Desarrollo de absorbentes a partir de cenizas volantes mediante procesos de activación ácida y básica a través de calentamiento convencional e intensificado mediante microondas

dc.contributor.advisorGalindo Valbuena, Hugo Martín
dc.contributor.authorTorres Salamanca, Santiago
dc.date.accessioned2022-08-17T16:24:16Z
dc.date.available2022-08-17T16:24:16Z
dc.date.issued2021-10-16
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractProperties of microparticles make them possible to be used as adsorbents of water contaminants. Its low cost and ease of application show that it has the potential for adsorber contaminants in water treatment. In this study, traditional synthesis techniques were evaluated and fly ash activation (an industrial waste) for arsenic, asphaltenes and phenol, with the aim of identifying the procedures generated by the best adsorbents. It was found that the best arsenic adsorbent between the materials studied is microwave-synthesized iron oxide with 5 ml of NaOH, with a maximum adsorption of 35.46 mg As /g solid. For asphaltenes adsorption, the solid of greater adsorption capacity is the microwave-activated flying ash with NaOH those of greater capacity with 49.5 mg asphaltenes / g solid. And for phenol, the best adsorbent is the flying ash activated with a mixture of NaOH and KOH by traditional heating for 20 h with an adsorption of 1.19 mg phenol / g solid. In conclusion, the molecular structure affects the affinity between the surface of the adsorbate and the adsorbent and that the microwave processes generate solids with better structure, greater adsorption capacity, less reaction time and lower energy expenditure.eng
dc.description.abstractLas propiedades de algunas micropartículas hacen que puedan ser utilizados como adsorbentes de contaminantes de agua. Su bajo costo y facilidad de aplicación demuestran que tiene el potencial para adsorber contaminantes en el tratamiento de aguas. En este estudio, se evaluaron las técnicas tradicionales de síntesis de óxidos de hierro y activación de cenizas volantes (un residuo industrial) para adsorber arsénico, asfaltenos y fenol, con el objetivo de identificar los procedimientos que generan los mejores adsorbentes. Se encontró que el mejor adsorbente de arsénico entre los materiales estudiados es óxido de hierro con 5 mL de NaOH sintetizado en microondas, con una adsorción máxima de 35.46 mg de As/g de sólido. Para la adsorción de asfaltenos, el sólido de mayor capacidad de adsorción es la ceniza volante activada con NaOH en microondas las de mayor capacidad con 49.5 mg de asfaltenos/g de sólido. Y para el fenol, el mejor adsorbente es la ceniza volante activada con una mezcla de NaOH y KOH por calentamiento tradicional por 20 h con una adsorción de 1.19 mg de fenol/g de sólido. Se concluye que la estructura molecular afecta la afinidad entre la superficie del adsorbato y el adsorbente y que los procesos con microondas generan solidos con mejor estructura, mayor capacidad de adsorción, menor tiempo de reacción y menor gasto de energía. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaDesarrollo de materiales adsorbentesspa
dc.format.extentxiv, 70 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81935
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAcevedo-Sandoval, O., Ortiz-Hernández, E., Cruz-Sánchez, M., & Cruz-Chávez, E. (2004). El papel de óxidos de hierro en suelos. Terra Latinoamericana, 22(4), 485-497.spa
dc.relation.referencesAdams, J. (2014). Asphaltene adsorption, a literature review. Energy Fuels, 2831-2856.spa
dc.relation.referencesAhmaruzzaman, M. (2009). Role of Fly Ash in the Removal of Organic Pollutants from Wastewater. Energy Fuels, 1494-1511.spa
dc.relation.referencesAivazoglou, E., Metaxa, E., & Hristoforou, E. (2018). Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment. AIP Advances 8.spa
dc.relation.referencesAlonso, D. L. (2014). Determinación de arsénico total y biodisponible en la zona suroccidental del distrito minero de oro California - Vetas en el departamento de Santander, Colombia. Tesis de Maestría. Universidad Nacional de Colombia.spa
dc.relation.referencesAmerican Chemical Society. (15 de Junio de 2020). Molecule of the Week Archive. Obtenido de Magnetite: https://www.acs.org/content/acs/en/molecule-of-theweek/archive/m/magnetite.htmlspa
dc.relation.referencesArmendáriz, C., Garcia, T., Soler, A., Fernández, Á., Glez-Weller, D., González, G., . . . Gironés, C. (2015). Heavy metals in cigarettes for sale in Spain. Environ. Res.,162-169spa
dc.relation.referencesASTM. (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM C618 - 19.spa
dc.relation.referencesBada, S., & Potgieter-Vermaak, S. (2015). Evaluation and Treatment of Coal Fly Ash for Adsorption Application. Obtenido de School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand: http://lejpt.academicdirect.org/A12/get_htm.php?htm=037_048spa
dc.relation.referencesBautista Ruiz, W. A., Díaz Lagos, M., & Martínez Ovalle, S. A. (2017). Caracterización de las cenizas volantes de una planta termoeléctrica para su posible uso como aditivo en la fabricación de cemento. Revista de Investigación, Desarrollo e Innovación, 8(1), 135-146.spa
dc.relation.referencesCamacho, C., García, G., Fernández, C., & Labrador, H. (2016). Degradación del asfalteno ayacucho aplicando Pseudomonas Aeruginosa en dos medios minerales de cultivo. Ingeniería y sociedad UC., 11(1), 35-45.spa
dc.relation.referencesChaidhuri, S., Ghosh, A., & Chattopadhyay, S. K. (2021). Chapter 14 - Green synthetic approaches for medium ring–sized heterocycles of biological and pharmaceutical interest. En G. Brahmachari, Green Synthetic Approaches for Biologically Relevant Heterocycles (págs. 617-653). Santiniketan: Elsevier.spa
dc.relation.referencesChen, C., & Wang, X. (2006). Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Fundam., 9144–9149.spa
dc.relation.referencesDahiya, M. S., Tomer, V. K., & Duhan, S. (2018). Metal–ferrite nanocomposites for targeted drug delivery. Applications of Nanocomposite Materials in Drug Delivery, 737-760.spa
dc.relation.referencesDil, E., Ghaedi, M., & Asfaram, A. (2017). The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling. . Ultrason. Sonochem., 792-802.spa
dc.relation.referencesEl-Naggar, M., El-Kamash, A., Dessouky, M., & Ghonaim, A. (2008). Two step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. Journal of Hazardous Materials, 154, 963-972.spa
dc.relation.referencesEnel Codensa. (1 de Junio de 2022). Tarifas de energía electrica $/kWh . Obtenido de Enel Codensa: https://www.enel.com.co/content/dam/enelco/espa%C3%B1ol/personas/1-17-1/2022/tarifario-junio-2022.pdfspa
dc.relation.referencesFernández, I., Muñoz, M., & Herranz, F. (2019). Microwave-Driven Synthesis of IronOxide Nanoparticles for Molecular Imaging. Molecules, 1224.spa
dc.relation.referencesFonseca, L. (2016). Empleo de ceniza volante colombiana como material cementicio suplementario y sus efectos sobre la fijación de cloruros en concretos. Tesis de doctorado. Universidad Nacional de Colombia.spa
dc.relation.referencesGe, J. C., Yoon, S. K., & Choi, N. J. (2018). Application of Fly Ash as an Adsorbent for Removal of Air and Water Pollutants. Applied Sciences, 8, 1116-1140.spa
dc.relation.referencesGomez, M., Ancheyta, J., Marroquin, G., Alonso, F., Betancourt, G., & Centeno, G. (2003). Formación de sedimentos durante la hidrodesintegración de residuos del petróleo. J. Mex. Chem. Soc., 260-266.spa
dc.relation.referencesGupta, D., Jamwal, D., Rana, D., & Katoch, A. (2018). 26 - Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs. En Inamuddin, A. M. Asiri, & A. Mohammad, Applications of Nanocomposite Materials in Drug Delivery (págs. 619-632). Woodhead Publishing.spa
dc.relation.referencesGupta, V., Moradi, O., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-Ghoshekandi, R., . . . Garshasbi, A. (2016). Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit. Rev. Environ. Sci. Technol., 93-118spa
dc.relation.referencesHe, K., Xu, C.-Y., Zhen, L., & Shao, W.-Z. (2007). Hydrothermal synthesis and characterization of single-crystalline Fe3O4 nanowires with high aspect ratio and uniformity. Mater. Lett., 3159-3162.spa
dc.relation.referencesHerrera, C. D. (2015). Modelo de estabilidad de asfaltenos como herramienta para predecir el daño de formación en pozos productores de petróleo con alto contenido de CH$, CO2 o N2. Tesis de maestría. Universidad Nacional de Colombia.spa
dc.relation.referencesIconaru, S. L., Guégan, R., Popa, C. L., Motelica-Heino, M., Steluta Ciobanu, C., & Predoi, D. (2016). Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Applied Clay Science, 128-135.spa
dc.relation.referencesKashif Shahid, M., Kim, Y., & Choi, Y.-G. (2019). Magnetite synthesis using iron oxide waste and its application for phosphate adsorption with column and batch reactors. Chemical Engineering Research and Design, 169-179.spa
dc.relation.referencesKim, J. H., Tratnyek, P. G., & Chang, Y. S. (2008). Rapid Dechlorination of Polychlorinated Dibenzo-p-dioxins by Bimetallic and Nanosized Zerovalent Iron. Environ. Sci. Technol., 4106-4112.spa
dc.relation.referencesLin, S.-H., & Juang, R.-S. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. Journal of Environmental Management, 1336-1349spa
dc.relation.referencesLuo, X., Wang, C., Luo, S., Dong, R., Tu, X., & Zeng, G. (2012). Fe3O4-reduced, Adsorption of As (III) and As (V) from water using magnetite. Chemical Engineering Journal, 187, 45-52.spa
dc.relation.referencesMainali, B., Pham, T., Ngo, H., & Guo, W. (2013). Maximum allowable values of the heavy metals in recycled water for household laundry. Sci. Total Environ., 427-432.spa
dc.relation.referencesMarczewski, A. W., & Szymula, M. (2002). Adsorption of asphaltenes from toluene on mineral surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 208(1-3), 259-266. doi:10.1016/S0927-7757(02)00152-8spa
dc.relation.referencesMayo, J. T., Yavuz, C., Yean, S., Cong, L., Shipley, W., Falkner, J., . . . Colvin, V. (2007). The effect of nanocrystalline magnetite size on arsenic removal. Science and Technology of Advanced Materials, 8(1-2), 71-75spa
dc.relation.referencesMejía, J. M., Rodríguez, E. D., & Mejía de Gutiérrez, R. (2014). Utilización potencial de una ceniza volante de baja calidad como fuente de aluminosilicatos en la producción de geopolímeros. Ingeniería y Universidad, 18(2), 309-327.spa
dc.relation.referencesMihir, H., & Barve, S. (2015). Calcination and Microwave Assisted Biological Synthesis of Iron Oxide Nanoparticles and Comparative Efficiency Studies for Domestic Wastewater Treatment. International Research Journal of Environmental Sciences, 28-36.spa
dc.relation.referencesMinisterio de Agricultura. (1984). Decreto 1594 de 1984. Usos del agua y residuos líquidos.spa
dc.relation.referencesMorsali, A., & Hashemi, L. (2020). Chapter Two - Nanoscale coordination polymers: Preparation, function and application. En D. Ruiz-Molina, & R. van Eldik, Advances in Inorganic Chemistry (Vol. 76, págs. 33-72)spa
dc.relation.referencesNoli, F., Buema, G., & Misaelides, P. (2015). New materials synthesized from ash under moderate conditions for removal of toxic and radioactive metals. J Radioanal Nucl Chem, 2303–2311.spa
dc.relation.referencesOliva González, C. M., Cedeño Morales, E. M., Navarro Tellez, A. d., Serrano Quezada, T. E., Kharissova, O. V., & Méndez-Rojas, M. A. (2021). Chapter 18 - CO2 capture by MOFs. En B. Kharisov, & O. V. Kharissova, Handbook of Greener Synthesis of Nanomaterials and Compounds (págs. 407-448). Elsevier.spa
dc.relation.referencesOrihuela, E. (2015). Adsorción de disoluciones acuosas : isotermas de absorción y coeficientes de difusión. TESIS DOCTORAL. Madrid, España: Universidad Complutense de Madrid. Facultad de Ciencias Químicas.spa
dc.relation.referencesPatiha, Heraldy, E., Hidayat, Y., & Firdaus, M. (2016). The langmuir isotherm adsorption equation: The monolayer approach. IOP Conference Series: Materials Science and Engineering, 107(012067), 1-9. doi:10.1088/1757-899X/107/1/012067spa
dc.relation.referencesPurnomo, C., Salim, C., & Hinode, H. (2012). Effect of the activaction method on the properties and adsortion behavior of bagasse fly ash-based activated carbon. Fuel Processing Techonolgy, 132-139spa
dc.relation.referencesQuiroga, J. M., Quero-Pastor, M. J., & Acevedo, A. (2015). Tratamientos avanzados para la eliminación de fármacos en aguas superficiales. PONENCIAS PRESENTADAS EN EL XIII CONGRESO ESPAÑOL DE SALUD AMBIENTAL, (págs. 18-21). Madrid.spa
dc.relation.referencesRahdar, S., Mahmoud, T., Khaksefidi, R., & Ahmadi, S. (2019). Adsorption of arsenic (V) from aqueous solution using modified saxaul ash: isotherm and thermodynamic study. Applied Water Science, 87.spa
dc.relation.referencesRouquerol, J., Avnir, D., Fairbridge, C., Everett, D., Haynes, J., Pernicone, N., . . . Unger, K. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 8(66), 1739-1758. doi:https://doi.org/10.1351/pac199466081739spa
dc.relation.referencesRouquerol, J., Rouquerol, F. L., Maurin, G., & Sing, M. (2013). Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Montpellier: Elsevier Ltd.spa
dc.relation.referencesSadegh, H., Ali, G., Gupta, V., Makhlouf, A. S., Shahryari-ghoshekandi, R., Nadagouda, M., . . . Megiel, E. (2017). The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem, 1-14.spa
dc.relation.referencesSadegh, H., Ghoshekandi, R., Masjedi, A., Mahmoodi, Z., & Kazemi, M. (2016). A review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions. Int. J. Nano Dimens., 109.spa
dc.relation.referencesSaha, N., Rahman, M., Ahmed, M., Zhou, J., Ngo, H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. J. Environ. Manag., 70-78.spa
dc.relation.referencesSahoo, S. (2016). A Review of Activation Methods in Fly Ash and the Comparison in Context of Concrete Strength. Journal of Basic and Applied Engineering Research, 3(10), 883-887.spa
dc.relation.referencesSatterfield, C. N. (1996). Heterogeneus Catalysis in Industrial Practice. Malabar: McGrawHill.spa
dc.relation.referencesSerna, C. J., & Morales, M. P. (2004). Maghemite (γ-Fe2O3): A Versatile Magnetic Colloidal Material. Surface and Colloid Science, 27-81spa
dc.relation.referencesSharma, A., Katara, S., Kabra, S., & Rani, A. (2011). Acid Activated fly Ash, as a Novel Solid Acid Catalyst for Esterification of Acetic Acid. . Indian Journal of Applied Research, 37-39.spa
dc.relation.referencesSharma, Y., Srivastava, V., Singh, V., Kaul, S., & Weng, C. (2009). Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol. , 583–609.spa
dc.relation.referencesSingh, S., Barick, K., & Bahadur, D. (2013). Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater. Nanotechnol., 3-20.spa
dc.relation.referencesStokes, D. J. (2008). Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy (VP-ESEM). Chichester: John Wiley & Sons.spa
dc.relation.referencesSumathi, T., & Alagumuthu, G. (2014). Adsorption Studies for Arsenic Removal Using Activated Moringa oleifera. International Journal of Chemical Engineering.spa
dc.relation.referencesTang, S., & Lo, I. M. (2013). Magnetic Nanoparticles : Essential Factors for Sustainable Environmental Applications,. Water Res., 2613-2632.spa
dc.relation.referencesThermoFisher Scientific. (2013). Atomic Absorption Spectrometry (AAS) Information. Obtenido de ThermoFisher Scientific: https://www.thermofisher.com/co/en/home/industrial/spectroscopy-elementalisotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/traceelemental-analysis-tea-information/atomic-absorption-aa-information.htmlspa
dc.relation.referencesUS Enviromental Protection Agency. (Enero de 2000). Phenol. Obtenido de US Enviromental Protection Agency: https://www.epa.gov/sites/default/files/2016- 09/documents/phenol.pdfspa
dc.relation.referencesVale, J., & Meredith, T. (1986). Acute poisoning due to non-steroidal anti-inflammatory drugs. Clinical features and management. Medical Toxicology, 1(1), 12-31.spa
dc.relation.referencesVarela, J., López, L., & Montiel, A. (2013). El Arsénico y sus riesgos. Revista Universidad de Sonora, 46-48.spa
dc.relation.referencesVisa, M., & Chelaru, A.-M. (2014). Hydrothermally modified fly ash for heavy metals and dyes removal. Applied Surface Science, 14-22.spa
dc.relation.referencesWang, N., Hao, L., Chen, J., Zhao, Q., & & Xu, H. (2018). Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of "spent" adsorbent. Environmental Science and Pollution Research, Publicación web.spa
dc.relation.referencesWang, N., Hao, L., Chen, J., Zhao, Q., & Xu, H. (2018). Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of "spent" adsorbent. Environmental Science and Pollution Research, Publicada en línea. doi:10.1007/s11356-018-1560-yspa
dc.relation.referencesWang, S., Liu, Q., Tan, X., Xu, C., & Gray, M. R. (2016). Adsorption of asphaltenes on kaolinite as an irreversible process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 280-286.spa
dc.relation.referencesWang, S., Sun, H., Ang, H.-M., & Tadé, M. (2013). Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J., 336–347.spa
dc.relation.referencesYoo, J., Kong, H., Wagle, R., Shon, B., Inki, K., & Kim, T. (. (2018). Yoo, Jeong & Kong, Hyeok & Wagle, RosA study on the methods for making iron oxide aerogel. Journal of Industrial and Engineering Chemistry, 72.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembOXIDO DE HIERROspa
dc.subject.lembIron oxideseng
dc.subject.lembCENIZASspa
dc.subject.lembAsheng
dc.subject.proposalAdsorciónspa
dc.subject.proposalMicroondasspa
dc.subject.proposalSíntesisspa
dc.subject.proposalActivaciónspa
dc.subject.proposalAdsorptioneng
dc.subject.proposalMicrowaveeng
dc.subject.proposalSynthesiseng
dc.subject.proposalActivationeng
dc.titleDesarrollo de absorbentes a partir de cenizas volantes mediante procesos de activación ácida y básica a través de calentamiento convencional e intensificado mediante microondasspa
dc.title.translatedDevelopment of adsorbents from iron oxides and fly ash activated in an acid and basic treatments through conventional and intensified microwave-assisted heatingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleIntensificación mediante el uso de microondas del proceso de síntesis de zeolitas y aluminosilicatos amorfos a partir de residuos mineros microparticulados producidos en la sabana de Bogotá.spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023961201.2022.pdf
Tamaño:
1.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: