Efecto de la severidad del estrés hídrico en la recuperación, respuesta bioquímica, expresión de proteínas y rendimiento en papa (Solanum tuberosum L.) en dos estados de desarrollo

dc.contributor.advisorCastaño Marín, Angela Maríaspa
dc.contributor.advisorMoreno Fonseca, Liz Patriciaspa
dc.contributor.authorSilva Arero, Elías Alexanderspa
dc.contributor.researchgroupSistemas Agrícolas del Trópico (SAT)spa
dc.date.accessioned2022-10-28T13:32:27Z
dc.date.available2022-10-28T13:32:27Z
dc.date.issued2022-10-27
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractLa sequía es uno de los factores ambientales que más limita el crecimiento de las plantas y se prevé que el cambio climático reduzca la disponibilidad de agua en varias zonas productivas. En esta investigación se caracterizó el efecto de la severidad del estrés hídrico en la recuperación, respuesta bioquímica, expresión de proteínas y rendimiento por tamaño de tubérculos en dos etapas de desarrollo de la papa var. Diacol Capiro (DC). Plantas de papa en etapa de diferenciación de tubérculos (DT) y máxima tuberización (MT) se les suspendió el riego hasta alcanzar estrés hídrico Leve (EL), Moderado (EM) y Severo (ES); además se contó con plantas control bien regadas (BR). Cuando las plantas alcanzaron cada nivel de estrés y luego de 24 horas de restablecer el riego (rehidratación), se midió la actividad de enzimas antioxidantes del ciclo Ascorbato-Glutatión y la concentración de pigmentos fotosintéticos, prolina, malondialdehído (MDA), flavonoides y almidón. En los tres niveles de estrés hídrico, tanto en MT como en DT se determinó concentración de nutrientes en savia y en tejido foliar, y en DT se determinaron los perfiles proteómicos y se identificaron las proteínas que presentaron mayor correlación con el potencial hídrico. Se encontró que la planta de papa var. DC durante ES incrementa en hoja la actividad de enzimas antioxidantes y la concentración de MDA, carotenoides, prolina y almidón, como una respuesta para proteger el aparato fotosintético. La capacidad de recuperación bioquímica de la planta fue mayor en MT que en DT, debido a la menor duración del estrés en MT (7 días) en comparación con DT (21 días). En la savia de la hoja se incrementó la concentración de K+ y NO3- en plantas con estrés hídrico en comparación con BR, lo que se asoció a procesos de ajuste osmótico. En tejido foliar se observó un incrementó en la concentración de N en plantas con estrés con respecto a plantas bien regadas y estuvo relacionado con la concentración de clorofilas, carotenoides y actividad de enzimas antioxidantes. El ES redujo el número y peso de tubérculos grandes y aumentó el de tubérculos pequeños. Finalmente se encontró que las proteínas Rubisco activasa, la subunidad IV B del centro de reacción del PSI y proteína estabilizadora de manganeso incrementaron con la severidad del estrés, mientras que las tres posibles isoformas de la subunidad I de Citrocromo oxidadasa (RY290, RY289 y RY285) se redujeron. Nuestros resultados brindan un entendimiento detallado de las respuestas bioquímicas y la reducción del rendimiento por tamaño de tubérculo en plantas de papa a medida que se incrementa la severidad del estrés hídrico. (Texto tomado de la fuente).spa
dc.description.abstractDrought is one of the environmental factors that most limits plant growth and climate change is expected to reduce water availability in several productive areas. In this research, the effect of the severity of water stress on the biochemical response, protein expression and yield by tuber size in two stages of development of potato var. Diacol Capiro (DC). Potato plants in the stage of tuber differentiation (DT) and maximum tuberization (MT) were suspended from irrigation until they reached Mild (EL), Moderate (EM) and Severe (ES) water stress; In addition, there were well-watered control plants (BR). When the plants reached each stress level and after 24 hour of restoring irrigation (rehydration), the activity of antioxidant enzymes of the Ascorbate-Glutathione cycle and the concentration of photosynthetic pigments, proline, malondialdehyde (MDA), flavonoids and starch were measured. In the three levels of water stress, both in MT and in DT, the concentration of nutrients in sap and leaf tissue is prolonged, and in DT the proteomic profiles were determined and the proteins that appeared greater conformation with the water potential were identified. It was found that the potato plant var. DC during ES increases the activity of antioxidant enzymes and the concentration of MDA, carotenoids, proline, and starch in the leaf, as a response to protect the photosynthetic apparatus. The biochemical recovery capacity of the plant was higher in MT than in DT, due to the shorter duration of stress in MT (7 days) compared to DT (21 days). In the leaf sap, the concentration of K+ and NO3- increased in plants with water stress compared to BR, which was associated with osmotic adjustment processes. In leaf tissue, an increase in N concentration was decreased in stressed plants with respect to BR and was related to the concentration of chlorophylls, carotenoids, and antioxidant enzyme activity. ES reduced the number and yield of large tubers and increased that of small tubers. Finally, it was found that the proteins Rubisco activase, subunit IV B of the PSI reaction center and manganese stabilizer protein increased with the severity of stress, while the three possible isoforms of subunit I of Cytrochrome oxidadase (RY290, RY289 and RY285) is reduced. Our results provide a detailed understanding of the biochemical responses and yield reduction per tuber size in potato plants as the severity of water stress increases.eng
dc.description.curricularareaCiencias Agronómicas.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.notesIncluye anexosspa
dc.description.researchareaFisiología de cultivosspa
dc.description.sponsorshipMINCIENCIAS (antes COLCIENCIAS) es el Ministerio de Ciencia, Tecnología e Innovación de acuerdo a la Constitución y la ley Colombiana, como organismo para la gestión de la administración pública, rector del sector y del Sistema Nacional Ciencia, Tecnología e Innovación (SNCTI), encargado de formular, orientar, dirigir, coordinar, ejecutar, implementar y controlar la política del Estado en esta materia, teniendo concordancia con los planes y programas de desarrollo, de acuerdo a la presente Ley. AGROSAVIA es la corporación colombiana de investigación agropecuaria, entidad pública descentralizada de participación mixta sin ánimo de lucro, de carácter científico y técnico, cuyo propósito es trabajar en la generación del conocimiento científico y el desarrollo tecnológico agropecuario a través de la investigación científica, la adaptación de tecnologías, la transferencia y la asesoría con el fin de mejorar la competitividad de la producción, la equidad en la distribución de los beneficios de la tecnología, la sostenibilidad en el uso de los recursos naturales, el fortalecimiento de la capacidad científica y tecnológica de Colombia y, contribuir a elevar la calidad de vida de la población.spa
dc.format.extentxxii, 101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82527
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.referencesAbelenda, J. A., Bergonzi, S., Oortwijn, M., Sonnewald, S., Du, M., Visser, R. G. F., Sonnewald, U., & Bachem, C. W. B. (2019). Source-Sink Regulation Is Mediated by Interaction of an FT Homolog with a SWEET Protein in Potato. Current Biology, 29(7), 1178-1186.e6. https://doi.org/10.1016/J.CUB.2019.02.018spa
dc.relation.referencesAGRONET. (2020). Área, Producción y Rendimiento Papa. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dc.relation.referencesAGROSAVIA. (2022). Biochemical, physiological and molecular characterization of potato plants subjected to water stress. [Unpublished manuscript].spa
dc.relation.referencesAhmad, N., Malagoli, M., Wirtz, M., & Hell, R. (2016). Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biology, 16(1), 1–15. https://doi.org/10.1186/S12870-016-0940-Z/FIGURES/8spa
dc.relation.referencesAhmad Waraich, E., Ahmad, R., & Ashraf, M. Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. AJCS, 5(6), 764–777.spa
dc.relation.referencesAlhoshan, M., Zahedi, M., Ramin, A. A., & Sabzalian, M. R. (2019). Effect of Soil Drought on Biomass Production, Physiological Attributes and Antioxidant Enzymes Activities of Potato Cultivars. Russian Journal of Plant Physiology, 66(2), 265–277. https://doi.org/10.1134/S1021443719020031/FIGURES/7spa
dc.relation.referencesAliche, E. B., Theeuwen, T. P. J. M., Oortwijn, M., Visser, R. G. F., & van der Linden, C. G. (2020). Carbon partitioning mechanisms in POTATO under drought stress. Plant Physiology and Biochemistry, 146, 211–219. https://doi.org/10.1016/J.PLAPHY.2019.11.019spa
dc.relation.referencesAnand Gururani, M., Venkatesh, J., Phan Tran, L.-S., & L-sp, T. (2015). Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. Mol. Plant, 8, 1304–1320. https://doi.org/10.1016/j.molp.2015.05.005spa
dc.relation.referencesAnithakumari, A. M., Nataraja, K. N., Visser, R. G. F., & van der Linden, C. G. (2012). Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 30(3), 1413–1429. https://doi.org/10.1007/S11032-012-9728-5/TABLES/3spa
dc.relation.referencesAriza, W., Rodríguez, L. E., Moreno-Echeverry, D., Guerrero, C. A., Moreno, L. P., Ariza, W., Rodríguez, L. E., Moreno-Echeverry, D., Guerrero, C. A., & Moreno, L. P. (2020). Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja). Agronomía Colombiana, 38(1), 36–44. https://doi.org/10.15446/AGRON.COLOMB.V38N1.78982spa
dc.relation.referencesBartoli, C. G., Buet, A., Grozeff, G. G., Galatro, A., Simontacchi, M., Bartoli, C. G., Buet, A., Gergoff Grozeff, · G, Simontacchi, · M, & Galatro, A. (2017). Ascorbate-Glutathione Cycle and Abiotic Stress Tolerance in Plants. Ascorbic Acid in Plant Growth, Development and Stress Tolerance, 177–200. https://doi.org/10.1007/978-3-319-74057-7_7spa
dc.relation.referencesBates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 1973 39:1, 39(1), 205–207. https://doi.org/10.1007/BF00018060spa
dc.relation.referencesBatool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports 2020 10:1, 10(1), 1–19. https://doi.org/10.1038/s41598-020-73489-zspa
dc.relation.referencesBeals, K. A. (2019). Potatoes, Nutrition and Health. American Journal of Potato Research, 96(2), 102–110. https://doi.org/10.1007/S12230-018-09705-4/TABLES/2spa
dc.relation.referencesBista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., & Boldt, J. K. (2018). Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and -Tolerant Grasses. Plants, 7(2). https://doi.org/10.3390/PLANTS7020028spa
dc.relation.referencesBoguszewska-Mańkowska, D., Gietler, M., & Nykiel, M. (2020). Comparative proteomic analysis of drought and high temperature response in roots of two potato cultivars. Plant Growth Regulation, 92(2), 345–363. https://doi.org/10.1007/S10725-020-00643-Y/FIGURES/7spa
dc.relation.referencesBündig, C., Jozefowicz, A. M., Mock, H. P., & Winkelmann, T. (2016). Proteomic analysis of two divergently responding potato genotypes (Solanum tuberosum L.) following osmotic stress treatment in vitro. Journal of Proteomics, 143, 227–241. https://doi.org/10.1016/J.JPROT.2016.04.048spa
dc.relation.referencesBündig, C., Vu, T. H., Meise, P., Seddig, S., Schum, A., & Winkelmann, T. (2017). Variability in Osmotic Stress Tolerance of Starch Potato Genotypes (Solanum tuberosum L.) as Revealed by an In Vitro Screening: Role of Proline, Osmotic Adjustment and Drought Response in Pot Trials. Journal of Agronomy and Crop Science, 203(3), 206–218. https://doi.org/10.1111/JAC.12186spa
dc.relation.referencesCavagnaro, J. B., de Lis, B. R., & Tizio, R. M. (1971). Drought hardening of the potato plant as an after-effect of soil drought conditions at planting. Potato Research 1971 14:3, 14(3), 181–192. https://doi.org/10.1007/BF02361832spa
dc.relation.referencesChen, Y., Wang, X. M., Zhou, L., He, Y., Wang, D., Qi, Y. H., & Jiang, D. A. (2015). Rubisco Activase Is Also a Multiple Responder to Abiotic Stresses in Rice. PLoS ONE, 10(10). https://doi.org/10.1371/JOURNAL.PONE.0140934spa
dc.relation.referencesChoudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856–867. https://doi.org/10.1111/TPJ.13299spa
dc.relation.referencesCruz De Carvalho, M. H. (2008). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling & Behavior, 3(3), 156. https://doi.org/10.4161/PSB.3.3.5536spa
dc.relation.referencesda Silva, E. C., Nogueira, R. J., da Silva, M. A., & de Albuquerque, M. B. (2011). Drought Stress and Plant Nutrition. 5, 32–41. http://globalsciencebooks.info/Online/GSBOnline/images/2011/PS_5SI1/PS_5(SI1)32-41o.pdfspa
dc.relation.referencesDahal, K., Li, X. Q., Tai, H., Creelman, A., & Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Frontiers in Plant Science, 10, 563. https://doi.org/10.3389/FPLS.2019.00563/BIBTEXspa
dc.relation.referencesDall’Osto, L., Piques, M., Ronzani, M., Molesini, B., Alboresi, A., Cazzaniga, S., & Bassia, R. (2013). The Arabidopsis nox Mutant Lacking Carotene Hydroxylase Activity Reveals a Critical Role for Xanthophylls in Photosystem I Biogenesis. The Plant Cell, 25(2), 591–608. https://doi.org/10.1105/TPC.112.108621spa
dc.relation.referencesDiaz-Valencia, P., Melgarejo, L. M., Arcila, I., & Mosquera-Vásquez, T. (2021). Physiological, biochemical and yield-component responses of solanum tuberosum L. Group phureja genotypes to a water deficit. Plants, 10(4). https://doi.org/10.3390/PLANTS10040638/S1spa
dc.relation.referencesDiaz-Vivancos, P., de Simone, A., Kiddle, G., & Foyer, C. H. (2015). Glutathione – linking cell proliferation to oxidative stress. Free Radical Biology and Medicine, 89, 1154–1164. https://doi.org/10.1016/J.FREERADBIOMED.2015.09.023spa
dc.relation.referencesDinakar, C., Vishwakarma, A., Raghavendra, A. S., & Padmasree, K. (2016). Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ros, malate valve and antioxidative systems. Frontiers in Plant Science, 7(FEB2016), 68. https://doi.org/10.3389/FPLS.2016.00068/BIBTEXspa
dc.relation.referencesDing, L., Lu, Z., Gao, L., Guo, S., & Shen, Q. (2018). Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Frontiers in Plant Science, 9, 1143. https://doi.org/10.3389/FPLS.2018.01143/BIBTEXspa
dc.relation.referencesEltayeb, A., Yamamoto, S., Habora, M., Matsukubo, Y., Aono, M., Tsujimoto, H., & Tanaka, K. (2010). Greater protection against oxidative damages imposed by various environmental stresses in transgenic potato with higher level of reduced glutathione. Breeding Science, 6(2), 101–109. https://www.jstage.jst.go.jp/article/jsbbs/60/2/60_2_101/_article/-char/ja/spa
dc.relation.referencesEvers, D., Lefvre, I., Legay, S., Lamoureux, D., Hausman, J. F., Rosales, R. O. G., Marca, L. R. T., Hoffmann, L., Bonierbale, M., & Schafleitner, R. (2010). Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. Journal of Experimental Botany, 61(9), 2327–2343. https://doi.org/10.1093/JXB/ERQ060spa
dc.relation.referencesFAO. (2019). FAOSTAT. https://www.fao.org/faostat/en/#data/QCspa
dc.relation.referencesFarhad, M.-S., Mandoulakani Babak, A., Mohammad Reza, Z., Mir Hassan, R.-S., & Afshin, T. (2011). Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. AJCS, 5(1), 55–60.spa
dc.relation.referencesFarooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 2009 29:1, 29(1), 185–212. https://doi.org/10.1051/AGRO:2008021spa
dc.relation.referencesFathi, E., & Allah, A. (2016). Plant growth under drought stress: Significance of mineral nutrients. https://doi.org/10.1002/9781119054450.ch37spa
dc.relation.referencesFEDEPAPA. (2020). BOLETIN REGIONAL. 4(5), 1–6. https://fedepapa.com/wp-content/uploads/2021/09/NACIONAL-2020.pdfspa
dc.relation.referencesFini, A., Brunetti, C., Ferdinando, M. di, Ferrini, F., & Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6(5), 709. https://doi.org/10.4161/PSB.6.5.15069spa
dc.relation.referencesFlecken, M., Wang, H., Popilka, L., Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2020). Dual Functions of a Rubisco Activase in Metabolic Repair and Recruitment to Carboxysomes. Cell, 183(2), 457-473.e20. https://doi.org/10.1016/J.CELL.2020.09.010spa
dc.relation.referencesGabriel, J., Veramendi, S., Angulo, A., & Magne, J. (2013). Respuesta de variedades mejoradas de papa (Solanum tuberosum L.) al estrés hídrico por sequía. Journal of the Selva Andina Biosphere, 33–44. http://www.scielo.org.bo/pdf/jsab/v1n1/v1n1_a04.pdfspa
dc.relation.referencesGavicho Uarrota, V., Luis Vieira Stefen, D., Santini Leolato, L., Medeiros Gindri, D., Nerling, D., Uarrota, V. G., M Gindri Á D Nerling, Á. D., Uarrota Á D L V Stefen Á L S Leolato, V. G., & Gindri, D. M. (2018). Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress. Antioxidants and Antioxidant Enzymes in Higher Plants, 207–232. https://doi.org/10.1007/978-3-319-75088-0_10spa
dc.relation.referencesGervais, T., Creelman, A., Li, X. Q., Bizimungu, B., de Koeyer, D., & Dahal, K. (2021). Potato Response to Drought Stress: Physiological and Growth Basis. Frontiers in Plant Science, 12, 1630. https://doi.org/10.3389/FPLS.2021.698060/BIBTEXspa
dc.relation.referencesGhaffari, H., Tadayon, M. R., Nadeem, M., Cheema, M., & Razmjoo, J. (2019). Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiologiae Plantarum, 41(2), 1–13. https://doi.org/10.1007/S11738-019-2815-Z/FIGURES/1spa
dc.relation.referencesGimeno, V., Díaz-López, L., Simón-Grao, S., Martínez, V., Martínez-Nicolás, J. J., & García-Sánchez, F. (2014). Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. Plant Physiology and Biochemistry, 83, 308–315. https://doi.org/10.1016/J.PLAPHY.2014.08.008spa
dc.relation.referencesGómez, M. I., Barragán, A., Magnitskiy, S., & Rodríguez, L. E. (2020). Normalized difference vegetation index, N–NO−3 and K+ in stem sap of potato plants (Group Andigenum) as affected by fertilization - Corrigendum. Experimental Agriculture, 56(1), 159–159. https://doi.org/10.1017/S0014479719000176spa
dc.relation.referencesGómez S., M. I., Magnitskiy, S., & Rodríguez, L. E. (2017). Diagnóstico de K + y NO 3 - en savia para determinar el estado nutricional en papa ( Solanum tuberosum L. subsp. andigena ). Revista Colombiana de Ciencias Hortícolas, 11(1), 133–142. https://doi.org/10.17584/RCCH.2017V11I1.6132spa
dc.relation.referencesGray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64–77. https://doi.org/10.1016/J.YDBIO.2016.07.023spa
dc.relation.referencesHasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2), 249. https://doi.org/10.1007/S12298-017-0422-2spa
dc.relation.referencesHavaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4), 597–606. https://doi.org/10.1111/TPJ.12386spa
dc.relation.referencesHe, M., & Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytologist, 204(4), 924–931. https://doi.org/10.1111/NPH.12952spa
dc.relation.referencesHeath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1spa
dc.relation.referencesHernández, I., & Munné-Bosch, S. (2015). Linking phosphorus availability with photo-oxidative stress in plants. Journal of Experimental Botany, 66(10), 2889–2900. https://doi.org/10.1093/JXB/ERV056spa
dc.relation.referencesHessini, K., Martínez, J. P., Gandour, M., Albouchi, A., Soltani, A., & Abdelly, C. (2009). Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Environmental and Experimental Botany, 67(2), 312–319. https://doi.org/10.1016/J.ENVEXPBOT.2009.06.010spa
dc.relation.referencesHijmans, R. J. (2003). The effect of climate change on global potato production. American Journal of Potato Research 2003 80:4, 80(4), 271–279. https://doi.org/10.1007/BF02855363spa
dc.relation.referencesHmidi, D., Abdelly, C., Athar, H. ur R., Ashraf, M., & Messedi, D. (2018). Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiology and Molecular Biology of Plants, 24(6), 1017. https://doi.org/10.1007/S12298-018-0601-9spa
dc.relation.referencesHörtensteiner, S., & Kräutler, B. (2011). Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(8), 977–988. https://doi.org/10.1016/J.BBABIO.2010.12.007spa
dc.relation.referencesHosseini, S. A., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., & Yvin, J. C. (2019). Calcium Application Enhances Drought Stress Tolerance in Sugar Beet and Promotes Plant Biomass and Beetroot Sucrose Concentration. International Journal of Molecular Sciences, 20(15). https://doi.org/10.3390/IJMS20153777spa
dc.relation.referencesHuang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10, 800. https://doi.org/10.3389/FPLS.2019.00800/BIBTEXspa
dc.relation.referencesHurtado, F. A., & Mesa, Ó. J. (2015). Cambio climático y variabilidad espacio – temporal de la precipitación en Colombia. Rev.EIA, 12(24), 133–150. https://doi.org/10.14508/reia.2015.12.24.131-150spa
dc.relation.referencesJanku, M., Luhová, L., & Petrivalský, M. (2019). On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants, 8(4). https://doi.org/10.3390/ANTIOX8040105spa
dc.relation.referencesJefferies, R. A., & Mackerron, D. K. (1993). Responses of potato genotypes to drought. II. Leaf area index, growth and yield. Annals of Applied Biology, 122(1), 105–112. https://doi.org/10.1111/J.1744-7348.1993.TB04018.Xspa
dc.relation.referencesKhan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research 2018 51:1, 51(1), 1–17. https://doi.org/10.1186/S40659-018-0198-Zspa
dc.relation.referencesKleczkowski, L. A., & Igamberdiev, A. U. (2021). Magnesium Signaling in Plants. International Journal of Molecular Sciences 2021, Vol. 22, Page 1159, 22(3), 1159. https://doi.org/10.3390/IJMS22031159spa
dc.relation.referencesKopsell, D. A., Kopsell, D. E., & Curran-Celentano, J. (2007). Carotenoid pigments in kale are influenced by nitrogen concentration and form. Journal of the Science of Food and Agriculture, 87(5), 900–907. https://doi.org/10.1002/JSFA.2807spa
dc.relation.referencesKumar, S., Sachdeva, S., Bhat, K. v., & Vats, S. (2018). Plant Responses to Drought Stress: Physiological, Biochemical and Molecular Basis. Biotic and Abiotic Stress Tolerance in Plants, 1–25. https://doi.org/10.1007/978-981-10-9029-5_1spa
dc.relation.referencesKumar, Shankar, V., & Poddar, A. (2020). Investigating the effect of limited climatic data on evapotranspiration-based numerical modeling of soil moisture dynamics in the unsaturated root zone: a case study for potato crop. Modeling Earth Systems and Environment, 6(4), 2433–2449. https://doi.org/10.1007/S40808-020-00824-8/TABLES/9spa
dc.relation.referencesLahlou, O., Ouattar, S., & Ledent, J.-F. (2003). The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, EDP Sciences, 23(3), 257–268. https://doi.org/10.1051/agro:2002089ïspa
dc.relation.referencesLee, B. R., Zaman, R., Avice, J. C., Ourry, A., & Kim, T. H. (2016). Sulfur use efficiency is a significant determinant of drought stress tolerance in relation to photosynthetic activity in Brassica napus cultivars. Frontiers in Plant Science, 7(APR2016), 459. https://doi.org/10.3389/FPLS.2016.00459/BIBTEXspa
dc.relation.referencesLefèvre, I., Ziebel, J., Guignard, C., Hausman, J. F., Gutiérrez Rosales, R. O., Bonierbale, M., Hoffmann, L., Schafleitner, R., & Evers, D. (2012). Drought Impacts Mineral Contents in Andean Potato Cultivars. Journal of Agronomy and Crop Science, 198(3), 196–206. https://doi.org/10.1111/J.1439-037X.2011.00499.Xspa
dc.relation.referencesLi, H., Luo, W., Ji, R., Xu, Y., Xu, G., Qiu, S., & Tang, H. (2021). A comparative proteomic study of cold responses in potato leaves. Heliyon, 7(2), e06002. https://doi.org/10.1016/J.HELIYON.2021.E06002spa
dc.relation.referencesLi, T., Liu, J. X., Deng, Y. J., Xu, Z. S., & Xiong, A. S. (2021). Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana. BMC Plant Biology, 21(1), 1–13. https://doi.org/10.1186/S12870-021-03236-7/TABLES/1spa
dc.relation.referencesLim, C. W., Baek, W., Jung, J., Kim, J. H., & Lee, S. C. (2015). Function of ABA in Stomatal Defense against Biotic and Drought Stresses. International Journal of Molecular Sciences, 16(7), 15251. https://doi.org/10.3390/IJMS160715251spa
dc.relation.referencesLiu, F., Jensen, C. R., Shahanzari, A., Andersen, M. N., & Jacobsen, S. E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science, 168(3), 831–836. https://doi.org/10.1016/J.PLANTSCI.2004.10.016spa
dc.relation.referencesLiu., Shahnazari, A., Andersen, M., Jacobsen, S., & Jensen, C. (2006). Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Scientia Horticulturae, 109(2), 113–117. https://doi.org/10.1016/J.SCIENTA.2006.04.004spa
dc.relation.referencesLiu, Y., Lu, S., Liu, K., Wang, S., Huang, L., & Guo, L. (2019). Proteomics: a powerful tool to study plant responses to biotic stress. Plant Methods 2019 15:1, 15(1), 1–20. https://doi.org/10.1186/S13007-019-0515-8spa
dc.relation.referencesLiu, Y., Wang, L., Li, Y., Li, X., & Zhang, J. (2019). Proline metabolism-related gene expression in four potato genotypes in response to drought stress. Http://Bp.Ueb.Cas.Cz/Doi/10.32615/Bp.2019.153.Html, 63(1), 757–764. https://doi.org/10.32615/BP.2019.153spa
dc.relation.referencesLópez-Hidalgo, C., Meijón, M., Lamelas, L., & Valledor, L. (2021). The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant, Cell & Environment, 44(6), 1977–1986. https://doi.org/10.1111/PCE.14007spa
dc.relation.referencesLou, L., Li, X., Chen, J., Li, Y., Tang, Y., & Lv, J. (2018). Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L.). PLOS ONE, 13(3), e0194625. https://doi.org/10.1371/JOURNAL.PONE.0194625spa
dc.relation.referencesMarschner, P. (2011). Marschner’s Mineral Nutrition of Higher Plants: Third Edition. Marschner’s Mineral Nutrition of Higher Plants: Third Edition, 1–651. https://doi.org/10.1016/C2009-0-63043-9spa
dc.relation.referencesMeena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12). https://doi.org/10.1016/J.HELIYON.2019.E02952spa
dc.relation.referencesMittler, R., & Blumwald, E. (2015). The Roles of ROS and ABA in Systemic Acquired Acclimation. The Plant Cell, 27(1), 64. https://doi.org/10.1105/TPC.114.133090spa
dc.relation.referencesMonneveux, P., Ramírez, D. A., & Pino, M. T. (2013). Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Science : An International Journal of Experimental Plant Biology, 205–206, 76–86. https://doi.org/10.1016/J.PLANTSCI.2013.01.011spa
dc.relation.referencesMorales, M., & Munné-Bosch, S. (2019). Malondialdehyde: Facts and Artifacts. Plant Physiology, 180(3), 1246. https://doi.org/10.1104/PP.19.00405spa
dc.relation.referencesMurshed, R., Lopez-Lauri, F., & Sallanon, H. (2008). Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Analytical Biochemistry, 383(2), 320–322. https://doi.org/10.1016/J.AB.2008.07.020spa
dc.relation.referencesNasir, M. W., & Toth, Z. (2021). Response of Different Potato Genotypes to Drought Stress. Agriculture 2021, Vol. 11, Page 763, 11(8), 763. https://doi.org/10.3390/AGRICULTURE11080763spa
dc.relation.referencesNasir, M. W., & Toth, Z. (2022). Effect of Drought Stress on Potato Production: A Review. Agronomy 2022, Vol. 12, Page 635, 12(3), 635. https://doi.org/10.3390/AGRONOMY12030635spa
dc.relation.referencesNoctor, G., Mhamdi, A., & Foyer, C. H. (2014). The Roles of Reactive Oxygen Metabolism in Drought: Not So Cut and Dried. Plant Physiology, 164(4), 1636–1648. https://doi.org/10.1104/PP.113.233478spa
dc.relation.referencesObidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6(JULY), 1–23. https://doi.org/10.3389/FPLS.2015.00542/BIBTEXspa
dc.relation.referencesOzakca, D. U. (2013). Effect of Abiotic Stress on Photosystem I-Related Gene Transcription in Photosynthetic Organisms. Photosynthesis. https://doi.org/10.5772/55350spa
dc.relation.referencesPoddar A, Sharma A, & Shankar V. (2017). Irrigation Scheduling for Potato (Solanum Tuberosum L.) Based on Daily Crop Coefficient Approach in a Sub-Humid Sub-Tropical Region. https://www.researchgate.net/publication/327668299_Irrigation_Scheduling_for_Potato_Solanum_Tuberosum_L_Based_on_Daily_Crop_Coefficient_Approach_in_a_Sub-Humid_Sub-Tropical_Region/figures?lo=1spa
dc.relation.referencesRahman, S. M. L., Mackay, W. A., Nawata, E., Sakuratani, T., Uddin, A. S. M. M., & Quebedeaux, B. (2004). Superoxide Dismutase and Stress Tolerance of Four Tomato Cultivars. HortScience, 39(5), 983–986. https://doi.org/10.21273/HORTSCI.39.5.983spa
dc.relation.referencesRazi, K., & Muneer, S. (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Https://Doi-Org.Ezproxy.Unal.Edu.Co/10.1080/07388551.2021.1874280, 41(5), 669–691. https://doi.org/10.1080/07388551.2021.1874280spa
dc.relation.referencesRibas-Carbo, M., Taylor, N. L., Giles, L., Busquets, S., Finnegan, P. M., Day, D. A., Lambers, H., Medrano, H., Berry, J. A., & Flexas, J. (2005). Effects of water stress on respiration in soybean leaves. Plant Physiology, 139(1), 466–473. https://doi.org/10.1104/PP.105.065565spa
dc.relation.referencesRodriguez-Heredia, M., Saccon, F., Wilson, S., Finazzi, G., Ruban, A. v, & Hanke, G. T. (2022). Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions. Plant Physiology, 188(2), 1028–1042. https://doi.org/10.1093/PLPHYS/KIAB550spa
dc.relation.referencesRodríguez-Pérez, L., Ñústez L, C. E., Moreno F, L. P., Rodríguez-Pérez, L., Ñústez L, C. E., & Moreno F, L. P. (2017). Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agronomía Colombiana, 35(2), 158–170. https://doi.org/10.15446/AGRON.COLOMB.V35N2.65901spa
dc.relation.referencesRomero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8, 1608. https://doi.org/10.3389/FPLS.2017.01608/BIBTEXspa
dc.relation.referencesRudack, K., Seddig, S., Sprenger, H., Köhl, K., Uptmoor, R., & Ordon, F. (2017). Drought stress-induced changes in starch yield and physiological traits in potato. Journal of Agronomy and Crop Science, 203(6), 494–505. https://doi.org/10.1111/JAC.12224spa
dc.relation.referencesSadras, V. O., & Milroy, S. P. (1996). Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crops Research, 47(2–3), 253–266. https://doi.org/10.1016/0378-4290(96)00014-7spa
dc.relation.referencesSah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7(MAY2016), 571. https://doi.org/10.3389/FPLS.2016.00571/BIBTEXspa
dc.relation.referencesSanders, G. J., & Arndt, S. K. (2012). Osmotic Adjustment Under Drought Conditions. Plant Responses to Drought Stress: From Morphological to Molecular Features, 9783642326530, 199–229. https://doi.org/10.1007/978-3-642-32653-0_8spa
dc.relation.referencesSarker, U., & Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports 2018 8:1, 8(1), 1–12. https://doi.org/10.1038/s41598-018-34944-0spa
dc.relation.referencesSeleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Haleem Abdul-Wajid, H., & Leonardo Battaglia, M. (2021). plants Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. https://doi.org/10.3390/plantsspa
dc.relation.referencesShah, A., & Smith, D. L. (2020). Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. Agronomy 2020, Vol. 10, Page 1209, 10(8), 1209. https://doi.org/10.3390/AGRONOMY10081209spa
dc.relation.referencesSharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A. S., Handa, N., Kapoor, D., Yadav, P., Khanna, K., Bakshi, P., Rehman, A., Kohli, S. K., Khan, E. A., Parihar, R. D., Yuan, H., Thukral, A. K., Bhardwaj, R., & Zheng, B. (2019). Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. Journal of Plant Growth Regulation 2019 39:2, 39(2), 509–531. https://doi.org/10.1007/S00344-019-10018-Xspa
dc.relation.referencesSharma, Jha, A., Dubey, R., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037spa
dc.relation.referencesSingh, R., Parihar, P., Singh, S., Mishra, R. K., Singh, V. P., & Prasad, S. M. (2017). Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives. Redox Biology, 11, 213. https://doi.org/10.1016/J.REDOX.2016.11.006spa
dc.relation.referencesSprenger, H., Kurowsky, C., Horn, R., Erban, A., Seddig, S., Rudack, K., Fischer, A., Walther, D., Zuther, E., Köhl, K., Hincha, D. K., & Kopka, J. (2016). The drought response of potato reference cultivars with contrasting tolerance. https://doi.org/10.1111/pce.12780spa
dc.relation.referencesSvensson, B., Tiede, D. M., Nelson, D. R., & Barry, B. A. (2004). Structural Studies of the Manganese Stabilizing Subunit in Photosystem II. Biophysical Journal, 86(3), 1807–1812. https://doi.org/10.1016/S0006-3495(04)74247-2spa
dc.relation.referencesTourneux, C., Devaux, A., Camacho, M. R., Mamani, P., & Ledent, J. F. (2003). Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie, 23(2), 181–190. https://doi.org/10.1051/AGRO:2002080spa
dc.relation.referencesTurner, N. C. (2018). Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of Experimental Botany, 69(13), 3223–3233. https://doi.org/10.1093/JXB/ERY181spa
dc.relation.referencesValbuena, R., Roveda, G., Bolaños, A., Zapata, J., Medina, C., Almanza, P., & Porras, D. (2010). ESCALAS FENOLOGÍCAS DE LAS VARIEDADES DE PAPA PARDA PASTUSA, DIACOL CAPIRO Y CRIOLLA “YEMA DE HUEVO” EN LAS ZONAS PRODUCTORAS DE CUNDINAMARCA, BOYACA, NARIÑO Y ANTIOQUIA (Corpoica, Ed.). Produmedios. https://repository.agrosavia.co/bitstream/handle/20.500.12324/12893/44240_56518.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesvan Loon, C. D. (1981). The effect of water stress on potato growth, development, and yield. American Potato Journal 1981 58:1, 58(1), 51–69. https://doi.org/10.1007/BF02855380spa
dc.relation.referencesVerslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal : For Cell and Molecular Biology, 45(4), 523–539. https://doi.org/10.1111/J.1365-313X.2005.02593.Xspa
dc.relation.referencesVishwakarma, A., Tetali, S. D., Selinski, J., Scheibe, R., & Padmasree, K. (2015). Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Annals of Botany, 116(4), 555–569. https://doi.org/10.1093/AOB/MCV122spa
dc.relation.referencesVos, J., & Groenwold, J. (1989). Characteristics of photosynthesis and conductance of potato canopies and the effects of cultivars and transient drought. Field Crops Research, 20(4), 237–250. https://doi.org/10.1016/0378-4290(89)90068-3spa
dc.relation.referencesWebster, J., & Oxley, D. (2012). Protein identification by MALDI-TOF mass spectrometry. Methods in Molecular Biology (Clifton, N.J.), 800, 227–240. https://doi.org/10.1007/978-1-61779-349-3_15spa
dc.relation.referencesWheeler, T., & von Braun, J. (2013). Climate Change Impacts on Global Food Security. Science, 341(6145), 508–513. https://doi.org/10.1126/SCIENCE.1239402spa
dc.relation.referencesWilcox, D. A., & Ashley, R. A. (1982). The potential use of plant physiological responses to water stress as an indication of varietal sensitivity to drought in four potato (Solanum tuberosum L.) varieties. American Potato Journal 1982 59:11, 59(11), 533–545. https://doi.org/10.1007/BF02852602spa
dc.relation.referencesXiong, H., Hua, L., Reyna-Llorens, I., Shi, Y., Chen, K. M., Smirnoff, N., Kromdijk, J., & Hibberd, J. M. (2021). Photosynthesis-independent production of reactive oxygen species in the rice bundle sheath during high light is mediated by NADPH oxidase. Proceedings of the National Academy of Sciences of the United States of America, 118(25). https://doi.org/10.1073/PNAS.2022702118/SUPPL_FILE/PNAS.2022702118.SD04.XLSXspa
dc.relation.referencesYang, H., Zhang, D., Li, X., Li, H., Zhang, D., Lan, H., Wood, A. J., & Wang, J. (2016). Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Molecular Breeding 2016 36:3, 36(3), 1–13. https://doi.org/10.1007/S11032-015-0422-2spa
dc.relation.referencesYang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae 2021, Vol. 7, Page 50, 7(3), 50. https://doi.org/10.3390/HORTICULTURAE7030050spa
dc.relation.referencesYe, Y., Medina-Velo, I. A., Cota-Ruiz, K., Moreno-Olivas, F., & Gardea-Torresdey, J. L. (2019). Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicology and Environmental Safety, 184. https://doi.org/10.1016/J.ECOENV.2019.109671spa
dc.relation.referencesYi, X., McChargue, M., Laborde, S., Frankel, L. K., & Bricker, T. M. (2005). The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. The Journal of Biological Chemistry, 280(16), 16170–16174. https://doi.org/10.1074/JBC.M501550200spa
dc.relation.referencesZarzyńska, K., Boguszewska-Mańkowska, D., & Nosalewicz, A. (2017). Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant, Soil and Environment, 63 (2017)(No. 4), 159–164. https://doi.org/10.17221/4/2017-PSEspa
dc.relation.referencesZhang, H., Han, B., Wang, T., Chen, S., Li, H., Zhang, Y., & Dai, S. (2012). Mechanisms of plant salt response: Insights from proteomics. Journal of Proteome Research, 11(1), 49–67. https://doi.org/10.1021/PR200861Wspa
dc.relation.referencesZhang, S. Han, Xu, X. Feng, Sun, Y. Min, Zhang, J. Lian, & Li, C. Zhou. (2018). Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. Journal of Integrative Agriculture, 17(2), 336–347. https://doi.org/10.1016/S2095-3119(17)61758-1spa
dc.relation.referencesZhang, Y. T., Zhou, D. Q., Su, Y., Yu, P., Zhou, X. G., & Yao, C. X. (2013). Proteome analysis of potato drought resistance variety in Ninglang 182 leaves under drough stress. Yi Chuan = Hereditas, 35(5), 666–672. https://doi.org/10.3724/SP.J.1005.2013.00666spa
dc.relation.referencesZhang, Zhou, D., Su, Y., Yu, P., Zhou, X., & Yao, C. (2013). Proteome analysis of potato drought resistance variety in Ninglang 182 leaves under drough stress. Yi Chuan = Hereditas, 35(5), 666–672. https://doi.org/10.3724/SP.J.1005.2013.00666spa
dc.relation.referencesŽivković, T., Quartacci, M. F., Stevanović, B., Marinone, F., & Navari-Izzo, F. (2005). Low-molecular weight substances in the poikilohydric plant Ramonda serbica during dehydration and rehydration. Plant Science, 168(1), 105–111. https://doi.org/10.1016/J.PLANTSCI.2004.07.018spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocEstrés de sequiaspa
dc.subject.agrovocdrought stresseng
dc.subject.agrovocRendimiento de cultivosspa
dc.subject.agrovoccrop yieldeng
dc.subject.agrovocFisiología vegetalspa
dc.subject.agrovocplant physiologyeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)spa
dc.subject.proposalAscorbato-Glutatiónspa
dc.subject.proposalProteómicaspa
dc.subject.proposalSequíaspa
dc.subject.proposalAntioxidantespa
dc.subject.proposalFotosistemaspa
dc.subject.proposalRespiraciónspa
dc.subject.proposalNutrientesspa
dc.subject.proposalProteomicseng
dc.subject.proposalDroughteng
dc.subject.proposalPigmentseng
dc.subject.proposalPhotosystemeng
dc.subject.proposalRespirationeng
dc.subject.proposalNutrientseng
dc.subject.proposalAscorbate-glutathioneeng
dc.titleEfecto de la severidad del estrés hídrico en la recuperación, respuesta bioquímica, expresión de proteínas y rendimiento en papa (Solanum tuberosum L.) en dos estados de desarrollospa
dc.title.translatedEffect of the severity of water stress on recovery, biochemical response, protein expression and yield in potato (Solanum tuberosum L.) in two stages of developmenteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleSistema de información agroclimática para el cultivo de papa (Solanum tuberosum L.) en áreas productivas de Cundinamarca, SIAP.spa
oaire.fundernameMINCIENCIASspa
oaire.fundernameAGROSAVIAspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1070959487.2022.pdf
Tamaño:
2.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: