Asociación de la virulencia de Colletotrichum lindemuthianum con la respuesta de defensa en frijol común bajo una alternativa de control

dc.contributor.advisorGonzalez Almario, Adrianaspa
dc.contributor.authorSaldarriaga Gómez, Catalinaspa
dc.contributor.orcid0000-0002-8563-5210spa
dc.contributor.researchgroupGenética de Rasgos de Interés Agronómicospa
dc.date.accessioned2024-07-29T18:54:29Z
dc.date.available2024-07-29T18:54:29Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa antracnosis ocasionada por el hongo Colletotrichum lindemuthianum es una de las enfermedades más limitantes en el cultivo de frijol (Phaseolus vulgaris L.) ocasionando una disminución en su rendimiento. Entre las alternativas de manejo se ha implementado el uso de compuestos como los fosfitos los cuales pueden tener un efecto en la planta induciendo sus mecanismos de resistencia como también un efecto fungicida inhibiendo el crecimiento micelial y la germinación de las esporas del hongo. Por tanto, el objetivo de este trabajo fue evaluar la virulencia de C. lindemuthianum y asociarla con la respuesta de defensa en frijol bajo una alternativa de control a base de una solución de fosfito de potasio. Para esto, los aislados Cl(a) y el Cl(b) de C. lindemuthianum fueron caracterizados macro y microscópicamente y su virulencia fue evaluada en plantas de frijol del cultivar Sutagao con y sin aplicación previa de una solución de fosfito de potasio antes de la inoculación del patógeno. Así mismo, se evaluó la expresión de los genes PR1, PR4, PR3 y POD asociados con la defensa de la planta y la del factor de virulencia Cac1 del hongo, a las 0, 24, 48, 72 y 96 horas posteriores a la infección (hpi). Como resultados se obtuvo que el aislado Cl(a) desarrolló conidias y acérvulos en medio PDA, características que no fueron detectadas en Cl(b). Adicionalmente, el aislado Cl(a) al ser inoculado en las plantas de frijol del cultivar Sutagao fue más virulento que Cl(b), al generar el valor más alto de severidad y del área bajo la curva del progreso de la enfermedad (AUDPC). A nivel molecular, el aislado Cl(b) indujo un valor significativamente mayor en la expresión de los genes de defensa evaluados a diferencia del aislado Cl(a). No obstante, el factor de virulencia Cac1 de C. lindemuthianum presentó un valor de expresión significativamente mayor en el aislado Cl(a) comparado con Cl(b). Con respecto al tratamiento de las plantas con solución de fosfito de potasio previo a la infección con el hongo, se evidenció una disminución en el tamaño de las lesiones necróticas, se detectó un aumento en la expresión de los genes PR1, PR3, PR4 y POD con respecto a las plantas no tratadas y el patógeno expresó el gen Cac1 contribuyendo con su virulencia. Con base en estos resultados, se concluye que la variedad de frijol Sutagao presenta una menor expresión de genes de defensa cuando está frente a un aislamiento de C. lindemuthianum que expresa el factor de virulencia Cac1 en las etapas iniciales de la infección. Así mismo, se evidenció que la aplicación de una solución de fosfito de potasio previa a la infección con el patógeno, regula positivamente la expresión de genes de defensa de la planta contribuyendo a una disminución en la severidad de la enfermedad. (Texto tomado de la fuente).spa
dc.description.abstractAnthracnose caused by the fungus Colletotrichum lindemuthianum is one of the most limiting diseases in bean cultivation (Phaseolus vulgaris L.), leading to a decrease in yield. Among the management alternatives, the use of compounds such as phosphites has been implemented, which can affect the plant by inducing its resistance mechanisms as well as a fungicidal effect, inhibiting the mycelial growth and spore germination of the fungus. Therefore, the objective of this study was to evaluate the virulence of C. lindemuthianum and associate it with the defense response in beans under a control alternative based on a solution of potassium phosphite. For this purpose, the isolates Cl(a) and Cl(b) of C. lindemuthianum were characterized macro and microscopically, and their virulence was evaluated in bean plants of the Sutagao cultivar, with and without prior application of a potassium phosphite solution before inoculation with the pathogen. Likewise, the expression of the genes PR1, PR4, PR3, and POD associated with plant defense, and the virulence factor Cac1 of the fungus, was evaluated at 0, 24, 48, 72, and 96 hours postinfection (hpi). Results showed that the Cl(a) isolate developed conidia and acervuli in PDA medium, characteristics not detected in Cl(b). Additionally, Cl(a), when inoculated into Sutagao bean plants, was more virulent than Cl(b), generating the highest severity value and area under the disease progress curve (AUDPC). At the molecular level, the Cl(b) isolate induced a significantly higher expression of the bean defense genes evaluated compared to the Cl(a) isolate. However, the Cac1 gene of C. lindemuthianum showed a significantly higher expression value in the Cl(a) isolate compared to Cl(b). Regarding the treatment of plants with a potassium phosphite solution before infection with the fungus, a decrease in the size of necrotic lesions was observed, and an increase in the expression of the PR1, PR3, PR4 and POD genes was detected compared to untreated plants. Based on these results, it is concluded that the Sutagao bean variety exhibits a lower expression of defense genes when confronted with an isolate of C. lindemuthianum expressing the Cac1 virulence factor in the early stages of infection. Similarly, it was observed that the application of a potassium phosphite solution before to infection with the pathogen positively regulates the expression of plant defense genes, contributing to a decrease in the severity of the disease.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaFitopatologíaspa
dc.format.extentxviii, 96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86640
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAlvarez-Diaz, J.C., Laugé, R., Delannoy, E., Huguet, S., Paysant-Le Roux, C., Gratias, A., Geffroy, V. (2022). Genome-wide transcriptomic analysis of the effects of infection with the hemibiotrophic fungus Colletotrichum lindemuthianum on common bean. Plants, 11(15), 1995.spa
dc.relation.referencesAnsari, K.I., Palacios, N., Araya, C., Langin, T., Egan, D., Doohan, F. M. (2004). Pathogenic and genetic variability among Colletotrichum lindemuthianum isolates of different geographic origins. Plant Pathology, 53(5), pp. 635–642.spa
dc.relation.referencesBormann, J., Boenisch, M.J., Brückner, E., Firat, D., Schäfer, W. (2014). The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat. PloS One, 9, e91135.spa
dc.relation.referencesCampa, A., Trabanco, N., Ferreira, J.J. (2017) Identification of clusters that condition resistance to anthracnose in the common bean differential cultivars AB136 and MDRK. Phytopathology 107, pp. 1515–1521.spa
dc.relation.referencesCastellanos, G., Jara, C., Mosquera, G. (2011). Guías prácticas de laboratorio para el manejo de patógenos del frijol. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.spa
dc.relation.referencesCosta, L.C., Nalin, R.S., Dias, M.A., Ferreira, M.E., Song, Q., Pastor-Corrales, M.A., Hurtado-Gonzales, O.P., de Souza, E.A. (2021). Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean. Theoretical and Applied Genetics, 134, pp. 543–556.spa
dc.relation.referencesDa Silva, L.L., Moreno, H.L.A., Correia, H.L.N., Santana, M.F., De Queiroz, M.V. (2020). Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Applied Microbiology and Biotechnology, 104, pp. 1891-1904.spa
dc.relation.referencesDamm, U., Cañón, P.F., Liu, F., Barreto, R.W., Guatimosim, E., Crous, P.W. (2013). The Colletotrichum orbiculare species complex: Important pathogens of field crops and weeds. Fungal Divers, 61, 29–59.spa
dc.relation.referencesDe Lima Castro, S.A., Gonçalves-Vidigal, M.C., Gilio, T.A.S., Lacanallo, G.F., Valentini, G., Da Silva Ramos Martins, V., Song, Q., Galván, M.Z., Hurtado-Gonzales, O.P., Pastor-Corrales, M.A. (2017). Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma. BMC Genomics, 18(1).spa
dc.relation.referencesFontenelle, M., Santana, M., Cnossen, A., Bazzoli, D., Bromonschenkel, S., Araújo, E., Queiroz, M. (2017). Differential expression of genes during the interaction between Colletotrichum lindemuthianum and Phaseolus vulgaris. European Journal of Plant Pathology, 147, pp. 653-670.spa
dc.relation.referencesFu, T., Park, H., Kim, K. (2022a). Role of the cAMP signaling pathway in the dissemination and development on pepper fruit anthracnose disease caused by Colletotrichum scovillei. Frontiers in cellular and infection microbiology, 12, 1003195.spa
dc.relation.referencesFu, T., Shin, J.H., Lee, N.H., Lee, K.H., Kim, K.S. (2022b). Mitogen-activated protein kinase CsPMK1 is essential for pepper fruit anthracnose by Colletotrichum scovillei. Frontiers in Microbiology, 13, 770119.spa
dc.relation.referencesGallego, C., Ligarreto-Moreno, G., Garzón-Gutiérrez, L.N., Oliveros-Garay, O.A., Rincón- Rivera, L. (2010). Rendimiento y reacción a Colletotrichum lindemuthianum en cultivares de frijol voluble (Phaseolus vulgaris L.). Revista Facultad Nacional de Agronomía Medellín, 63(2), pp. 5477-5488.spa
dc.relation.referencesGarzón, L., Blair, M., Ligarreto, G. (2007) Uso de selección asistida con marcadores para resistencia a antracnosis en frijol común. Agronomía Colombiana, 25, pp. 207-214.spa
dc.relation.referencesGuevara-Suarez, M., Cárdenas, M., Jiménez, P., Afanador-Kafuri, L., Restrepo, S. (2022). Colletotrichum species complexes associated with crops in northern South America: a review. Agronomy, 12, 548.spa
dc.relation.referencesIrinyi, L., Serena, C., Garcia-Hermoso, D., Arabatzis, M., Desnos-Ollivier, M., Vu, D., Cardinali, G., Arthur, I., Normand, A.C., Giraldo, A., Cassia da Cunha, K., Sandoval-Denis, M., Hendrickx, M., Satie, A., Salles de Azevedo, A., Bellinghausenl, K., Khan, A., Alves, J., Sampaio, P., Ribeiro da Silva, M., Carmona e Ferreira, R., de Medeiros, M., Castañón- Olivares, L.R., Estrada-Barcenas, D., Cassagne, C., Mary, C., Yao, S., Kong, F., Ying, A., Zeng, X., Zhao, Z., Gantois, N., Botterel, F., Robbertse, B., Schoch, C., Gams, W., Ellis, D., Halliday, C., Chen, S., Sorrell, T.C., Piarroux, R., Colombo, A.L., Pais, C., de Hoog, S., Zancopé-Oliveira, R.M., Taylor, M.L., Toriello, C., de Almeida, C.M., Delhaes, L., Stubbe, D., Dromer, F., Ranque, S., Guarro, J., Cano-Lira, J.F., Robert, V., Velegraki, A., Meyer, W. (2015). International Society of Human and Animal Mycology (ISHAM) - ITS reference DNA barcoding database - the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Medical Mycology, 53(4), pp. 313–337.spa
dc.relation.referencesJiang, L., Zhang, S., Su, J., Peck, S., Luo, L. (2021). Protein kinase signaling pathways in plant-Colletotrichum interaction. Frontiers in Plant Science, 12, 829645.spa
dc.relation.referencesJayawardena, R.S., Hyde, K.D., Damm, U., Cai, L., Liu, M., Li, X.H., Zhabg, W., Zhao, W.S., Yan, J.Y. (2016). Notes on currently accepted species of Colletotrichum. Mycosphere, 7, pp. 1192–1260.spa
dc.relation.referencesLiu, F., Cai, L., Crous, P. W., Damm, U. (2013). Circumscription of the anthracnose pathogens Colletotrichum lindemuthianum and C. nigrum. Mycologia, 105(4), 844–860.spa
dc.relation.referencesMahuku, S.G. & Riascos, J.J. (2004). Virulence and molecular diversity within C. lindemuthianum isolates from andean and mesoamerican bean varieties and regions. European Journal of Plant Pathology, 110(3), pp. 253–263.spa
dc.relation.referencesMayo, S., Gutiérez, S., Malmierca, M. G., Lorenzana, A., Campelo, M. P., Hermosa, R., Casquero, P. A. (2015). Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Frontiers in Plant Science, 6, 685.spa
dc.relation.referencesNabi, N., Nabi, A., Fayaz, T., Lateff, I., Nisa, Q., Bashir, A., Rashid, Z., Shah, M.D., Itoo, H., Shah, R.A., Bhat, Z.A., Masoodi, K.Z., Khan, I., Rashid, R., Padder, B.A. (2014). Pathogenically altered Colletotrichum lindemuthianum transformants helps in understanding the biochemical defense and colonization dynamics in Phaseolus vulgaris. Physiological and Molecular Plant Pathology, 129, 102208.spa
dc.relation.referencesOliveira, M.B., Andrade, R.V., Grossi De-Sá, M.F., Petrofeza, S. (2015). Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum - Phaseolus vulgaris interaction. Frontiers in Microbiology, 6, 1162.spa
dc.relation.referencesOrtiz, H., León, J., Rivero, R., Hoyos, L. (2011). Manual de prácticas de fitopatología general. Facultad de Agronomía, Universidad Nacional de Colombia.spa
dc.relation.referencesParsa, S., García-Lemos, A. M., Castillo, K., Ortiz, V., López-Lavalle, L. A., Braun, J., Vega, F. E. (2016). Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal biology, 120(5), 783–790.spa
dc.relation.referencesPedroza, M. (2019). El receptor tipo quinasa COK-4 de Phaseolus vulgaris L. es requerido para la activación temprana de mecanismos de defensa contra la raza 7 de Colletotrichum lindemuthianum. [Tesis de maestría, Universidad Nacional de Colombia].spa
dc.relation.referencesPedroza-Padilla, M.C., Rodríguez-Arévalo, K.A., Rincón-Rivera, L., González-Almario, A. (2022). Co-52 resistance allele contributes to induce basal defense against Colletotrichum lindemuthianum race 7. Pesquisa Agropecuaria Tropical, 52, e71746.spa
dc.relation.referencesPeng, Y., Yang, J., Li, X., Zhang, Y. (2021). Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology, 72, 761 – 791.spa
dc.relation.referencesPfaffl, M. (2001). A new mathematical model for relative quantification in real-time RTPCR. Nucleic Acids Research, 29(9), e45.spa
dc.relation.referencesRomero, G., González-Sayer, S., González, Adriana. (2024). Morphological and transcriptional analysis of Colletotrichum lindemuthianum during early stages of infection in common bean. Genetics and Molecular Biology. Submitted and approved manuscript.spa
dc.relation.referencesRuiz-Campos, C., Umaña-Rojas, G., Gómez-Alpízar, L. (2022). Multilocus identification of Colletotrichum species associated with papaya anthracnose. Agronomía Mesoamericana, 33, pp. 1-18.spa
dc.relation.referencesShams, E., Javan-Nikkhah, M., Mirzadi Gohari, A. (2020). Dissecting molecular events and gene expression signatures involved in Colletotrichum lindemuthianum-Phaseolus vulgaris pathosystem in compatible and incompatible interactions. European Journal of Plant Pathology, 156, pp. 925-937.spa
dc.relation.referencesShaner, G. & Finney, R. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheal. Phytopathology, 67, pp. 1051-1056.spa
dc.relation.referencesSchwartz, H.F. & Pastor-Corrales, M.A. (2005). Anthracnose. En : Schwartz, H.F., Steadman, J.R., Hal,l R., Forster, R.L. (Eds). Compendium of bean diseases. APS Press, St Paul. pp. 25-27spa
dc.relation.referencesVan Schoonhoven, A. & Pastor-Corrales, M.A. (1987). Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.spa
dc.relation.referencesYamauchi, J., Takayanagi, N., Komeda, K., Takano, Y., Okuno, T. (2004). cAMP-PKA signaling regulates multiple stpes of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium. Molecular Plant-Microbe Interactions, 17(12), pp. 1355– 1365.spa
dc.relation.referencesYin, T., Zhang, Q., Wang, J., Liu, H., Wang, C., Xu, J.R., Jiang, C. (2018). The cyclaseassociated protein FgCap1 has both protein kinase a-dependent and-independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Molecular Plant Pathology, 19, 552–563.spa
dc.relation.referencesZhou, X., Zhang, H., Li, G., Shaw, B., and Xu, J.R. (2012). The cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae. PloS Pathogens, 8, e1002911.spa
dc.relation.referencesAchary, V.M.M., Ram, B., Manna, M., Datta, D., Bhatt, A., Reddy, M.K., Agrawal, P.K. (2017). Phosphite: a novel P fertilizer for weed management and pathogen control. Plant Biotechnology Journal, 15(12), pp. 1493–1508.spa
dc.relation.referencesBarchietto, T., Saindrenan, P., Bompeix, G. (1992). Physiological responses of Phytophthora citrophthora to a sub-inhibitory concentration of phosphonate. Pesticide Biochemistry and Physiology, 42, pp. 151–166.spa
dc.relation.referencesCosta, B.H.G., de Resende, M.L.V., Monteiro, A.C.A., Ribeiro Júnior, P.M., Botelho, D.M.S, Silva, B.M. (2017). Potassium phosphites in the protection of common bean plants against anthracnose and biochemical defence responses. Journal of Phytopathology, 166(2), pp. 95–102.spa
dc.relation.referencesEshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G.E.S., O’Brien, P.A. (2011). Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60, pp. 1086–1095.spa
dc.relation.referencesEshraghi, L., Anderson, J. P., Aryamanesh, N., McComb, J. A., Shearer, B., Hardy, G. (2014). Defence signalling pathways involved in plant resistance and phosphite-mediated control of Phytophthora cinnamomi. Plant molecular biology reporter, 32(2), pp. 342-356.spa
dc.relation.referencesFigueira, E.P.P, Kuhn, O.J., Martinazzo-Portz, T., Stangarlin, J.R.; Pereira, M.D.P, Lampugnani, C. (2020). Histochemical changes induced by Trichoderma spp. and potassium phosphite in common bean (Phaseolus vulgaris) in response to the attack by Colletotrichum lindemuthianum. Semina: Ciências Agrárias, 41(3), pp. 811-828.spa
dc.relation.referencesGadaga, S.J.C., Abreu, M.S., de Resende, M.L.V., Ribeiro Junior, P.M. (2017). Phosphites for the control of anthracnose in common bean. Pesquisa Agropecuaria Brasileira, 52(1).spa
dc.relation.referencesGriffith, J.M., Smillie, R.H., Grant, B.R. (1990). Alterations in nucleotide and pyrophosphate levels in Phytophthora palmivora following exposure to the antifungal agent potassium phosphonate (phosphite). The Journal of General Microbiology, 136, pp. 1285–1291.spa
dc.relation.referencesHavlin, J.L. & Schlegel, A.J. (2021). Review of phosphite as a plant nutrient and fungicide. Soil Systems, 5(3), 52.spa
dc.relation.referencesHilker, M. & Schmülling, T. (2019). Stress priming, memory, and signalling in plants. Journal of Integrative Plant Biology, 42(3), pp. 753 – 761.spa
dc.relation.referencesMauch-Mani, B., Baccelli, I., Luna, L., Flors, V. (2017). Defense priming: an adaptive part of induced resistance. Annual Review of Plant Biology, 68, pp. 485 – 512.spa
dc.relation.referencesNiere, J.O., DeAngelis, G., Grant, B.R. (1994). The effect of phosphonate on the acidsoluble phosphorus components in the genus Phytophthora. Microbiology, 140, pp. 1661– 1670.spa
dc.relation.referencesRamezani, M., Ramezani, F., Rahmani, F., Dehestani, A. (2018). Exogenous potassium phosphite application improved PR-protein expression and associated physiobiochemical events in cucumber challenged by Pseudoperonospora cubensis. Scientia Horticulturae, 234, pp. 335–343.spa
dc.relation.referencesYáñez-Juárez, M.G., López-Orona, C.A., Ayala-Tafoya, F., Partida-Ruvalcaba, L., Velásquez-Alcarez, T.J., Medina-López, R. (2018). Los fosfitos como alternativa para el manejo de problemas fitopatológicos. Revista Mexicana de Fitopatología, 36(1).spa
dc.relation.referencesOspina-Parra, C.E., Martínez-Medrano, J.C., Valencia, K.C., Tautiva-Merchán, L.A. (2020). Análisis socioeconómico del cultivo de fríjol en Cundinamarca (Colombia), para la identificación de un Sistema Agroalimentario Localizado (SIAL). Rivar, 4(21).spa
dc.relation.referencesVerma, V., Ravindran, P., Kumar, P.P. (2016). Plant hormone-mediated regulation of stress responses. Plant Biology BMC, 16(86).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocMecanismos de defensaspa
dc.subject.agrovocdefence mechanismseng
dc.subject.agrovocAntracnosis de la judíaspa
dc.subject.agrovocbean anthracnoseeng
dc.subject.agrovocColletotrichum lindemuthianumspa
dc.subject.agrovocColletotrichum lindemuthianumeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)spa
dc.subject.proposalAntracnosisspa
dc.subject.proposalGenes de defensaspa
dc.subject.proposalFactor de virulenciaspa
dc.subject.proposalFosfito de potasiospa
dc.subject.proposalAnthracnoseeng
dc.subject.proposalDefense geneseng
dc.subject.proposalVirulence factoreng
dc.subject.proposalPotassium phosphiteeng
dc.titleAsociación de la virulencia de Colletotrichum lindemuthianum con la respuesta de defensa en frijol común bajo una alternativa de controlspa
dc.title.translatedAssociation of the virulence of Colletotrichum lindemuthianum with the defense response in common beans under an alternative controleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018464790.2024.pdf
Tamaño:
9.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: