Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer

dc.contributor.advisorAlí Torres, Jorge Isaacspa
dc.contributor.advisorNúñez Zarur, Franciscospa
dc.contributor.authorOrjuela Rocha, Adrian Leonardospa
dc.contributor.orcid0000-0003-2789-3948spa
dc.contributor.researchgroupQuímica Cuántica y Computacionalspa
dc.date.accessioned2024-06-11T21:27:57Z
dc.date.available2024-06-11T21:27:57Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa enfermedad de Alzheimer, una compleja afección multifactorial, implica una serie de factores entre los cuales destaca la hipótesis del papel del hierro en los procesos de neurodegeneración y en la formación de placas amiloides. En este contexto, el presente estudio se enfocó en el uso de métodos computacionales para predecir el potencial estándar de reducción y la generación de especies reactivas mediante complejos Fe-Aβ Los resultados incluyen el desarrollo de una metodología avanzada para el tratamiento de complejos de hierro, así como una propuesta sobre la reactividad y la formación de peroxído de hidrógeno. Además, se elaboró una metodología específica para investigar el potencial antiagregante de derivados de curcumina. Esta misma técnica se aplicó para evaluar la actividad antiagregante de varios carotenoides presentes en el mamey rojo, ampliando así el espectro de posibles intervenciones terapéuticas en la lucha contra la enfermedad de Alzheimer. Estos avances representan un paso significativo en la comprensión y tratamiento de esta enfermedad, abriendo nuevas vías de investigación para combatir sus efectos neurodegenerativos. (Texto tomado de la fuente).spa
dc.description.abstractAlzheimer’s disease, a complex multifactorial condition, involves a series of factors among which the hypothesis of iron’s role in neurodegeneration processes and amyloid plaque formation stands out. In this context, the present study focused on the use of computational methods to predict the standard reduction potential and the generation of reactive species through Fe-Aβ complexes. The results include the development of an advanced methodology for the treatment of iron complexes, as well as a proposal on reactivity and the formation of H2O2. Additionally, a specific methodology was developed to investigate the antiaggregating potential of curcumin derivatives. This same technique was applied to evaluate the anti-aggregating activity of various carotenoids present in red mamey, thus expanding the spectrum of possible therapeutic interventions in the fight against Alzheimer’s disease. These advances represent a significant step in the understanding and treatment of this disease, opening new avenues of research to combat its neurodegenerative effects.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaQuímica computacionalspa
dc.format.extentxix, 129 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86226
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.indexedBiremespa
dc.relation.referencesJ. Lakey-Beitia, Y. González, D. Doens, D. E. Stephens, R. Santamaría, E. Murillo, M. Gutírrez, P. L. Fernández, K. S. Rao, O. V. Larionov, and A. A. Durant-Archibold, “Assessment of novel curcumin derivatives as potent inhibitors of inflammation and amyloid-β aggregation in alzheimer’s disease,” J. Alzheimer’s Dis., vol. 60, pp. S59– S68, 2017spa
dc.relation.referencesJ. Lakey-Beitia, R. Berrocal, K. S. Rao, and A. A. Durant, “Polyphenols as therapeutic molecules in alzheimer’s disease through modulating amyloid pathways,” Molecular Neurobiology, vol. 51, pp. 466–479, 2015spa
dc.relation.referencesK. P. Kepp, “Bioinorganic chemistry of Alzheimer’s disease,” Chemical reviews, vol. 112, p. 5193–5239, 2012spa
dc.relation.referencesJ. Alí-Torres, “Estudio teóico de la estructura electrónica y molecular de complejos de Cu1+/2+ y Fe2+/3+ relevantes en la enfermedad de Alzheimer,” Tesis Doctoral, 2011spa
dc.relation.referencesJ. Alí-Torres, L. Rodríguez, M. Sodupe, and A. Rauk, “Structures and stabilities of Fe2+/3+ complexes relevant to Alzheimer’s disease: An ab Initio study,” Journal of Phisycal Chemistry, vol. 115, pp. 12523–12530, 2011spa
dc.relation.referencesA. Kramida, Yu.Ralchenko, and J. Reader, “NIST atomic spectra database ionization energies data,” 2021spa
dc.relation.referencesA. L. Orjuela, F. Núnez-Zarur, and J. Alí-Torres, “A computational protocol for the calculation of the standard reduction potential of iron complexes: application to Fe2+/3+ − Aβ model systems relevant to alzheimer’s disease,” RSC Advances, vol. 12, pp. 24077–24087, 2022spa
dc.relation.referencesA. Association, “2021 Alzheimer’s disease facts and figures,” Alzheimers Dement, vol. 13, pp. 325–373, 2021spa
dc.relation.referencesC. R. de Sanchez, D. M. Nariño, and J. Fernando, “Epidemiologia y carga de la enfermedad de alzheimer,” Acta Neurologica Colombiana, vol. 26, pp. 87–94, 2010.spa
dc.relation.referencesF. Lopera, M. Arcos, L. Madrigal, K. Kosik, W. Cornejo, and J. Ossa, “Demencia tipo Alzheimer con agregación familiar en Antioquia , Colombia,” Acta Neurológica Colombiana, vol. 10, pp. 173–187, 1994spa
dc.relation.referencesP. V. Arriagada, J. H. Growdon, E. T. Hedley-Whyte, and B. T. Hyman, “Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease,” Neurology, vol. 42, pp. 631–631, 2012.spa
dc.relation.referencesA. Mirats, J. Ali-Torres, L. Rodriguez-Santiago, M. Sodupe, and G. L. Penna, “Dioxygen activation in the Cu-amyloid β complex,” Phys. Chem. Chem. Phys., vol. 17, pp. 27270–27274, 2015spa
dc.relation.referencesG. Waldemar, B. Dubois, M. Emre, J. Georges, I. G. McKeith, M. R. P. Schel-tens, P. Tariska, B. Winblad, , and EFNS, “Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: Efns guideline,” Eur. J . Neurol, vol. 14, pp. 1–26, 2007spa
dc.relation.referencesA. Rauk, “The chemistry of Alzheimer’s disease,” Chemical Society Reviews, vol. 38, pp. 2698–2715, 2009spa
dc.relation.referencesJ. Kardos, I. Kovfics, F. Haj ́os, M. K ́alaman, and M. Simonyi, “Nerve endings from rat brain tissue release copper upon depolarization. a possible role in regulating neuronal excitability,” Neuroscience Letters, vol. 103, pp. 139–144, 1989spa
dc.relation.referencesC. J. Maynard, R. Cappai, I. Volitakis, R. A. Cherny, A. R. White, K. Beyreuther, C. L. Masters, A. I. Bush, and Q. X. Li, “Overexpression of alzheimer’s disease amyloid- opposes the age-dependent elevations of brain copper and iron,” Journal of Biological Chemistry, vol. 277, pp. 44670–44676, 2002spa
dc.relation.referencesM. Lovell, J. Robertson, W. Teesdale, J. Campbell, and W. Markesbery, “Copper, iron and zinc in alzheimer’s disease senile plaques,” Journal of the Neurological Sciences, vol. 158, pp. 47–52, 1998spa
dc.relation.referencesF.-G. Pajonk, H. Kessler, T. Supprian, P. Hamzei, D. Bach, J. Schweickhardt, W. Herrmann, R. Obeid, A. Simons, P. Falkai, G. Multhaup, and T. A. Bayer, “Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 8, pp. 23–27, 2005spa
dc.relation.referencesT. Borchardt, J. Camakaris, R. Cappai, C. L. Masters, K. Beyreuther, and G. Multhaup, “Copper inhibits β-amyloid production and stimulates the non- amyloidogenic pathway of amyloid-precursor-protein secretion,” Biochem. J, vol. 344, pp. 461–467, 1999.spa
dc.relation.referencesJ. H. Weiss, S. L. Sensi, and J. Y. Koh, “Zn2+: a novel ionic mediator of neural injury in brain disease,” Trends in Pharmacological Sciences, vol. 21, pp. 395–401, 2000spa
dc.relation.referencesC. J. Frederickson, S. W. Suh, D. Silva, C. J. Frederickson, and R. B. Thompson, “Importance of zinc in the central nervous system: The zinc-containing neuron,” The Journal of Nutrition, vol. 130, pp. 1471S–1483S, 2000.spa
dc.relation.referencesL. M. Miller, Q. Wang, T. P. Telivala, R. J. Smith, A. Lanzirotti, and J. Miklossy, “Synchrotron-based infrared and x-ray imaging shows focalized accumulation of cu and zn co-localized with -amyloid deposits in alzheimer’s disease,” Journal of Structural Biology, vol. 155, pp. 30–37, 2006spa
dc.relation.referencesJ. R. Connor, S. L. Menzies, J. R. Burdo, and P. J. Boyer, “Iron and iron management proteins in neurobiology,” Pediatric Neurology, vol. 25, pp. 118–129, 2001.spa
dc.relation.referencesJ. L. Beard, J. R. Connor, and B. C. Jones, “Iron in the brian,” Nutrition Reviews, vol. 51, pp. 157,170, 1993spa
dc.relation.referencesH. M. Schipper, “Heme oxygenase-1: role in brain aging and neurodegeneration,” Ex- perimental Gerontology, vol. 35, pp. 821–830, 2000spa
dc.relation.referencesN. Puentes-Díaz, D. Chaparro, D. Morales-Morales, A. Flores-Gaspar, and J. Alí- Torres, “Role of metal cations of copper, iron, and aluminum and multifunctional ligands in Alzheimer’s disease: Experimental and computational insights,” ACS Omega, vol. 8, pp. 4508–4526, 2023.spa
dc.relation.referencesC. C. Winterbourn, “Toxicity of iron and hydrogen peroxide: the Fenton reaction,” Toxicology Letters, vol. 82-83, pp. 969–974, 1995spa
dc.relation.referencesA. A. Belaidi and A. I. Bush, “Iron neurochemistry in Alzheimer’s disease and par- kinson’s disease: targets for therapeutics,” Journal of Neurochemistry, pp. 179–197, 2016spa
dc.relation.referencesA. A. Mamun, M. S. Uddin, B. Mathew, and G. M. Ashraf, “Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease,” Neural Regeneration Research, vol. 15, pp. 1417–1420, 2020spa
dc.relation.referencesJ. T. Rogers, J. D. Randall, C. M. Cahill, P. S. Eder, X. Huang, H. Gunshin, L. Leiter, J. McPhee, S. S. Sarang, T. Utsuki, N. H. Greig, D. K. Lahiri, R. E. Tanzi, A. I. Bush, T. Giordano, and S. R. Gullans, “An iron-responsive element type II in the 5- untranslated region of the Alzheimer’s amyloid precursor protein transcript,” Journal of Biological Chemistry, vol. 277, pp. 45518–45528, 2002spa
dc.relation.referencesD. J. Pinero and J. R. Connor, “Iron in the brain: An important contributor in normal and diseased states,” Neuroscientist, vol. 6, pp. 435–453, 2000spa
dc.relation.referencesG. P. Kumar and F. Khanum, “Neuroprotective potential of phytochemicals.,” Pharmacogn Rev, vol. 6, pp. 81–90, 2012spa
dc.relation.referencesM. Iranshahi, M. G. Chini, M. Masullo, A. Sahebkar, A. Javidnia, M. C. Yazdi, C. Per- gola, A. Koeberle, O. Werz, C. Pizza, S. Terracciano, S. Piacente, and G. Bifulco, “Can small chemical modifications of natural pan-inhibitors modulate the biological selectivity? the case of curcumin prenylated derivatives acting as hdac or mpges-1 inhibitors,” Journal of Natural Products, vol. 78, pp. 2867–2879, 2015spa
dc.relation.referencesI. Morales, C. Cerda-Troncoso, V. Andrade, and R. B. Maccioni, “The natural product curcumin as a potential coadjuvant in Alzheimer’s treatment,” Journal of Alzheimer’s Disease, vol. 60, pp. 451–460, 2017spa
dc.relation.referencesM. Dumont and M. F. Beal, “Neuroprotective strategies involving ROS in Alzheimer disease,” Free Radical Biology and Medicine, vol. 51, pp. 1014–1026, 2011spa
dc.relation.referencesJ. Lakey-Beitia, A. M. Burillo, G. L. Penna, M. L. Hegde, and K. S. Rao, “Polyphe- nols as potential metal chelation compounds against Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 82, pp. S335–S357, 2021spa
dc.relation.referencesD. Chaparro, A. Flores-Gaspar, and J. Alí-Torres, “Computational design of copper ligands with controlled metal chelating, pharmacokinetics, and redox properties for Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 82, pp. S179–S193, 2021spa
dc.relation.referencesK. Ono, Y. Yoshiike, A. Takashima, K. Hasegawa, H. Naiki, and M. Yamada, “Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease,” J Neurochem, vol. 87, pp. 172–181, 2003spa
dc.relation.referencesC. Rivière, T. Richard, X. Vitrac, J. M. Mérillon, J. Valls, and J. P. Monti, “New polyphenols active on β-amyloid aggregation,” Bioorg. Med. Chem. Lett, vol. 18, pp. 828–831, 2008spa
dc.relation.referencesK. I. Priyadarsini, “The chemistry of curcumin: From extraction to therapeutic agent,” Molecules, vol. 19, pp. 20091–20112, 2014spa
dc.relation.referencesA. Marchiani, S. Mammi, G. Siligardi, R. Hussain, I. Tessari, L. Bubacco, G. Delogu, D. Fabbri, and P. Ruzza, “Small molecules interacting with alpha -synuclein: antiaggregating and cytoprotective properties,” Amino Acids, vol. 45, pp. 327–338, 2013.spa
dc.relation.referencesJ. Wu, Y. Zhang, Y. Cai, J. Wang, B. Weng, Q. Tang, X. Chen, Z. Pan, G. Liang, and S. Yang, “Discovery and evaluation of piperid-4-one-containing mono-carbonyl analogs of curcumin as anti-inflammatory agents,” Bioorganic and Medicinal Chemistry, vol. 21, pp. 3058–3065, 2013.spa
dc.relation.referencesF. Arrigoni, T. Prosdocimi, L. Mollica, L. D. Gioia, G. Zampella, and L. Bertini, “Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling,” Metallomics, vol. 10, pp. 1618–1630, 2018spa
dc.relation.referencesD. J. Lane, S. Ayton, and A. I. Bush, “Iron and Alzheimer’s disease: An update on emerging mechanisms,” Journal of Alzheimer’s Disease, vol. 64, pp. S379–S395, 2018spa
dc.relation.referencesM. Radón, “Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data,” Physical Chemistry Chemical Physics, vol. 21, pp. 4854–4870, 2019spa
dc.relation.referencesG. M. Sandala, K. H. Hopmann, A. Ghosh, and L. Noodleman, “Calibration of dft functionals for the prediction of 57 Fe m ̈ossbauer spectral parameters in iron-nitrosyl and iron-sulfur complexes: Accurate geometries prove essential,” Journal of Chemical Theory and Computation, vol. 7, pp. 3232–3247, 2011spa
dc.relation.referencesS. Song, M.-C. Kim, E. Sim, A. Benali, O. Heinonen, and K. Burke, “Benchmarks and reliable DFT results for spin-crossover complexes,” arXiv: Chemical Physics, 2017spa
dc.relation.referencesJ. Conradie and A. Ghosh, “DFT calculations on the spin-crossover complex Fe(salen)(NO): A quest for the best functional,” Journal of Physical Chemistry B, vol. 111, pp. 12621–12624, 2007spa
dc.relation.referencesK. Arumugam and U. Becker, “Computational redox potential predictions: Applications to inorganic and organic aqueous complexes, and complexes adsorbed to mineral surfaces,” Minerals, vol. 4, pp. 345–387, 2014spa
dc.relation.referencesL. E. Roy, E. Jakubikova, M. G. Guthrie, and E. R. Batista, “Calculation of one- electron redox potentials revisited. is it possible to calculate accurate potentials with density functional methods?,” Journal of Physical Chemistry A, vol. 113, pp. 6745– 6750, 2009.spa
dc.relation.referencesM. A. Rizvi, M. Mane, M. A. Khuroo, and G. M. Peerzada, “Computational survey of ligand properties on iron(III)–iron(II) redox potential: exploring natural attenuation of nitroaromatic compounds,” Monatshefte fur Chemie, vol. 148, pp. 655–668, 2017.spa
dc.relation.referencesM. Horch, “Rational redox tuning of transition metal sites: Learning from superoxide reductase,” Chemical Communications, vol. 55, pp. 9148–9151, 2019spa
dc.relation.referencesK. M. Saravanan, H. Zhang, H. Zhang, W. Xi, and Y. Wei, “On the conformational dynamics of -amyloid forming peptides: A computational perspective,” Frontiers in Bioengineering and Biotechnology, vol. 8, pp. 1–19, 2020spa
dc.relation.referencesK. Teilum, J. G. Olsen, and B. B. Kragelund, “Protein stability, flexibility and fun- ction,” Biochimica et Biophysica Acta - Proteins and Proteomics, vol. 1814, pp. 969– 976, 2011.spa
dc.relation.referencesE. Schrödinger, “Quantisierung als eigenwertproblem,” Annalen der Physik, vol. 385, no. 13, pp. 437–490, 1926spa
dc.relation.referencesA. Szabo and N. S. Ostlund, Modern Quantum Chemistry: : Introduction to Advanced Electronic Structure Theory. Dover Publications, 1 ed., 1996spa
dc.relation.referencesW. J. Hehre, “Ab initio molecular orbital theory,” Accounts of Chemical Research, vol. 9, pp. 399–406, 1976spa
dc.relation.referencesB. Nagy and F. Jensen, Basis Sets in Quantum Chemistry, ch. 3, pp. 93–149. John Wiley Sons, Ltd, 2017spa
dc.relation.referencesM. Dolg, U. Wedig, H. Stoll, and H. Preuss, “Energy-adjusted abinitio pseudopotentials for the first row transition elements,” The Journal of Chemical Physics, vol. 86, no. 2, pp. 866–872, 1987spa
dc.relation.referencesP. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calcula- tions. Potentials for the transition metal atoms Sc to Hg,” The Journal of Chemical Physics, vol. 82, no. 1, pp. 270–283, 1985spa
dc.relation.referencesP. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, pp. B864–B871, 1964.spa
dc.relation.referencesW. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, pp. A1133–A1138, 1965spa
dc.relation.referencesJ. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approxi- mations for many-electron systems,” Phys. Rev. B, vol. 23, pp. 5048–5079spa
dc.relation.referencesJ. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B, vol. 45, pp. 13244–13249spa
dc.relation.referencesJ. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” physical review letters, vol. 77, pp. 3865–3868, 1996.spa
dc.relation.referencesJ. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids,” Phys. Rev. Lett., vol. 91, p. 146401spa
dc.relation.referencesA. V. Arbuznikov, “Hybrid exchange correlation functionals and potentials: Concept elaboration,” Journal of Structural Chemistry, vol. 48, pp. S1–S21, 2007.spa
dc.relation.referencesJ. M. L. Martin and G. Santra, “Empirical double-hybrid density functional theory: A ‘third way’ in between wft and dft,” Israel Journal of Chemistry, vol. 60, no. 8-9, pp. 787–804, 2020spa
dc.relation.referencesD. Frenkel and B. Smit, Statistical Mechanics. Academic Press, 2 ed., 2002.spa
dc.relation.referencesC. J. Cramer and D. G. Truhlar, “Implicit solvation models: equilibria, structure, spectra, and dynamics,” Chemical Reviews, vol. 99, pp. 2161–2200, 1999spa
dc.relation.referencesI. N. Levine, D. H. Busch, and H. Shull, Quantum chemistry. Pearson Prentice Hall Upper Saddle River, NJ, 6 ed., 2009spa
dc.relation.referencesJ. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chemical Reviews, vol. 105, pp. 2999–3093, 2005spa
dc.relation.referencesH. M. Senn and W. Thiel, “Qm/mm methods for biomolecular systems,” Angewandte Chemie - International Edition, vol. 48, pp. 1198–1229, 2009spa
dc.relation.referencesB. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, and P. J. Stephens, “Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules,” The Journal of Physical Chemistry A, vol. 106, pp. 6102–6113, 5 2002.spa
dc.relation.referencesA. V. Marenich, C. J. Cramer, and D. G. Truhlar, “Universal solvation model based on solute electron density and a contiuum model of the solvent defind by the bulk dielectric constant and atomic surface tensions,” J. Phys. Chem. B., vol. 113, pp. 6378–6396, 2009spa
dc.relation.referencesM. Karplus and J. A. McCammon, “Molecular dynamics simulations of biomolecules,” Nature Structural Biology, vol. 9, pp. 646–652, 2002spa
dc.relation.referencesR. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw, “Biomolecular simulation: A computational microscope for molecular biology,” Annual Review of Biophysics, vol. 41, pp. 429–452, 2012.spa
dc.relation.referencesD. Frenkel and B. Smit, Statistical Mechanics. Academic Press, 2 ed., 2002spa
dc.relation.referencesA. R. Leach, B. K. Shoichet, and C. E. Peishoff, “Prediction of proteinligand interactions. docking and scoring: successes and gaps,” Journal of Medicinal Chemistry, vol. 49, pp. 5851–5855, 2006spa
dc.relation.referencesD. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nature Reviews Drug Discovery, vol. 3, pp. 935–949, 2004spa
dc.relation.referencesR. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, and P. S. Shenkin, “Glide: A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy,” Journal of Medicinal Chemistry, vol. 47, pp. 1739–1749, 2004spa
dc.relation.referencesG. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, “Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function,” Journal of Computational Chemistry, vol. 19, pp. 1639–1662, 1998spa
dc.relation.referencesG. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Development and validation of a genetic algorithm for flexible docking,” Journal of Molecular Biology, vol. 267, pp. 727–748, 1997spa
dc.relation.referencesM. L. Hegde, P. M. Hegde, K. S. Rao, and S. Mitra, “Oxidative genome damage and its repair in neurodegenerative diseases: Function of transition metals as a double-edged sword,” Journal of Alzheimer’s Disease, vol. 24, pp. 183–198, 2011.spa
dc.relation.referencesB. J. Tabner, S. Turnbull, R. O. M. El-Agnaf, and D. Allsop, “Production of reactive oxygen species from aggregating proteins implicated in alzheimers disease, parkinsons disease and other neurodegenerative diseases,” Current Topics in Medicinal Chemistry, vol. 1, pp. 507–517, 2005spa
dc.relation.referencesM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Chee- seman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hrat- chian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. To- yota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Mar- tin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, “Gaussian 16 revision D.01,” 2016. Gaussian Inc. Wallingford CTspa
dc.relation.referencesV. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, “6-31G* basis set for atoms K through Zn,” Journal of Chemical Physics, vol. 109, pp. 1223–1229, 1998spa
dc.relation.referencesF. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy,” Physical Chemistry Chemical Physics, vol. 7, pp. 3297–3305, 2005spa
dc.relation.referencesT. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen,” The Journal of Chemical Physics, vol. 90, pp. 1007–1023, 1989spa
dc.relation.referencesW. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, “Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms,” Canadian Journal of Chemistry, vol. 70, pp. 612–630, 1990spa
dc.relation.referencesN. E. Schultz, Y. Zhao, and D. G. Truhlar, “Density functional for inorganometallic and organometallic chemistry,” Journal of Physical Chemistry A, vol. 109, pp. 11127– 11143, 2005spa
dc.relation.referencesJ. Tomasi and M. Persico, “Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent,” Chemical Reviews, vol. 94, pp. 2027– 2094, 1994spa
dc.relation.referencesK. Hyungjun, P. Joungwon, and L. Y. Sup, “A protocol to evaluate one electron redox potential for iron complexes,” Journal of Computational Chemistry, vol. 34, pp. 2233– 2241, 2013spa
dc.relation.referencesS. G. Bratsch, “Standard electrode potentials and temperature coefficients in water at 298.15 k,” Journal of Physical and Chemical Reference Data, vol. 18, pp. 1–21, 1989spa
dc.relation.referencesM. Cossi, N. Rega, G. Scalmani, and V. Barone, “Energies, structures, and electro- nic properties of molecules in solution with the C-PCM solvation model,” Journal of Computational Chemistry, vol. 24, pp. 669–681, 2003.spa
dc.relation.referencesA. N. Masliy, T. N. Grishaeva, and A. M. Kuznetsov, “Standard redox potentials of Fe(III) aqua complexes included into the cavities of cucurbit[n]urils (n = 6-8): A DFT forecast,” Journal of Physical Chemistry A, vol. 123, pp. 1341–1346, 2019.spa
dc.relation.referencesM. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, and T. R. Tuttle, “The proton’s absolute aqueous enthalpy and gibbs free energy of solvation from cluster-ion solvation data,” vol. 102, pp. 7787–7794, 1998spa
dc.relation.referencesB. H. Solis and S. Hammes-Schiffer, “Substituent effects on cobalt diglyoxime catalysts for hydrogen evolution,” Journal of the American Chemical Society, vol. 133, pp. 19036–19039, 2011spa
dc.relation.referencesL. E. Fernandez, S. Horvath, and S. Hammes-Schiffer, “Theoretical analysis of the sequential proton-coupled electron transfer mechanisms for H2 oxidation and production pathways catalyzed by nickel molecular electrocatalysts,” Journal of Physical Che- mistry C, vol. 116, pp. 3171–3180, 2012spa
dc.relation.referencesD. Chaparro and J. Alí-Torres, “Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes,” Journal of Molecular Modeling, vol. 23, p. 283, 2017spa
dc.relation.referencesA. Galstyan and E. W. Knapp, “Accurate redox potentials of mononuclear iron, manganese, and nickel model complexes,” Journal of Computational Chemistry, vol. 30, pp. 203–211, 2009spa
dc.relation.referencesT. Miura, K. Suzuki, and H. Takeuchi, “Binding of iron(III) to the single tyrosine residue of amyloid beta-peptide probed by raman spectroscopy,” Journal of Molecular Structure, vol. 598, pp. 79–84, 2001spa
dc.relation.referencesT. Miura, K. Suzuki, N. Kohata, and H. Takeuchi, “Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes,” Biochemistry, vol. 39, pp. 7024–7031, 2000spa
dc.relation.referencesD. L. Nelson and M. Cox, Lehninger Principles of Biochemistry. W. H Freeman, 2005spa
dc.relation.referencesE. J. Shin, Y. H. Chung, N. Sharma, B. T. Nguyen, S. H. Lee, S. W. Kang, S. Y. Nah, M. B. Wie, T. Nabeshima, J. H. Jeong, and H. C. Kim, “Glutathione peroxidase- 1 knockout facilitates memory impairment induced by -amyloid (1–42) in mice via inhibition of pkc ii-mediated erk signaling; application with glutathione peroxidase-1 gene-encoded adenovirus vector,” Neurochemical Research, vol. 45, pp. 2991–3002, 12 2020spa
dc.relation.referencesC. Behl, Oxidative stress in Alzheimer’s Disease: Implications for Prevention and Therapy, pp. 65–78. Boston, MA: Springer US, 2005spa
dc.relation.referencesM. N. Glukhovtsev, R. D. Bach, and C. J. Nagel, “Performance of the B3LYP/ECP DFT calculations of iron-containing compounds,” Journal of Physical Chemistry A, 1997spa
dc.relation.referencesP. Pracht, F. Bohle, and S. Grimme, “Automated exploration of the low-energy chemical space with fast quantum chemical methods,” Phys. Chem. Chem. Phys., vol. 22, pp. 7169–7192, 2020spa
dc.relation.referencesK. A. Wollen, “Alzheimer’s disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners,” Alternative Medicine Review, vol. 15, pp. 223–244, 2010spa
dc.relation.referencesE. L. Cooper and M. J. Ma, “Alzheimer disease: Clues from traditional and com- plementary medicine,” Journal of Traditional and Complementary Medicine, vol. 7, pp. 380–385, 2017.spa
dc.relation.referencesA. A. Starkov and F. M. Beal, “Portal to Alzheimer’s disease,” Nature Medicine, vol. 14, pp. 1020–1021, 2008spa
dc.relation.referencesV. Calsolaro and P. Edison, “Neuroinflammation in Alzheimer’s disease: Current evidence and future directions,” Alzheimer’s and Dementia, vol. 12, pp. 719–732, 2016spa
dc.relation.referencesH. Sticht, P. Bayer, D. Willbold, S. Dames, C. Hilbich, K. Beyreuther, R. W. Frank, and P. Rosch, “Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease,” Eur. J. Biochem, vol. 233, pp. 293–298, 1995spa
dc.relation.referencesM. Coles, W. Bicknell, a a Watson, D. P. Fairlie, and D. J. Craik, “Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment.,” Biochemistry, vol. 37, pp. 11064–77, 1998spa
dc.relation.referencesT. Darden, D. Case, I. Ben-Shalom, S. Brozell, D. Cerutti, I. T.E. Cheatham, V. Cru- zeiro, Y. Huang, R. Duke, D. Ghoreishi, M. Gilson, H. Gohlke, A. Goetz, D. Greene, R. Harris, N. Homeyer, D. S. Izadi, A. Kovalenko, T. Kurtzman, T. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. L. amd R. Luo, R. Mermelstein, K. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, D. York, P. K. Qi, D. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. Simmerling, J. Smith, R. Sa- lomonFerrer, J. Swails, R. Walker, J. Wang, H. Wei, R. Wolf, X. Wu, and L. Xiao, “Amber 18,” 2018spa
dc.relation.referencesC. Simmerling, “ff 14sb: Improving the accuracy of protein side chain and backbone parameters from ff 99sb,” J. Chem. Theory Comput, vol. 11, p. 3696–3713, 2015spa
dc.relation.referencesW. Humphrey, A. Dalke, and K. Schulten, “Vmd: visual molecular dynamics,” Journal of molecular graphics, vol. 14, pp. 33–38, 1996spa
dc.relation.referencesD. R. Roe and T. E. C. III, “Ptraj and cpptraj: software for processing and analysis of molecular synamics trajectory data,” J Chem Theory Com, vol. 9, pp. 3084–3095, 2013spa
dc.relation.referencesX. Jin and J. Han, “K-medoids clustering,” Encyclopedia of Machine Learning and Data Mining, pp. 697–700, 2017spa
dc.relation.referencesL. Schrodinger, “The PyMol molecular graphics system,” 2015spa
dc.relation.referencesG. Morris and R. Huey, “Autodock4 and autodocktools4: Automated docking with selective receptor flexibility,” Journal of computational chemistry, vol. 30, pp. 2785– 2791, 2009spa
dc.relation.referencesO. Trott and A. J. Olson, “Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading,” Journal of computational chemistry, vol. 31, pp. 455–461, 2010.spa
dc.relation.referencesD. R. Koes, M. P. Baumgartner, and C. J. Camacho, “Lessons learned in empirical scoring with smina from the csar 2011 benchmarking exercise,” Journal of Chemical Information and Modeling, vol. 53, pp. 1893–1904, 2013spa
dc.relation.referencesL. Schrodinger, “Maestro,” 2023spa
dc.relation.referencesC. N. Cavasotto and R. A. Abagyan, “Protein flexibility in ligand docking and virtual screening to protein kinases,” Journal of Molecular Biology, vol. 337, pp. 209–225, 2004.spa
dc.relation.referencesK. Palacio-Rodr ́ıguez, I. Lans, C. N. Cavasotto, and P. Cossio, “Exponential consensus ranking improves the outcome in docking and receptor ensemble docking,” Scientific Reports, vol. 9, pp. 1–14, 2019spa
dc.relation.referencesC. Ritter, M. Adrian, D. Riek-loher, B. Bohrmann, H. Do, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-beta(1–42) fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 17342–17347, 2005spa
dc.relation.referencesI. Lans, K. Palacio-Rodr ́ıguez, C. N. Cavasotto, and P. Cossio, “Flexi-pharma: a molecule-ranking strategy for virtual screening using pharmacophores from ligand- free conformational ensembles,” Journal of Computer-Aided Molecular Design, vol. 34, pp. 1063–1077, 2020.spa
dc.relation.referencesI. Lans, E. Anoz-Carbonell, K. Palacio-Rodr ́ıguez, J. A. A ́ınsa, M. Medina, and P. Cossio, “In silico discovery and biological validation of ligands of fad synthase, a promising new antimicrobial target,” PLOS Computational Biology, vol. 16, p. e1007898, 2020spa
dc.relation.referencesM. Wieder, A. Garon, U. Perricone, S. Boresch, T. Seidel, A. M. Almerico, and T. Langer, “Common hits approach: Combining pharmacophore modeling and molecular dynamics simulations,” Journal of Chemical Information and Modeling, vol. 57, pp. 365– 385, 2017.spa
dc.relation.referencesP. H. Reddy, M. Manczak, X. Yin, M. C. Grady, A. Mitchell, R. Kandimalla, and C. S. Kuruva, “Protective effects of a natural product, curcumin, against amyloid induced mitochondrial and synaptic toxicities in alzheimer’s disease,” Journal of Investigative Medicine, vol. 64, pp. 1220–1234, 2016spa
dc.relation.referencesL. O. Tjernberg, J. N ̈aslundt, F. Lindqvist, J. Johansson, A. R. Karlstr ̈om, J. Thyberg, L. Tereniust, and C. Nordstedt, “Arrest of -amyloid fibril formation by a pentapeptide ligand,” Journal of Biological Chemistry, vol. 271, pp. 8545–8548, 1996.spa
dc.relation.referencesJ. Lakey-Beitia, A. M. Burillo, G. L. Penna, M. L. Hegde, and K. Rao, “Polyphe- nols as potential metal chelation compounds against alzheimer’s disease,” Journal of Alzheimer’s Disease, pp. 1–23, 2020spa
dc.relation.referencesA. Orjuela, J. Lakey-Beitia, R. Mojica-Flores, M. L. Hegde, I. Lans, J. Alí-Torres, and K. Rao, “Computational evaluation of interaction between curcumin derivatives and amyloid- monomers and fibrils: Relevance to alzheimer’s disease,” Journal of Alzheimer’s Disease, pp. 1–13, 2020spa
dc.relation.referencesJ. Lakey-Beitia, A. A. Durant-Archibold, D. Doens, P. L. Fernandez, and E. Murillo, “Anti-amyloid aggregation activity of novel carotenoids: Implications for alzheimer’s drug discovery,” Clinical Interventions in Aging, vol. 12, pp. 815–822, 2017spa
dc.relation.referencesJ. Lakey-Beitia, J. K. D, and M. L. Hegde, “Carotenoids as novel therapeutic molecules against neurodegenerative disorders : Chemistry and molecular docking analysis,” International Journal of Molecular Sciences, vol. 20, pp. 1–22, 2019spa
dc.relation.referencesS. Katayama, H. Ogawa, and S. Nakamura, “Apricot carotenoids possess potent anti- amyloidogenic activity in vitro,” Journal of Agricultural and Food Chemistry, vol. 59, pp. 12691–12696, 2011.spa
dc.relation.referencesD. Hornero-Méndez, R. G.-L. de Guevara, and M. I. Mínguez-Mosquera, “Carotenoid biosynthesis changes in five red pepper (capsicum annuum l.) cultivars during ripening. cultivar selection for breeding,” Journal of Agricultural and Food Chemistry, vol. 48, pp. 3857–3864, 2000spa
dc.relation.referencesG. Maiani, M. J. Periago Castón, G. Catasta, E. Toti, I. G. Cambrodón, A. Bysted, F. Granado-Lorencio, B. Olmedilla-Alonso, P. Knuthsen, M. Valoti, V. Böhm, E. Mayer-Miebach, D. Behsnilian, and U. Schlemmer, “Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans,” Molecular Nutrition & Food Research, vol. 53, no. S2, pp. S194–S218, 2009spa
dc.relation.referencesE. Murillo, D. Giuffrida, D. Menchaca, P. Dugo, G. Torre, A. J. Meléndez-Martinez, and L. Mondello, “Native carotenoids composition of some tropical fruits,” Food Che- mistry, vol. 140, pp. 825–836, 2013spa
dc.relation.referencesJ. Lakey-Beitia, V. Vasquez, A. L. F. C. Randy Mojica-Flores and, E. Murillo, M. L. Hegde, and K. S. Rao, “Pouteria sapota (red mamey fruit): Chemistry and biological activity of carotenoids,” Comb Chem High Throughput Screen, vol. 25, pp. 1134–1147, 2022spa
dc.relation.referencesE. Murillo, R. McLean, G. Britton, A. Agócs, V. Nagy, and J. Deli, “Sapotexanthin, an A-provitamin carotenoid from red mamey (Pouteria sapota).,” J Nat Prod, vol. 74, p. 283–285spa
dc.relation.referencesM. W. Chang, C. Ayeni, S. Breuer, and B. E. Torbett, “Virtual screening for HIV protease inhibitors : A comparison of AutoDock4 and Vina,” PLoS One, pp. 1–9spa
dc.relation.referencesA. Alhossary, S. D. Handoko, Y. Mu, and C.-K. Kwoh, “Fast, accurate, and reliable molecular docking with quickvina 2,” Bioinformatics, vol. 31, pp. 2214–2216, 2015spa
dc.relation.referencesN. M. Hassan, A. A. Alhossary, Y. Mu, and C. K. Kwoh, “Protein-ligand blind docking using quickvina-w with inter-process spatio-temporal integration,” Scientific Reports, vol. 7, pp. 15451–15464, 2017spa
dc.relation.referencesH. K. Tai, S. A. Jusoh, and S. W. Siu, “Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening,” Journal of Cheminformatics, vol. 10, pp. 1–13, 2018spa
dc.relation.referencesD. R. Lide, G. Baysinger, L. I. Berger, R. N. Goldberg, H. V. Kehiaian, K. Kuchitsu, D. L. Roth, and D. Zwillinger, CRC Handbook of Chemistry and Physics. CRC Press Inc., 1992spa
dc.relation.referencesA. Cabort, A. Michel, B. Therrien, H. Stoeckli-Evans, K. Bernauer, G. Suss-Fink, A. F. Williams, and G. Stupka, “Iron, cobalt, nickel and ruthenium complexes of 2,6- bis(3,4-dihydro-2h- pyrrol-5-yl)pyridine, a pybox analogue,” Inorganica Chimica Acta, vol. 350, pp. 193–200, 2003spa
dc.relation.referencesX. Tao, D. W.Stephan, and P. K. Mascharak, “Synthetic analogue approach to metallobleomycins. 2. synthesis, structure, and properties of the low-spin iron(III) complex of N-(2-(4-imidazolyl)ethyl)pyridine- 2-carboxamide,” J. Inorg. Chem., vol. 26, pp. 755– 759, 1986spa
dc.relation.referencesS. J. Brown, M. M. Olmstead, and P. K. Mascharak, “Iron(II) and iron(III) complexes of N-(2-(4-imidazolyl)ethyl)pyrimidine-4-carboxamide, a ligand resembling part of the metal-binding domain of bleomycin,” Inorg. Chem, vol. 29, pp. 3229–3234, 1990spa
dc.relation.referencesD. S. Marlin, M. M. Olmstead, and P. K. Mascharak, “Spin states and stability of Fe(III) complexes of ligands with carboxamido nitrogen and phenolato oxygen donors,” European Journal of inorganic chemistry, pp. 859–865, 2002spa
dc.relation.referencesR. F. Carina, L. Verzegnassi, G. Bernardinelli, and A. F. Williams, “Modulation of iron reduction potential by deprotonation at a remote site,” Chemical Communications, pp. 2681–2682, 1998spa
dc.relation.referencesP. V. Bernhardt, P. Comba, T. W. Hamble, and G. A. Lawrance, “Coordination of the sexidentate macrocycle 6,13-dimethyl- 1,4,8,11- tetraazacyclotetradecane-6,13-diamine to iron(III),” J inorg Chem, vol. 30, pp. 942–946, 1991spa
dc.relation.referencesK. Wieghardt, W. Schmidt, W. Herrmann, and H.-J. Kuppers, “Redox potentials of bis(1,4,7-triazacyclononane) complexes of some first transition series metals(II,III). preparation of bis(1,4,7-triazacyclononane)nickel(III) perchlorate,” J Inorg Chem, vol. 22, pp. 2953–2956, 1983spa
dc.relation.referencesK. Wieghardt, E. Schoffmann, B. Nuber, and J. Weiss2, “Syntheses, properties, and electrochemistry of transition-metal complexes of the macrocycle 1,4,7- tris(2-pyridylmethyl)-1,4,7-triazacyclononane (L). crystal structures of [NiL](Cl04)2, [MnL](Cl04)2, and [PdL](PF6)2 containing a distorted-square-base-pyramidal pdIIN5 core,” Inorg. Chem, vol. 25, pp. 4877–4883, 1986.spa
dc.relation.referencesB. P. George, G. I. H. Hanania, and D. H. Irvine, “Potentiometric studies of some dipyridyl complexes,” Journal of chemical society, pp. 2548–2554, 1959.spa
dc.relation.referencesJ. Shearer, H. L. Jackson, D. Schweitzer, D. K. Rittenberg, T. M. Leavy, W. Kaminsky, R. C. Scarrow, and J. A. Kovacs, “The first example of a nitrile hydratase model complex that reversibly binds nitriles,” Journal of the American Chemical Society, vol. 124, pp. 11417–11428, 2002spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsHierro/análisisspa
dc.subject.decsIron/analysiseng
dc.subject.decsPlaca Amiloide/prevención & controlspa
dc.subject.decsPlaque, Amyloid/prevention & controleng
dc.subject.decsEnfermedad de Alzheimer/tratamiento farmacológicospa
dc.subject.decsAlzheimer Disease/drug therapyeng
dc.subject.proposalAlzheimerspa
dc.subject.proposalDFTspa
dc.subject.proposalHierrospa
dc.subject.proposalDinámica Molecularspa
dc.subject.proposalAcoplamiento molecularspa
dc.subject.proposalProductos naturalesspa
dc.subject.proposalAlzheimereng
dc.subject.proposalDFTeng
dc.subject.proposalIroneng
dc.subject.proposalMolecular dynamicseng
dc.subject.proposalMolecular dockingeng
dc.subject.proposalNatural productseng
dc.titleEstudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimerspa
dc.title.translatedDFT studies of Fe2+/3+-Aβ model systems and antiaggregation properties of polyphenols and carotenoids in Alzheimer's diseaseeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDiseño computacional, síntesis y estudios preliminares de actividad biológica de ligandos multifuncionales de cobre con potencial redox controlado, para su aplicación en el tratamiento de la enfermedad de Alzheimerspa
oaire.fundernameVicerrectoría de Investigación Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_Adrian__Final.pdf
Tamaño:
11.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: