https://doi.org/10.1016/j.psyneuen.2015.06.002 | spa |
dc.relation.references | Gómez, A., Anaya, J., Rodríguez, G., Lechón, A., Perugachi, I., Velásquez, C., Carlos, S., Miniet, A., & Lascano, R. (2022). Glycemic effect of a functional pancake made from an instant oat mix. Revista Espanola de Nutricion Humana y Dietetica, 26(3), 189–196. https://doi.org/10.14306/renhyd.26.3.1668 | spa |
dc.relation.references | Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292–302. https://doi.org/10.1111/j.1541-4337.2010.00110.x | spa |
dc.relation.references | Gray, G. M. (1992). Starch Digestion and Absorption in Nonruminants. The Journal of Nutrition, 122(1), 172–177. https://doi.org/10.1093/jn/122.1.172 | spa |
dc.relation.references | Grom, L. C., Rocha, R. S., Balthazar, C. F., Guimarães, J. T., Coutinho, N. M., Barros, C. P., Pimentel, T. C., Venâncio, E. L., Collopy Junior, I., Maciel, P. M. C., Silva, P. H. F., Granato, D., Freitas, M. Q., Esmerino, E. A., Silva, M. C., & Cruz, A. G. (2020). Postprandial glycemia in healthy subjects: Which probiotic dairy food is more adequate? Journal of Dairy Science, 103(2), 1110–1119. https://doi.org/10.3168/jds.2019-17401 Guandalini, S. (2011). Probiotics for Prevention and Treatment of Diarrhea. Journal of Clinical Gastroenterology, 45, S149–S153. https://doi.org/10.1097/MCG.0b013e3182257e98 | spa |
dc.relation.references | Gupta, M., & Bajaj, B. K. (2017). Development of fermented oat flour beverage as a potential probiotic vehicle. Food Bioscience, 20, 104–109. https://doi.org/10.1016/j.fbio.2017.08.007 | spa |
dc.relation.references | Haffner, F. B., Diab, R., & Pasc, A. (2016). Encapsulation of probiotics: insights into academic and industrial approaches. AIMS Materials Science, 3(1), 114–136. https://doi.org/10.3934/matersci.2016.1.114 | spa |
dc.relation.references | Haider, C., & Palzer, S. (2016). Agglomeration in the Food Industry—A Result of Particle Contact Mechanisms. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21002-0 | spa |
dc.relation.references | Handique, J., Bora, S. J., & Sit, N. (2019). Optimization of banana juice extraction using combination of enzymes. Journal of Food Science and Technology, 56(8), 3732–3743. https://doi.org/10.1007/s13197-019-03845-z | spa |
dc.relation.references | Hernández-Santos, B., Martínez-Sánchez, C. E., Torruco-Uco, J. G., Rodríguez-Miranda, J., Ruiz-López, I. I., Vajando-Anaya, E. S., Carmona-García, R., & Herman-Lara, E. (2016). Evaluation of physical and chemical properties of carrots dried by Refractance Window drying. Drying Technology, 34(12), 1414–1422. https://doi.org/10.1080/07373937.2015.1118705 | spa |
dc.relation.references | Hijová, E. (2022). Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. In Metabolites (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/metabo12040313 | spa |
dc.relation.references | Homsuwan, N., Pruksasri, S., & Ngampanya, B. (2023). Bacillus siamensis FVP1 as a potential probiotic for enhancing nutritional aspects of soybean meal. International Journal of Food Science and Technology, 58(8), 4277–4287. https://doi.org/10.1111/ijfs.16527 | spa |
dc.relation.references | Hou, H., Chen, D., Zhang, K., Zhang, W., Liu, T., Wang, S., Dai, X., Wang, B., Zhong, W., & Cao, H. (2022). Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Letters, 526, 225–235. https://doi.org/10.1016/j.canlet.2021.11.027 | spa |
dc.relation.references | Huang, S., Méjean, S., Rabah, H., Dolivet, A., Le Loir, Y., Chen, X. D., Jan, G., Jeantet, R., & Schuck, P. (2017). Double use of concentrated sweet whey for growth and spray drying of probiotics: Towards maximal viability in pilot scale spray dryer. Journal of Food Engineering, 196, 11–17. https://doi.org/10.1016/j.jfoodeng.2016.10.017 | spa |
dc.relation.references | Huq, T., Khan, A., Khan, R. A., Riedl, B., & Lacroix, M. (2013). Encapsulation of Probiotic Bacteria in Biopolymeric System. Critical Reviews in Food Science and Nutrition, 53(9), 909–916. https://doi.org/10.1080/10408398.2011.573152 | spa |
dc.relation.references | İçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015a). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102 | spa |
dc.relation.references | İçier, F., Gündüz, G. T., Yılmaz, B., & Memeli, Z. (2015b). Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Science and Technology, 63(1), 57–64. https://doi.org/10.1016/j.lwt.2015.03.102 | spa |
dc.relation.references | Iguarán, E. C., Triviño-Valencia, J., & Rodríguez-Barona, S. (2020). Effect of storage and stress conditions on the counts of Bifidobacterium animalis microencapsulated and incorporated in plantain flour. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.25219 | spa |
dc.relation.references | Instituto Colombiano Agropecuario. (2019). Resolución 17334 (17334). | spa |
dc.relation.references | Instituto Colombiano de Bienestar Familiar. (2018). Tabla de composición de alimentos colombianos. Instituto Colombiano de Bienestar Familiar. | spa |
dc.relation.references | Instituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. (1976). Norma Técnica Colombiana [NTC] 1190. | spa |
dc.relation.references | Iraporda, C., Rubel, I. A., Managó, N., Manrique, G. D., Garrote, G. L., & Abraham, A. G. (2022). Inulin addition improved probiotic survival in soy-based fermented beverage. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 38(8). https://doi.org/10.1007/s11274-022-03322-4 | spa |
dc.relation.references | Ishwarya, S. P., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171–180. https://doi.org/10.1016/j.jfoodeng.2014.10.011 | spa |
dc.relation.references | Jalgaonkar, K., Mahawar, M. K., Vishwakarma, R. K., Shivhare, U. S., & Nambi, V. E. (2020). Optimization of process condition for preparation of sapota bar using Refractance window drying method. Drying Technology, 38(3), 269–278. https://doi.org/10.1080/07373937.2018.1482314 | spa |
dc.relation.references | Janiszewska-Turak, E., Dellarosa, N., Tylewicz, U., Laghi, L., Romani, S., Dalla Rosa, M., & Witrowa-Rajchert, D. (2017). The influence of carrier material on some physical and structural properties of carrot juice microcapsules. Food Chemistry, 236, 134–141. https://doi.org/10.1016/j.foodchem.2017.03.134 | spa |
dc.relation.references | Kandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012 | spa |
dc.relation.references | Karagül, Ö., & EL, S. N. (2024). Cereal-based fermented synbiotic instant powders: a dessert practice. Ege Üniversitesi Ziraat Fakültesi Dergisi, 60(4), 571–579. https://doi.org/10.20289/zfdergi.1336843 | spa |
dc.relation.references | Kareem, S. O., Adio, O. Q., & Osho, M. B. (2014). Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix. Enzyme Research, 2014, 1–7. https://doi.org/10.1155/2014/967056 | spa |
dc.relation.references | Katina, K., Liukkonen, K.-H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.-M., Lampi, A.-M., Pihlava, J.-M., & Poutanen, K. (2007). Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3), 348–355. https://doi.org/10.1016/j.jcs.2007.07.006 | spa |
dc.relation.references | Kelly, G. S. (2003). Bovine colostrums: a review of clinical uses. Alternative Medicine Review : A Journal of Clinical Therapeutic, 8(4), 378–394. | spa |
dc.relation.references | Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F., & Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019 | spa |
dc.relation.references | Khalesi, S., Sun, J., Buys, N., & Jayasinghe, R. (2014). Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension, 64(4), 897–903. https://doi.org/10.1161/HYPERTENSIONAHA.114.03469 | spa |
dc.relation.references | Kingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., & Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT - Food Science and Technology, 62(1), 847–853. https://doi.org/10.1016/j.lwt.2014.12.007 | spa |
dc.relation.references | Kober, M.-M., & Bowe, W. P. (2015). The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women’s Dermatology, 1(2), 85–89. https://doi.org/10.1016/j.ijwd.2015.02.001 | spa |
dc.relation.references | Koç, B., Sakin-Yılmazer, M., Kaymak-Ertekin, F., & Balkır, P. (2014). Physical properties of yoghurt powder produced by spray drying. Journal of Food Science and Technology, 51(7), 1377–1383. https://doi.org/10.1007/s13197-012-0653-8 | spa |
dc.relation.references | Krumbeck, J. A., Maldonado-Gomez, M. X., Martínez, I., Frese, S. A., Burkey, T. E., Rasineni, K., Ramer-Tait, A. E., Harris, E. N., Hutkins, R. W., & Walter, J. (2015). In vivo selection to identify bacterial strains with enhanced ecological performance in synbiotic applications. Applied and Environmental Microbiology, 81(7), 2455–2465. https://doi.org/10.1128/AEM.03903-14 | spa |
dc.relation.references | Kumar, B., Vijayendra, S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products - a review. Journal of Food Science and Technology, 52(10), 6112–6124. https://doi.org/10.1007/s13197-015-1795-2 | spa |
dc.relation.references | Kumar, H., Dhalaria, R., Guleria, S., Cimler, R., Choudhary, R., Dhanjal, D. S., Singh, R., Kimta, N., Dulta, K., Pathera, A. K., Khan, A., Nausad, M., Alomar, S. Y., Manickam, S., & Kuča, K. (2023). To exploring the role of probiotics, plant-based fermented products, and paraprobiotics as anti-inflammatory agents in promoting human health. Journal of Agriculture and Food Research, 14, 100896. https://doi.org/10.1016/j.jafr.2023.100896 | spa |
dc.relation.references | Kumar, P. S., Saravanan, A., Sheeba, N., & Uma, S. (2019). Structural, functional characterization and physicochemical properties of green banana flour from dessert and plantain bananas (Musa spp.). LWT, 116, 108524. https://doi.org/10.1016/j.lwt.2019.108524 | spa |
dc.relation.references | Kumar, P. S., Thayumanavan, S., Pushpavalli, S., Saraswathi, M. S., Backiyarani, S., Mohanasundaram, A., & Uma, S. (2023). Comparing physico‐chemical characteristics, antioxidant properties, glycemic response, and volatile profiles of eleven banana varieties. International Journal of Food Science & Technology, 58(6), 2893–2908. https://doi.org/10.1111/ijfs.16392 | spa |
dc.relation.references | Kumar, S., Rattu, G., Mitharwal, S., Chandra, A., Kumar, S., Kaushik, A., Mishra, V., & Nema, P. K. (2022). Trends in non‐dairy‐based probiotic food products: Advances and challenges. Journal of Food Processing and Preservation, 46(9). https://doi.org/10.1111/jfpp.16578 | spa |
dc.relation.references | Lacerda, E. C. Q., Calado, V. M. de A., Monteiro, M., Finotelli, P. V., Torres, A. G., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/j.carbpol.2016.05.093 | spa |
dc.relation.references | Laksmi Suryaatmadja Jenie, B. S., Yusup Saputra, M., & Widaningrum, dan. (2013). SENSORY EVALUATION AND SURVIVAL OF PROBIOTICS IN MODIFIED BANANA FLOUR YOGHURT DURING STORAGE. Jurnal Teknologi Dan Industri Pangan, 24(1), 40–47. https://doi.org/10.6066/jtip.2013.24.1.40 | spa |
dc.relation.references | Lamiki, P., Tsuchiya, J., Pathak, S., Okura, R., Solimene, U., Jain, S., Kawakita, S., & Marotta, F. (2010). Probiotics in diverticular disease of the colon: an open label study. Journal of Gastrointestinal and Liver Diseases : JGLD, 19(1), 31–36. http://www.ncbi.nlm.nih.gov/pubmed/20361072 | spa |
dc.relation.references | Lapsiri, W., Bhandari, B., & Wanchaitanawong, P. (2012). Viability of Lactobacillus plantarum TISTR 2075 in Different Protectants during Spray Drying and Storage. Drying Technology, 30(13), 1407–1412. https://doi.org/10.1080/07373937.2012.684226 | spa |
dc.relation.references | Le Leu, R. K., Hu, Y., Brown, I. L., Woodman, R. J., & Young, G. P. (2010). Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis, 31(2), 246–251. https://doi.org/10.1093/carcin/bgp197 | spa |
dc.relation.references | Lee, A., Cheng, K.-C., & Liu, J.-R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLOS ONE, 12(8), e0182220. https://doi.org/10.1371/journal.pone.0182220 | spa |
dc.relation.references | Lee, N., Park, Y.-S., Kang, D.-K., & Paik, H.-D. (2023). Paraprobiotics: definition, manufacturing methods, and functionality. Food Science and Biotechnology, 32(14), 1981–1991. https://doi.org/10.1007/s10068-023-01378-y | spa |
dc.relation.references | Liu, Liong, Chung, Huang, Peng, Cheng, Lin, Wu, & Tsai. (2019). Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 11(4), 820. https://doi.org/10.3390/nu11040820 | spa |
dc.relation.references | Long-Smith, C., O’Riordan, K. J., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2020). Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 60(1), 477–502. https://doi.org/10.1146/annurev-pharmtox-010919-023628 | spa |
dc.relation.references | Lopetuso, L. R., Giorgio, M. E., Saviano, A., Scaldaferri, F., Gasbarrini, A., & Cammarota, G. (2019). Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? International Journal of Molecular Sciences, 20(1), 183. https://doi.org/10.3390/ijms20010183 | spa |
dc.relation.references | López-Esparza, R., Balderas Altamirano, M. A., Pérez, E., & Gama Goicochea, A. (2015). Importance of Molecular Interactions in Colloidal Dispersions. Advances in Condensed Matter Physics, 2015, 1–8. https://doi.org/10.1155/2015/683716 | spa |
dc.relation.references | Louis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661–672. https://doi.org/10.1038/nrmicro3344 | spa |
dc.relation.references | Mahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., & Srivastav, P. P. (2021). Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods, 3, 100024. https://doi.org/10.1016/j.fufo.2021.100024 | spa |
dc.relation.references | Mäkeläinen, H., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. (2010). Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Beneficial Microbes, 1(2), 139–148. https://doi.org/10.3920/BM2009.0029 | spa |
dc.relation.references | Malfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021a). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study. Phytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074 | spa |
dc.relation.references | Malfa, G. A., Di Giacomo, C., Cardia, L., Sorbara, E. E., Mannucci, C., & Calapai, G. (2021b). A standardized extract of <scp> Opuntia ficus‐indica </scp> (L.) Mill and <scp> Olea europaea </scp> L. improves gastrointestinal discomfort: A <scp>double‐blinded randomized‐controlled</scp> study. Phytotherapy Research, ptr.7074. https://doi.org/10.1002/ptr.7074 | spa |
dc.relation.references | Mandale, N. M., Attkan, A. K., Kumar, S., & Kumar, N. (2023). Drying kinetics and quality assessment of refractance window dried beetroot. Journal of Food Process Engineering, 46(7). https://doi.org/10.1111/jfpe.14332 | spa |
dc.relation.references | Manderino, L., Carroll, I., Azcarate-Peril, M. A., Rochette, A., Heinberg, L., Peat, C., Steffen, K., Mitchell, J., & Gunstad, J. (2017). Preliminary Evidence for an Association Between the Composition of the Gut Microbiome and Cognitive Function in Neurologically Healthy Older Adults. Journal of the International Neuropsychological Society, 23(8), 700–705. https://doi.org/10.1017/S1355617717000492 | spa |
dc.relation.references | Mangiola, F. (2016). Gut microbiota in autism and mood disorders. World Journal of Gastroenterology, 22(1), 361. https://doi.org/10.3748/wjg.v22.i1.361 | spa |
dc.relation.references | Mantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2018). Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods, 8(1), 4. https://doi.org/10.3390/foods8010004 | spa |
dc.relation.references | Marín-Arango, Z. T., Cortés R., M., Gil G., J., & Agudelo-Laverde, L. M. (2023). Biofortified andean blackberry (rubus glaucus benth) powder with Lacticaseibacillus casei: process and formulation effects. F1000Research, 12, 479. https://doi.org/10.12688/f1000research.132767.1 | spa |
dc.relation.references | Martinez Pantoja, D. F., Acosta Castaño, M., Alvarez Barreto, C. I., & Castellanos Galeano, F. J. (2022). Fritura por inmersión al vacío de rodajas de plátano verde con recubrimientos comestibles. INGENIERÍA Y COMPETITIVIDAD, 25(1), 14. https://doi.org/10.25100/iyc.v25i1.11970 | spa |
dc.relation.references | Martínez-Navarrete, N., Andrés Grau, A., Chiralt Boix, A., & Fito Maupoey, P. (1998). Termodinámica y cinética de sistemas alimento-entorno. Universidad Politécnica de Valencia. | spa |
dc.relation.references | Martins, E. M. F., Ramos, A. M., Vanzela, E. S. L., Stringheta, P. C., de Oliveira Pinto, C. L., & Martins, J. M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51(2), 764–770. https://doi.org/10.1016/j.foodres.2013.01.047 | spa |
dc.relation.references | Melo Sabogal, D. V., Torres Grisales, Y., Serna jiménez, J. A., & Torres Valenzuela, L. S. (2015). APROVECHAMIENTO DE PULPA Y CÁSCARA DE PLÁTANO(Musa paradisiaca spp) PARA LA OBTENCIÓN DE MALTODEXTRINA. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 13(2), 76. https://doi.org/10.18684/BSAA(13)76-85 | spa |
dc.relation.references | Mendes, A. C., & Chronakis, I. S. (2021). Electrohydrodynamic encapsulation of probiotics: A review. Food Hydrocolloids, 117, 106688. https://doi.org/10.1016/j.foodhyd.2021.106688 Metchnikoff, E. (1910). The Prolongation of Life: Optimistic Studies (P. C. Mitchell, Ed.). G P Putnam’s Sons. | spa |
dc.relation.references | Michail, S. K., Stolfi, A., Johnson, T., & Onady, G. M. (2008). Efficacy of probiotics in the treatment of pediatric atopic dermatitis: a meta-analysis of randomized controlled trials. Annals of Allergy, Asthma & Immunology, 101(5), 508–516. https://doi.org/10.1016/S1081-1206(10)60290-6 | spa |
dc.relation.references | Min, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019a). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760 | spa |
dc.relation.references | Min, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019b). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2017). Evaluaciones agropecuarias municipales: plátano. | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2021). Cadena de plátano. Dirección de cadenas agrícolas y forestales Junio 2021. | spa |
dc.relation.references | Ministerio de Salud y Protección Social. (2021). Resolución 810. | spa |
dc.relation.references | Mitharwal, S., Kumar, S., & Chauhan, K. (2021a). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382 | spa |
dc.relation.references | Mitharwal, S., Kumar, S., & Chauhan, K. (2021b). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382 | spa |
dc.relation.references | Montoya, J. (2020). Formulación de una matriz alimentaria a base de harina de plátano Dominico Hartón (Musa paradisiaca L.) para el diseño de alimentos funcionales libres de gluten. 1–217. https://repositorio.unal.edu.co/handle/unal/78569 | spa |
dc.relation.references | Montoya, J., Rodriguez-Barona, S., & Giraldo, G. (2016). CARACTERISITICAS FISICOQUÍMICAS DE LA HARINA DE PLÁTANO (Musa Paradisiaca) DOMINICO HARTON Y HARINA DE TRIGO COMERCIAL CON TENDENCIAS FUNCIONALES. Vitae, 23, 396–399. | spa |
dc.relation.references | Mujumdar, A. S., & Xiao, H.-W. (2019). Advanced Drying Technologies for Foods (CRC Press). Taylor & Francis Group. https://cloudflare-ipfs.com/ipfs/bafykbzacedi3guxgccvbjaqaltnkgyetubxd7gizgn4ty4s4z545jreyjpwpo?filename=Arun S Mujumdar %28Editor%29_ Hong-Wei Xiao %28Editor%29 - Advanced Drying Technologies for Foods-CRC Press %282019%29.pdf | spa |
dc.relation.references | Muyonga, J. H., Natocho, J., Kigozi, J., Baidhe, E., & Nansereko, S. (2022). Drying behaviour and optimization of drying conditions of pineapple puree and slices using refractance window drying technology. Journal of Food Science and Technology, 59(7), 2794–2803. https://doi.org/10.1007/s13197-021-05302-2 | spa |
dc.relation.references | Nakamura, F., Ishida, Y., Aihara, K., Sawada, D., Ashida, N., Sugawara, T., Aoki, Y., Takehara, I., Takano, K., & Fujiwara, S. (2016). Effect of fragmented Lactobacillus amylovorus CP1563 on lipid metabolism in overweight and mildly obese individuals: a randomized controlled trial. Microbial Ecology in Health & Disease, 27(0). https://doi.org/10.3402/mehd.v27.30312 | spa |
dc.relation.references | Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., & Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility, 26(8), 1155–1162. https://doi.org/10.1111/nmo.12378 | spa |
dc.relation.references | Nguyen, T. D. T., Kang, J. H., & Lee, M. S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology, 113(3), 358–361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015 | spa |
dc.relation.references | Nindo, C. I., & Tang, J. (2007). Refractance Window Dehydration Technology: A Novel Contact Drying Method. Drying Technology, 25(1), 37–48. https://doi.org/10.1080/07373930601152673 | spa |
dc.relation.references | Ninkov, A., Frank, J. R., & Maggio, L. A. (2021). Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 11(3), 173–176. https://doi.org/10.1007/S40037-021-00695-4 | spa |
dc.relation.references | Nunes, G. L., Motta, M. H., Cichoski, A. J., Wagner, R., Muller, É. I., Codevilla, C. F., da Silva, C. D. B., & de Menezes, C. R. (2018). Encapsulation of lactobacillus acidophilus la-5 and bifidobacterium bb-12 by spray drying and evaluation of its resistance in simulated gastrointestinal conditions, thermal treatments and storage conditions. Ciencia Rural, 48(6), 1–11. https://doi.org/10.1590/0103-8478cr20180035 | spa |
dc.relation.references | Nuñez, H., Jaques, A., Belmonte, K., Elitin, J., Valdenegro, M., Ramírez, C., & Córdova, A. (2024). Development of an Apple Snack Enriched with Probiotic Lacticaseibacillus rhamnosus: Evaluation of the Refractance Window Drying Process on Cell Viability. Foods, 13(11), 1756. https://doi.org/10.3390/foods13111756 | spa |
dc.relation.references | Ochoa-Martínez, C. I., Quintero, P. T., Ayala, A. A., & Ortiz, M. J. (2012). Drying characteristics of mango slices using the Refractance WindowTM technique. Journal of Food Engineering, 109(1), 69–75. https://doi.org/10.1016/j.jfoodeng.2011.09.032 | spa |
dc.relation.references | Ocoró-Zamora, M. U., & Ayala-Aponte, A. A. (2013). Influencia del espesor en secado de puré de papaya (Carica papaya L.) por tecnología de ventana de refractanciaspi®. DYNA (Colombia), 80(182), 147–154. | spa |
dc.relation.references | Ohkawara, S., Furuya, H., Nagashima, K., Asanuma, N., & Hino, T. (2005). Oral Administration of Butyrivibrio fibrisolvens, a Butyrate-Producing Bacterium, Decreases the Formation of Aberrant Crypt Foci in the Colon and Rectum of Mice. The Journal of Nutrition, 135(12), 2878–2883. https://doi.org/10.1093/jn/135.12.2878 | spa |
dc.relation.references | Olivares, A., Soto, C., Caballero, E., & Altamirano, C. (2019). Survival of microencapsulated Lactobacillus casei (prepared by vibration technology) in fruit juice during cold storage. Electronic Journal of Biotechnology, 42, 42–48. https://doi.org/10.1016/j.ejbt.2019.10.002 | spa |
dc.relation.references | Olugbuyi, A. O., Malomo, S. A., Ijarotimi, O. S., & Fagbemi, T. N. (2023). Amino Acids Profile,Glyceamic Index/load, In-vitro Antioxidant and Sensory Attributes of Optimized Dough Meal from the Blends of Plantain, Soycake and Rice-bran Flours. Journal of Culinary Science & Technology, 21(5), 795–817. https://doi.org/10.1080/15428052.2021.2016530 | spa |
dc.relation.references | Oluwajuyitan, T. D., & Ijarotimi, O. S. (2019). Nutritional, antioxidant, glycaemic index and Antihyperglycaemic properties of improved traditional plantain-based (Musa AAB) dough meal enriched with tigernut (Cyperus esculentus) and defatted soybean (Glycine max) flour for diabetic patients. Heliyon, 5(4), e01504. https://doi.org/10.1016/j.heliyon.2019.e01504 | spa |
dc.relation.references | Olveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482–494. https://doi.org/10.1016/j.endonu.2016.07.006 | spa |
dc.relation.references | Organización Mundial de Gastroenterología. (2023). Directrices mundiales de la Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2023.pdf | spa |
dc.relation.references | Ormaza-Zapata, Á. M., Días-Arango, F. O., & Rodríguez-Barona, S. (2019). EVALUATION OF PROBIOTIC MICROENCAPSULATION IN A PREBIOTIC WITH COFFEE EXTRACT. Coffe Science, 14(3), 394–406. | spa |
dc.relation.references | Ortega-Rivas, E., Yang, H., Juliano, P., & Barbosa-Canovas, G. V. (2005). Food Powders: Physical properties, processing and functionality (Springer Science & Business Media, Ed.). Springer US. https://doi.org/10.1007/0-387-27613-0 | spa |
dc.relation.references | Ortiz-Jerez, M. J., & Ochoa-Martínez, C. I. (2015). Heat Transfer Mechanisms in Conductive Hydro-Drying of Pumpkin ( Cucurbita maxima ) Pieces. Drying Technology, 33(8), 965–972. https://doi.org/10.1080/07373937.2015.1009538 | spa |
dc.relation.references | Ouwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek, 82(1–4), 279–289. | spa |
dc.relation.references | Ovando-Martinez, M., Sáyago-Ayerdi, S., Agama-Acevedo, E., Goñi, I., & Bello-Pérez, L. A. (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry, 113(1), 121–126. https://doi.org/10.1016/j.foodchem.2008.07.035 | spa |
dc.relation.references | Ozuna, L. E. (1992). Elaboración de puré de plátano por un método alternativo [Master’s degree]. Universidad de Sonora. | spa |
dc.relation.references | Padhi, S., & Dwivedi, M. (2022). Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of Refractance window drying. Future Foods, 5, 100101. https://doi.org/10.1016/j.fufo.2021.100101 | spa |
dc.relation.references | Padhi, S., Murakonda, S., & Dwivedi, M. (2022). Investigation of drying characteristics and nutritional retention of unripe green banana flour by refractance window drying technology using statistical approach. Journal of Food Measurement and Characterization, 16(3), 2375–2385. https://doi.org/10.1007/s11694-022-01349-7 | spa |
dc.relation.references | Pallares Pallares, A., Estupiñán A, M. R., Perea Villamil, J. A., & López Giraldo, L. J. (2017). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51. Revista ION, 29(2), 7–21. https://doi.org/10.18273/revion.v29n2-2016001 | spa |
dc.relation.references | Pandey, Kavita. R., Naik, Suresh. R., & Vakil, Babu. V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1 | spa |
dc.relation.references | Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018a). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003 | spa |
dc.relation.references | Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., & Chhikara, N. (2018b). Potential non-dairy probiotic products – A healthy approach. Food Bioscience, 21, 80–89. https://doi.org/10.1016/j.fbio.2017.12.003 | spa |
dc.relation.references | Pavan, M. A., Schmidt, S. J., & Feng, H. (2012). Water sorption behavior and thermal analysis of freeze-dried, Refractance Window-dried and hot-air dried açaí (Euterpe oleracea Martius) juice. LWT - Food Science and Technology, 48(1), 75–81. https://doi.org/10.1016/j.lwt.2012.02.024 | spa |
dc.relation.references | Pedersen, L. L., Owusu-Kwarteng, J., Thorsen, L., & Jespersen, L. (2012). Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 159(2), 144–151. https://doi.org/10.1016/j.ijfoodmicro.2012.08.016 | spa |
dc.relation.references | Pereira, A. L. F., Maciel, T. C., & Rodrigues, S. (2011). Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 44(5), 1276–1283. https://doi.org/10.1016/j.foodres.2010.11.035 | spa |
dc.relation.references | Perricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006 | spa |
dc.relation.references | Playne, M. J., Bennett, L. E., & Smithers, G. W. (2003). Functional dairy foods and ingredients. Australian Journal of Dairy Technology, 58(3), 242. | spa |
dc.relation.references | Powthong, P., Jantrapanukorn, B., Suntornthiticharoen, P., & Laohaphatanalert, K. (2020). Study of prebiotic properties of selected banana species in Thailand. Journal of Food Science and Technology, 57(7), 2490–2500. https://doi.org/10.1007/s13197-020-04284-x | spa |
dc.relation.references | Prado, F. C., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Trends in non-dairy probiotic beverages. Food Research International, 41(2), 111–123. https://doi.org/10.1016/j.foodres.2007.10.010 | spa |
dc.relation.references | Quigley, E. M. M. (2010). Prebiotics and probiotics; modifying and mining the microbiota. Pharmacological Research, 61(3), 213–218. https://doi.org/10.1016/j.phrs.2010.01.004 | spa |
dc.relation.references | Rajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance Window Drying of Apple Slices: Mass Transfer Phenomena and Quality Parameters. Food and Bioprocess Technology, 12(10), 1646–1658. https://doi.org/10.1007/s11947-019-02334-7 | spa |
dc.relation.references | Ramani, R., & Ramani, V. (2018). PROBIOTIC MICROENCAPSULATION TECHNIQUES AND COATING MATERIALS: EBSCOhost. International Journal of Probiotics & Prebiotics, 13(4), 161–168. https://web-b-ebscohost-com.wdg.biblio.udg.mx:8443/ehost/detail/detail?vid=0&sid=363953fd-8220-475d-8972-2b57009c5f10%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3D%3D#AN=133492672&db=fsr | spa |
dc.relation.references | Rashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., & Jafari, S. M. (2020). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical Reviews in Food Science and Nutrition, 0(0), 1–25. https://doi.org/10.1080/10408398.2020.1854169 | spa |
dc.relation.references | Rattanaprasert, M., Roos, S., Hutkins, R. W., & Walter, J. (2014). Quantitative evaluation of synbiotic strategies to improve persistence and metabolic activity of Lactobacillus reuteri DSM 17938 in the human gastrointestinal tract. Journal of Functional Foods, 10, 85–94. https://doi.org/10.1016/j.jff.2014.05.017 | spa |
dc.relation.references | Rayo, L. M., Chaguri e Carvalho, L., Sardá, F. A. H., Dacanal, G. C., Menezes, E. W., & Tadini, C. C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration. LWT - Food Science and Technology, 63(1), 461–469. https://doi.org/10.1016/j.lwt.2015.03.059 | spa |
dc.relation.references | Reis, J. M. C. dos, Pinheiro, M. F., Oti, A. T., Feitosa-Junior, D. J. S., Pantoja, M. de S., & Barros, R. S. M. (2016). TECHNOLOGICAL INFORMATION REGARDING PREBIOTICS AND PROBIOTICS NUTRITION VERSUS THE PATENT REGISTERS: WHAT IS NEW? ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 29(4), 279–281. https://doi.org/10.1590/0102-6720201600040016 | spa |
dc.relation.references | Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1–11. https://doi.org/10.1016/j.fm.2008.06.008 | spa |
dc.relation.references | Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. In Food Research International (Vol. 137). https://doi.org/10.1016/j.foodres.2020.109682 | spa |
dc.relation.references | Rodríguez de Olmos, A., Garro, O. A., & Garro, M. S. (2022). Behavior study of Bifidobacterium longum using solid state fermentation from commercial soybean meal. LWT, 157, 113101. https://doi.org/10.1016/j.lwt.2022.113101 | spa |
dc.relation.references | Rodríguez-Barona, S., Giraldo, G. I., & Montes, L. M. (2016). Encapsulación De Alimentos Probióticos Mediante Liofilización En Presencia De Prebióticos. Informacion Tecnologica, 27(6), 135–144. https://doi.org/10.4067/S0718-07642016000600014 | spa |
dc.relation.references | Rodríguez-Barona, S., Giraldo, G. I., & Zuluaga, Y. P. (2015). Evaluación de la Incorporación de Fibra Prebiótica sobre la Viabilidad de LactobaciHus casei Impregnado en Matrices de Mora (Rubus glaucus). Información Tecnológica, 26(5), 25–34. https://doi.org/10.4067/S0718-07642015000500005 | spa |
dc.relation.references | Rodríguez-Barona, S., Granada-Orozco, J., & Cruz-Ríos, D. (2014a). Comparación de sacarosa, inulina y fructo-oligosacáridos como agente4 osmóticos en mora de castilla (Rubus glaucus Benth.). Acta Horticulturae, 1016, 47–51. https://doi.org/10.17660/ActaHortic.2014.1016.4 | spa |
dc.relation.references | Rodríguez-Barona, S., Granada-Orozco, J., & Cruz-Ríos, D. (2014b). COMPARACIÓN DE SACAROSA, INULINA Y FRUCTO-OLIGOSACÁRIDOS COMO AGENTES OSMÓTICOS EN MORA DE CASTILLA (RUBUS GLAUCUS BENTH.) -COMPARISON OF SUCROSE, INULIN AND FRUCTO-OLIGOSACCHARIDES AS OSMOTIC AGENTS IN THE ANDEAN BLACKBERRY (RUBUS GLAUCUS BENTH.). Acta Horticulturae, 1016, 47–51. https://doi.org/10.17660/ActaHortic.2014.1016.4 | spa |
dc.relation.references | Rodríguez-Barona, S., Montes, L. M., & Ramírez, D. de J. (2012). Microencapsulación De Probióticos Mediante Secado Por Aspersión En Presencia De Prebióticos. Vitae, 19(1), S186–S188. | spa |
dc.relation.references | Rodríguez-Restrepo, Y. A., Giraldo, G. I., & Rodríguez-Barona, S. (2017a). Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: Application to microencapsulation of Bifidobacterium animalis subsp. lactis. Journal of Food Process Engineering, 40(6), 1–8. https://doi.org/10.1111/jfpe.12557 | spa |
dc.relation.references | Rodríguez-Restrepo, Y. A., Giraldo, G. I., & Rodríguez-Barona, S. (2017b). Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: Application to microencapsulation of Bifidobacterium animalis subsp. lactis. Journal of Food Process Engineering, 40(6), e12557. https://doi.org/10.1111/jfpe.12557 | spa |
dc.relation.references | Romeo, J., Nova, E., Wärnberg, J., Gómez-Martínez, S., Díaz Ligia, L. E., & Marcos, A. (2010). Immunomodulatory effect of fibres, probiotics and synbiotics in different life-stages. Nutricion Hospitalaria, 25(3), 341–349. | spa |
dc.relation.references | Rostami, H., Dehnad, D., Jafari, S. M., & Tavakoli, H. R. (2018). Evaluation of physical, rheological, microbial, and organoleptic properties of meat powder produced by Refractance Window drying. Drying Technology, 36(9), 1076–1085. https://doi.org/10.1080/07373937.2017.1377224 | spa |
dc.relation.references | Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8 | spa |
dc.relation.references | Rubio, R., Aymerich, T., Bover-Cid, S., Guàrdia, M. D., Arnau, J., & Garriga, M. (2013). Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT - Food Science and Technology, 54(1), 51–56. https://doi.org/10.1016/j.lwt.2013.05.014 | spa |
dc.relation.references | Rwubuzizi, R., Kim, H., Holzapfel, W. H., & Todorov, S. D. (2023). Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon, 9(4), e15610. https://doi.org/10.1016/j.heliyon.2023.e15610 | spa |
dc.relation.references | Salari, M., Razavi, S. H., & Gharibzahedi, S. M. T. (2015). Characterising the synbiotic beverages based on barley and malt flours fermented by Lactobacillus delbrueckii and paracasei strains. Quality Assurance and Safety of Crops & Foods, 7(3), 355–361. https://doi.org/10.3920/QAS2013.0390 | spa |
dc.relation.references | Salazar, B. C., Cortés, M., & Montoya, O. I. (2015). The impact of storage conditions on the stability of sugarcane powder biofortified with kefir grains. Revista Facultad Nacional de Agronomía Medellín, 68(2), 7703–7712. https://doi.org/10.15446/rfnam.v68n2.50987 | spa |
dc.relation.references | Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M.-F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018 | spa |
dc.relation.references | Santos, S. de J. L., Canto, H. K. F., da Silva, L. H. M., & Rodrigues, A. M. da C. (2022). Characterization and properties of purple yam (Dioscorea trifida) powder obtained by refractance window drying. Drying Technology, 40(6), 1103–1113. https://doi.org/10.1080/07373937.2020.1847140 | spa |
dc.relation.references | Sarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. W. J. (2016). Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends in Neurosciences, 39(11), 763–781. https://doi.org/10.1016/j.tins.2016.09.002 | spa |
dc.relation.references | Savassi, B., Cordeiro, B. F., Silva, S. H., Oliveira, E. R., Belo, G., Figueiroa, A. G., Alves Queiroz, M. I., Faria, A. M. C., Alves, J., Silva, T. F. da, Campos, G. M., Esmerino, E. A., Rocha, R. S., Freitas, M. Q., Silva, M. C., Cruz, A. G., Vital, K. D., Fernandes, S. O. A., Cardoso, V. N., … Azevedo, V. (2021). Lyophilized Symbiotic Mitigates Mucositis Induced by 5-Fluorouracil. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.755871 | spa |
dc.relation.references | Savlak, N., Türker, B., & Yeşilkanat, N. (2016). Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chemistry, 213, 180–186. https://doi.org/10.1016/j.foodchem.2016.06.064 | spa |
dc.relation.references | Sawicki, C., McKay, D., McKeown, N., Dallal, G., Chen, C., & Blumberg, J. (2016). Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial. Nutrients, 8(12), 813. https://doi.org/10.3390/nu8120813 | spa |
dc.relation.references | Schepper, J. D., Irwin, R., Kang, J., Dagenais, K., Lemon, T., Shinouskis, A., Parameswaran, N., & McCabe, L. R. (2017). Probiotics in Gut-Bone Signaling (pp. 225–247). https://doi.org/10.1007/978-3-319-66653-2_11 | spa |
dc.relation.references | Seth, D., Mishra, H. N., & Deka, S. C. (2017). Functional and reconstitution properties of spray-dried sweetened yogurt powder as influenced by processing conditions. International Journal of Food Properties, 20(7), 1603–1611. https://doi.org/10.1080/10942912.2016.1214965 | spa |
dc.relation.references | Sgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & Costa-Mattioli, M. (2019). Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron, 101(2), 246-259.e6. https://doi.org/10.1016/j.neuron.2018.11.018 | spa |
dc.relation.references | Shaikh, S. S., Joshi, C., Malek, F., Malik, A., & Gandhi, M. (2024). Food Storage, Processing and Genetic Stability Studies of Bacillus (Heyndrickxia) coagulans BCP92 (MTCC 25460). Applied Food Biotechnology, 11(1). https://doi.org/10.22037/afb.v11i1.44919 | spa |
dc.relation.references | Sharma, V., & Mishra, H. N. (2013). Fermentation of vegetable juice mixture by probiotic lactic acid bacteria. Nutrafoods, 12(1), 17–22. https://doi.org/10.1007/s13749-012-0050-y Shende, D., & Datta, A. K. (2020). Optimization study for refractance window drying process of Langra variety mango. Journal of Food Science and Technology, 57(2), 683–692. https://doi.org/10.1007/s13197-019-04101-0 | spa |
dc.relation.references | Shori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/j.fbio.2015.11.001 | spa |
dc.relation.references | Sidira, M., Kandylis, P., Kanellaki, M., & Kourkoutas, Y. (2016). Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chemistry, 201, 334–338. https://doi.org/10.1016/j.foodchem.2016.01.084 | spa |
dc.relation.references | Sihra, N., Goodman, A., Zakri, R., Sahai, A., & Malde, S. (2018). Nonantibiotic prevention and management of recurrent urinary tract infection. Nature Reviews Urology, 15(12), 750–776. https://doi.org/10.1038/s41585-018-0106-x | spa |
dc.relation.references | Silanikove, N., Leitner, G., & Merin, U. (2015). The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients, 7(9), 7312–7331. https://doi.org/10.3390/nu7095340 | spa |
dc.relation.references | Silva‐Espinoza, M. A., Salvador, A., Camacho, M. del M., & Martínez‐Navarrete, N. (2021). Impact of freeze‐drying conditions on the sensory perception of a freeze‐dried orange snack. Journal of the Science of Food and Agriculture, 101(11), 4585–4590. https://doi.org/10.1002/jsfa.11101 | spa |
dc.relation.references | Simova, E. D., Beshkova, D. B., & Dimitrov, Zh. P. (2009). Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. Journal of Applied Microbiology, 106(2), 692–701. https://doi.org/10.1111/j.1365-2672.2008.04052.x | spa |
dc.relation.references | Singh, R., Ranvir, S., & Madan, S. (2017). Comparative Study of the Properties of Ripe Banana Flour, Unripe Banana Flour and Cooked Banana Flour Aiming Towards Effective Utilization of These Flours. International Journal of Current Microbiology and Applied Sciences, 6(8), 2003–2015. https://doi.org/10.20546/ijcmas.2017.608.239 | spa |
dc.relation.references | Slykerman, R. F., Hood, F., Wickens, K., Thompson, J. M. D., Barthow, C., Murphy, R., Kang, J., Rowden, J., Stone, P., Crane, J., Stanley, T., Abels, P., Purdie, G., Maude, R., & Mitchell, E. A. (2017). Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine, 24, 159–165. https://doi.org/10.1016/j.ebiom.2017.09.013 | spa |
dc.relation.references | Stadnik, J., & Dolatowski, Z. J. (2014). Effect of Inoculation with Probiotics and Ageing Time on Selected Functional Properties and Oxidation of Proteins in Dry-Cured Pork Loins. International Journal of Food Properties, 17(4), 866–876. https://doi.org/10.1080/10942912.2012.685679 | spa |
dc.relation.references | Stelmasiewicz, M., Świątek, Ł., & Ludwiczuk, A. (2021). Phytochemical Profile and Anticancer Potential of Endophytic Microorganisms from Liverwort Species, Marchantia polymorpha L. Molecules, 27(1), 153. https://doi.org/10.3390/molecules27010153 | spa |
dc.relation.references | Suwanangul, S., Jaichakan, P., Narkprasom, N., Kraithong, S., Narkprasom, K., & Sangsawad, P. (2023). Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion. Foods, 12(19), 3692. https://doi.org/10.3390/foods12193692 | spa |
dc.relation.references | Swieca, M., Kordowska-Wiater, M., Pytka, M., Gawlik-Dziki, U., Seczyk, L., Złotek, U., & Kapusta, I. (2019). Nutritional and pro-health quality of lentil and adzuki bean sprouts enriched with probiotic yeast Saccharomyces cerevisiae var. boulardii. LWT, 100, 220–226. https://doi.org/10.1016/j.lwt.2018.10.081 | spa |
dc.relation.references | Tamnak, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., & Muhammad, K. (2016). Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 56, 405–416. https://doi.org/10.1016/j.foodhyd.2015.12.033 | spa |
dc.relation.references | Tan, Y. X., Mok, W. K., & Chen, W. N. (2021). In Vitro Evaluation of Enriched Brewers’ Spent Grains Using Bacillus subtilis WX-17 as Potential Functional Food Ingredients. Applied Biochemistry and Biotechnology, 193(2), 349–362. https://doi.org/10.1007/s12010-020-03424-5 | spa |
dc.relation.references | Tarnaud, F., Gaucher, F., do Carmo, F. L. R., Illikoud, N., Jardin, J., Briard-Bion, V., Guyomarc’h, F., Gagnaire, V., & Jan, G. (2020). Differential Adaptation of Propionibacterium freudenreichii CIRM-BIA129 to Cow’s Milk Versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.549027 | spa |
dc.relation.references | Tejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G. R., & Rowland, I. (2013). Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe, 24, 60–65. https://doi.org/10.1016/j.anaerobe.2013.09.011 | spa |
dc.relation.references | Tissier, H. (1900). Recherches sur la flore intestinale normale et pathologique du nourrisson. Université de Paris. | spa |
dc.relation.references | Tontul, İ., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018a). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176. https://doi.org/10.1016/j.idairyj.2018.06.002 | spa |
dc.relation.references | Tontul, İ., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018b). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176. https://doi.org/10.1016/j.idairyj.2018.06.002 | spa |
dc.relation.references | Tontul, I., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2021). The impact of refractance window drying conditions on the physical and microbiological properties of kefir powder. Food Bioscience, 43, 101317. https://doi.org/10.1016/j.fbio.2021.101317 | spa |
dc.relation.references | Tontul, I., & Topuz, A. (2017). Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT, 80, 294–303. https://doi.org/10.1016/j.lwt.2017.02.035 | spa |
dc.relation.references | Tontul, I., & Topuz, A. (2019). Storage stability of bioactive compounds of pomegranate leather (pestil) produced by refractance window drying. Journal of Food Process Engineering, 42(2). https://doi.org/10.1111/jfpe.12973 | spa |
dc.relation.references | Torres Rodelo, M. del R. (2018). Evaluación tecnológica del proceso de obtención de biomasa de microorganismos probióticos en medio de cultivo formulado con suero lácteo suplementado. 1–129. | spa |
dc.relation.references | Tribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Perez, L. A., & Tadini, C. C. (2009). Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT - Food Science and Technology, 42(5), 1022–1025. https://doi.org/10.1016/j.lwt.2008.12.017 | spa |
dc.relation.references | Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241. https://doi.org/10.1016/j.jff.2014.04.030 | spa |
dc.relation.references | Turroni, F., Milani, C., Duranti, S., Ferrario, C., Lugli, G. A., Mancabelli, L., van Sinderen, D., & Ventura, M. (2018). Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cellular and Molecular Life Sciences, 75(1), 103–118. https://doi.org/10.1007/s00018-017-2672-0 | spa |
dc.relation.references | Unidad de Planificación Rural Agropecuaria. (2023). Resultados Evaluaciones Agropecuarias 2023. https://upra.gov.co/es-co/Evas_Documentos/Resultados%20Evaluaciones%20Agropecuarias%202023.pdf | spa |
dc.relation.references | Urgesi, R., Casale, C., Pistelli, R., Rapaccini, G. L., & de Vitis, I. (2014). A randomized double-blind placebo-controlled clinical trial on efficacy and safety of association of simethicone and Bacillus coagulans (Colinox®) in patients with irritable bowel syndrome. European Review for Medical and Pharmacological Sciences, 18(9), 1344–1353. http://www.ncbi.nlm.nih.gov/pubmed/24867512 | spa |
dc.relation.references | Vieira, K. C. de O., Ferreira, C. D. S., Bueno, E. B. T., De Moraes, Y. A., Toledo, A. C. C. G., Nakagaki, W. R., Pereira, V. C., & Winkelstroter, L. K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT, 130, 109637. https://doi.org/10.1016/j.lwt.2020.109637 | spa |
dc.relation.references | Villarroel, P., Gómez, C., Vera, C., & Torres, J. (2018). Almidón resistente: Características tecnológicas e intereses fisiológicos. Revista Chilena de Nutrición, 45(3), 271–278. https://doi.org/10.4067/s0717-75182018000400271 | spa |
dc.relation.references | Villegas, B. M., Villa, G. C., Torres, J. M., Ospina, S., Rocha, L. A., & Laverde, J. F. (2012). BANANUT PLUS: HARINA DE BANANO VERDE ENRIQUECIDA CON MICRONUTRIENTES. Vitae. https://www.redalyc.org/articulo.oa?id=169823914062 | spa |
dc.relation.references | Vitaglione, P., Napolitano, A., & Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology, 19(9), 451–463. https://doi.org/10.1016/j.tifs.2008.02.005 | spa |
dc.relation.references | Vrese, M. De. (2001). Probiotics, prebiotics, and synbiotics—approaching a definition 1–3. 73(14). | spa |
dc.relation.references | Wang, S., Chelikani, V., & Serventi, L. (2018). Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT, 97, 570–572. https://doi.org/10.1016/j.lwt.2018.07.067 | spa |
dc.relation.references | Wang, Z., Feng, Y., Yang, N., Jiang, T., Xu, H., & Lei, H. (2022). Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chemistry, 373, 131455. https://doi.org/10.1016/j.foodchem.2021.131455 | spa |
dc.relation.references | Wardy, W., Pujols Martínez, K. D., Xu, Z., No, H. K., & Prinyawiwatkul, W. (2014). Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology, 55(1), 67–73. https://doi.org/10.1016/j.lwt.2013.07.013 | spa |
dc.relation.references | Watanabe, F. F. F., Marques, C., Farias, F. O., Ellenderser, L. N., & Masson, M. L. (2020). Yacon-based Beverage as Non-dairy Vehicle for Bifidobacterium animalis ssp. lactis: Stability and In vitro Probiotic Viability. Biointerface Research in Applied Chemistry, 11(4), 11458–11472. https://doi.org/10.33263/BRIAC114.1145811472 | spa |
dc.relation.references | Wei, H., Loimaranta, V., Tenovuo, J., Rokka, S., Syväoja, E.-L., Korhonen, H., Joutsjoki, V., & Marnila, P. (2002). Stability and activity of specific antibodies against Streptococcus mutans and Streptococcus sobrinus in bovine milk fermented with Lactobacillus rhamnosus strain GG or treated at ultra-high temperature. Oral Microbiology and Immunology, 17(1), 9–15. https://doi.org/10.1046/j.0902-0055.2001.00084.x | spa |
dc.relation.references | Wellala, C. K. D., Bi, J., Liu, X., Liu, J., Lyu, J., Zhou, M., Marszałek, K., & Trych, U. (2020). Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innovative Food Science and Emerging Technologies, 60, 102279. https://doi.org/10.1016/j.ifset.2019.102279 | spa |
dc.relation.references | Wollowski, I., Rechkemmer, G., & Pool-Zobel, B. L. (2001). Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 73(2), 451s–455s. https://doi.org/10.1093/ajcn/73.2.451s | spa |
dc.relation.references | Wongputtisin, P., Ramaraj, R., Unpaprom, Y., Kawaree, R., & Pongtrakul, N. (2015). Raffinose family oligosaccharides in seed of Glycine max cv. Chiang Mai60 and potential source of prebiotic substances. International Journal of Food Science & Technology, 50(8), 1750–1756. https://doi.org/10.1111/ijfs.12842 | spa |
dc.relation.references | Wu, G., Zhang, C., Wu, H., Wang, R., Shen, J., Wang, L., Zhao, Y., Pang, X., Zhang, X., Zhao, L., & Zhang, M. (2017). Genomic microdiversity of Bifidobacterium pseudocatenulatum underlying differential strain-level responses to dietary carbohydrate intervention. MBio, 8(1). https://doi.org/10.1128/mBio.02348-16 | spa |
dc.relation.references | Xiao, Y., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. In Clinical Nutrition (Vol. 39, Issue 5, pp. 1315–1323). Churchill Livingstone. https://doi.org/10.1016/j.clnu.2019.05.014 | spa |
dc.relation.references | Yan, X.-T., Zhang, Z., Wang, Y., Zhang, W., Zhang, L., Liu, Y., Chen, D., Wang, W., Ma, W., Qian, J.-Y., & Gu, R. (2023). Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. Applied Biological Chemistry, 66(1), 7. https://doi.org/10.1186/s13765-022-00762-2 | spa |
dc.relation.references | Yang, B., McCullough, M. L., Gapstur, S. M., Jacobs, E. J., Bostick, R. M., Fedirko, V., Flanders, W. D., & Campbell, P. T. (2014). Calcium, Vitamin D, Dairy Products, and Mortality Among Colorectal Cancer Survivors: The Cancer Prevention Study-II Nutrition Cohort. Journal of Clinical Oncology, 32(22), 2335–2343. https://doi.org/10.1200/JCO.2014.55.3024 | spa |
dc.relation.references | Yang, J., Zhou, F., Xiong, L., Mao, S., Hu, Y., & Lu, B. (2015). Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan [Carya cathayensis] at different stir-frying steps. LWT - Food Science and Technology, 62(1), 541–548. https://doi.org/10.1016/j.lwt.2014.09.049 | spa |
dc.relation.references | Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874. https://doi.org/10.1111/1541-4337.12532 | spa |
dc.relation.references | Yarabbi, H., Roshanak, S., & Milani, E. (2023). Production of the probiotic dessert containing sprouted quinoa milk and evaluation of physicochemical and microbial properties during storage. Food Science & Nutrition, 11(9), 5596–5608. https://doi.org/10.1002/fsn3.3517 | spa |
dc.relation.references | Yoha, K. S., Anukiruthika, T., Anila, W., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT, 146, 111461. https://doi.org/10.1016/j.lwt.2021.111461 | spa |
dc.relation.references | Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020a). Conductive hydro drying through refractance window drying–An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Drying Technology, 38(5–6), 610–620. https://doi.org/10.1080/07373937.2019.1624972 | spa |
dc.relation.references | Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020b). Conductive hydro drying through refractance window drying–An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Drying Technology, 38(5–6), 610–620. https://doi.org/10.1080/07373937.2019.1624972 | spa |
dc.relation.references | Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020c). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering, 283, 110033. https://doi.org/10.1016/j.jfoodeng.2020.110033 | spa |
dc.relation.references | Yu, Z.-Y., Jiang, S.-W., Cao, X.-M., Jiang, S.-T., & Pan, L.-J. (2016). Effect of high pressure homogenization (HPH) on the physical properties of taro ( Colocasia esculenta (L). Schott) pulp. Journal of Food Engineering, 177, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.10.042 | spa |
dc.relation.references | Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41–47. https://doi.org/10.1016/j.jssas.2013.06.002 | spa |
dc.relation.references | Zelante, T., Iannitti, R. G., Cunha, C., DeLuca, A., Giovannini, G., Pieraccini, G., Zecchi, R., D’Angelo, C., Massi-Benedetti, C., Fallarino, F., Carvalho, A., Puccetti, P., & Romani, L. (2013). Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 39(2), 372–385. https://doi.org/10.1016/j.immuni.2013.08.003 | spa |
dc.relation.references | Zhang, C., Quek, S. Y., Fu, N., Su, Y., Kilmartin, P. A., & Chen, X. D. (2020). Storage stability and in vitro digestion of microencapsulated powder containing fermented noni juice and probiotics. Food Bioscience, 37, 100740. https://doi.org/10.1016/j.fbio.2020.100740 | spa |
dc.relation.references | Zhang, P., Whistler, R. L., BeMiller, J. N., & Hamaker, B. R. (2005). Banana starch: production, physicochemical properties, and digestibility—a review. Carbohydrate Polymers, 59(4), 443–458. https://doi.org/10.1016/j.carbpol.2004.10.014 | spa |
dc.relation.references | Zhou, R., Xu, Y., Dong, D., Hu, J., Zhang, L., & Liu, H. (2023). The effects of microcapsules with different protein matrixes on the viability of probiotics during spray drying, gastrointestinal digestion, thermal treatment, and storage. EFood, 4(4). https://doi.org/10.1002/efd2.98 | spa |
dc.relation.references | Zhu, D., Shen, Y., Wei, L., Xu, L., Cao, X., Liu, H., & Li, J. (2020). Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry, 328, 126967. https://doi.org/10.1016/j.foodchem.2020.126967 | spa |
dc.relation.references | Zhu, W., Lyu, F., Naumovski, N., Ajlouni, S., & Ranadheera, C. S. (2020). Functional Efficacy of Probiotic Lactobacillus sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival. Beverages, 6(1), 13. https://doi.org/10.3390/beverages6010013 | spa |
dc.relation.references | Zhu, Y. Y., Thakur, K., Feng, J. Y., Cai, J. S., Zhang, J. G., Hu, F., & Wei, Z. J. (2020). B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends in Food Science and Technology, 105(June), 43–55. https://doi.org/10.1016/j.tifs.2020.08.019 | spa |
dc.relation.references | Zielińska, D., Rzepkowska, A., Radawska, A., & Zieliński, K. (2015). In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber. Current Microbiology, 70(2), 183–194. https://doi.org/10.1007/s00284-014-0699-0 | spa |
dc.relation.references | Zorzela, L., Ardestani, S. K., McFarland, L. V., & Vohra, S. (2017). Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. Beneficial Microbes, 8(5), 739–754. https://doi.org/10.3920/BM2017.0032 | spa |
dc.relation.references | Zotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2015). Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 69, 410–417. https://doi.org/10.1016/j.foodres.2015.01.013 | spa |
dc.relation.references | Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Musa paradisiaca | |
dc.subject.agrovoc | Bacillus coagulans | |
dc.subject.agrovoc | Alimento funcional | |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::602 - Miscelánea | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.ddc | 500 - Ciencias naturales y matemáticas::502 - Miscelánea | spa |
dc.subject.ddc | 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales | spa |
dc.subject.lemb | Harina de plátano | |
dc.subject.lemb | Desarrollo científico y tecnológico | |
dc.subject.lemb | Tecnología de alimentos | |
dc.subject.proposal | Musa paradisiaca L. | spa |
dc.subject.proposal | secado por ventana de refractancia | spa |
dc.subject.proposal | Bacillus coagulans | spa |
dc.subject.proposal | alimentos funcionales probióticos | spa |
dc.subject.proposal | almacenamiento de producto en polvo | spa |
dc.subject.proposal | Musa paradisiaca L. | eng |
dc.subject.proposal | refractance window drying | eng |
dc.subject.proposal | Bacillus coagulans | eng |
dc.subject.proposal | functional probiotic foods | eng |
dc.subject.proposal | storage of powdered products | eng |
dc.title | Desarrollo tecnológico de una harina de plátano adicionada con probióticos y prebióticos utilizando el secado por ventana de refractancia | spa |
dc.title.translated | Technologic development of green banana flour added with probiotics and prebiotics using refractance window drying | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Evaluación de los cambios físicos, estructurales y funcionales ocurridos en el almidón durante la aplicación de tratamientos tecnológicos en el proceso de obtención de un alimento funcional probiótico a base de harina de plátano. | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
oaire.fundername | Universidad de Caldas | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053855212.2024.pdf
- Tamaño:
- 2.72 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: