Detección de Escherichia coli O157 a través de iQ-Check PCR y técnicas microbiológicas

dc.contributor.advisorYepes Pérez, Maria del Socorro
dc.contributor.advisorFuentes Vanegas, Mayra Alejandra
dc.contributor.authorCuervo Montoya, Daniela
dc.contributor.orcidCuervo Montoya, Daniela [0000-0002-5181-1749]
dc.contributor.orcidFuentes Vanegas, Mayra Alejandra [0000-0002-2830-1759]
dc.date.accessioned2025-09-10T13:18:50Z
dc.date.available2025-09-10T13:18:50Z
dc.date.issued2025-09-10
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractLas enfermedades transmitidas por los alimentos (ETAs), pueden presentarse como casos aislados o brotes en la población, considerándose un problema de salud pública; pueden ser de origen físico, químico o biológico; entre estas últimas están las asociadas a microorganismos patógenos como Escherichia coli O157:H7, causante de infecciones graves que incluso pueden llevar a la muerte del paciente. Existen varias cepas de E. coli, como es el caso de la comensal, la cual hace parte de la microbiota del tracto intestinal de los mamíferos. Otras, como E. coli enterohemorrágicas (EHEC), cuyo serotipo de referencia es E. coli O157:H7, las cuales poseen factores de virulencia y tiene la capacidad de producir toxinas y liberarlas al torrente sanguíneo del hospedero, conocidas como toxinas Shiga (STEC por sus siglas en inglés, Shiga Toxin E. coli), las cuales pueden desencadenar enfermedades gastrointestinales de gravedad, e incluso pueden llevar a la muerte de los afectados. La detección temprana de microorganismos en alimentos, disminuiría los casos de ETAs; es así como a nivel industrial se emplean métodos microbiológicos convencionales y alternativos para detectar e identificar los agentes causantes de éstas, considerándose los convencionales como el método de oro. Se ha evidenciado que los métodos convencionales, si bien son los más utilizados en la actualidad, requieren de un tiempo bastante extenso para arrojar los resultados, máxime sí se debe enriquecer la muestra, para detectar pocas células microbianas, que es lo usual en los alimentos contaminados con microorganismos patógenos, pero suficiente en número para causar una infección grave; mientras que las técnicas alternativas son usualmente más rápidas, sin impactar negativamente la sensibilidad ni la especificidad. En consecuencia, se estudian e implementan técnicas de detección rápida, pero confiables, como las basadas en la reacción en cadena de la polimerasa (PCR, por sus siglas en inglés, Polymerase Chain Reaction) convencional y en tiempo real, para el reconocimiento de los genes de virulencia. En el mercado se encuentran gran variedad de pruebas moleculares como iQ-Chek E. coli O157:H7, validada bajo diversos criterios. En esta investigación, se realizaron pruebas de iQ-Check PCR y de microbiología tradicional para evaluar algunas variables de cada técnica. Se evaluaron pruebas de especificidad, donde se seleccionaron diferentes cepas de enterobacterias, incluyendo E. coli O157:H7; mientras que para las pruebas de sensibilidad se seleccionaron diferentes concentraciones de E. coli O157:H7. Los resultados obtenidos muestran que iQ-Check PCR fue una técnica más sensible y especifica en comparación con la microbiología tradicional, debido a la capacidad de las técnicas moleculares para detectar pequeños fragmentos de material genético, sin importar si proviene de una célula viable o no; mientras que la microbiología tradicional brinda información sobre células viables y su límite de detección y cuantificación es de una (1) Unidad Formadora de Colonia (UFC). Esto es importante debido a que la infección por E. coli O157:H7 se genera por el consumo de alimentos o agua contaminados con el microorganismo viable, debido a que la bacteria debe tener la capacidad de realizar sus funciones metabólicas para la producción de toxinas citotóxicas y la adherencia al epitelio intestinal. Como conclusión, la implementación de la técnica de iQ-Check PCR es recomendable en laboratorios de control de calidad de alimentos como método principal, sin embargo, no se debe dejar de lado la microbiología tradicional, que sigue siendo la técnica de oro para la detección de patógenos en alimentos y se deben utilizar a la par, como se indica en los protocolos de detección para este tipo de microorganismos. (Tomado de la fuente)spa
dc.description.abstractFoodborne disease (FBDs) can occur as isolated cases or outbreaks within the population and are considered a public health problem; they can be of physical, chemical, or biological origin; among the latter are those associated with pathogenic microorganisms such as Escherichia coli O157:H7, which causes serious infections that can even lead to death. There are several strains of E. coli, such as commensal strains, which are part of the microbiota of the intestinal tract of mammals. Others, such as enterohemorrhagic E. coli (EHEC), whose reference serotype is E. coli O157:H7, possess virulence factors and the ability to produce toxins and release them into the host's bloodstream. These strains are known as Shiga toxins (STEC), which can trigger serious gastrointestinal diseases and can even lead to death. Early detection of microorganisms in food would reduce the incidence of foodborne illnesses (FBDs). Thus, conventional and alternative microbiological methods are used industrially to detect and identify the causative agents, with conventional methods considered the gold standard. It has been shown that conventional methods, although currently the most widely used, require a fairly long time to yield results, especially if the sample must be enriched to detect a small number of microbial cells, which is common in foods contaminated with pathogenic microorganisms, but sufficient in number to cause a serious infection. Alternative techniques are usually faster and do not negatively impact sensitivity or specificity. Consequently, rapid but reliable detection techniques, such as those based on conventional and real-time polymerase chain reaction (PCR), are being studied and implemented for the recognition of virulence genes. A wide variety of molecular tests are available on the market, such as the iQ-Chek E. coli O157:H7, which has been validated under various criteria. In this research, iQ-Check PCR and traditional microbiology tests were performed to evaluate some variables of each technique. Specificity tests were evaluated, selecting different strains of Enterobacteriaceae, including E. coli O157:H7; while different concentrations of E. coli O157:H7 were selected for sensitivity tests. The results obtained show that iQ-Check PCR was a more sensitive and specific technique compared to traditional microbiology, due to the ability of molecular techniques to detect small fragments of genetic material, regardless of whether it comes from a viable cell or not; while traditional microbiology provides information on viable cells and its detection and quantification limit is one (1) Colony Forming Unit (CFU). This is important because infection by E. coli O157:H7 is generated by the consumption of food or water contaminated with the viable microorganism, because the bacteria must have the ability to perform its metabolic functions for the production of cytotoxic toxins and adherence to the intestinal epithelium. In conclusion, the implementation of the iQ-Check PCR technique is recommended in food quality control laboratories as a primary method. However, traditional microbiology should not be neglected, as it remains the gold standard for detecting pathogens in food and should be used in parallel, as indicated in the detection protocols for this type of microorganism.eng
dc.description.curricularareaAgro Ingeniería Y Alimentos.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentos
dc.description.researchareaBioquímica, Biología molecular
dc.format.extent69 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88685
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.relation.indexedLaReferencia
dc.relation.referencesAditya, A., Tabashsum, Z., Martinez, Z. A., Tung, C. W., Suh, G., Nguyen, P., & Biswas, D. (2023). Diarrheagenic Escherichia coli and Their Antibiotic Resistance Patterns in Dairy Farms and Their Microbial Ecosystems. Journal of Food Protection, 86(3), 100051.
dc.relation.referencesAli, S. A., & Al-Dahmoshi, H. O. (2021). Antibiotic Resistance Profile of Escherichia coli and Klebsiella pneumoniae Isolated from Patients with Cystitis. Annals of the Romanian Society for Cell Biology, 25(4), 1336-1347.
dc.relation.referencesBai, Z., Xu, X., Wang, C., Wang, T., Sun, C., Liu, S., & Li, D. (2022). A comprehensive review of detection methods for Escherichia coli O157: H7. TrAC Trends in Analytical Chemistry, 152, 116646.
dc.relation.referencesbioMérieux (2025). VITEK® 2 COMPACT, sistema de identificación microbiana para aplicaciones farmacéuticas. bioMérieux Microbiología Industrial. https://www.biomerieux-industry.com/es/products/vitek-2-compact-sistema-de-deteccion-microbiana-para-aplicaciones-farmaceuticas#features
dc.relation.referencesBio Rad. (s. f.). Performance Summary iQ-Check E. coli O157:H7 Method (N.o 7439). www.bio-rad.com. Recuperado 24 de junio de 2025, de https://www.bio-rad.com/sites/default/files/webroot/web/pdf/fsd/literature/Bulletin_7439.pdf
dc.relation.referencesBioser. (s. f.). Cromogénico para Coliformes Agar (CCA). https://www.bioser.com/productos/agar-cromognico-para-coliformes-cca-iso-9308-1-1376p/#:~:text=El%20Agar%20Cromog%C3%A9nico%20para%20coliformes%20(CCA)%20es%20un%20medio%20espec%C3%ADfico,con%20un%20color%20azul%2Dp%C3%BArpura.
dc.relation.referencesBukhari, M. A., Banasser, T. M., El-Bali, M., Bulkhi, R. A., Qamash, R. A., Trenganno, A., ... & Bahewareth, F. (2021). Assessment of microbiological quality of food preparation process in some restaurants of Makkah city. Saudi Journal of Biological Sciences, 28(10), 5993-5997.
dc.relation.referencesBhunia, A.K. (2018). Introduction to Foodborne Pathogens. In: Foodborne Microbial Pathogens. Food Science Text Series. Springer, New York, NY. https://doi-org.ezproxy.unal.edu.co/10.1007/978-1-4939-7349-1_1
dc.relation.referencesByrne, L., Adams, N., & Jenkins, C. (2020). Association between Shiga Toxin-Producing Escherichia coli O157:H7 stx Gene Subtype and Disease Severity, England, 2009-2019. Emerging infectious diseases, 26(10), 2394–2400. https://doi.org/10.3201/eid2610.200319
dc.relation.referencesCalle, A., Carrascal, A. K., Patiño, C., Carpio, C., Echeverry, A., & Brashears, M. (2021). Seasonal effect on Salmonella, Shiga toxin-producing E. coli O157: H7 and non-O157 in the beef industry in Colombia, South America. Heliyon, 7(7), e07547.
dc.relation.referencesCapitani, S., Brown, L. P., Carrillo, C., & Lau, C. H. F. (2024). Bacterial microbiota associated with raw plant-based meat analogue products and their influences on selective enrichment for Escherichia coli O157: H7. Current Research in Food Science, 100944.
dc.relation.referencesCapobianco, J. A., Clark, M., Cariou, A., Leveau, A., Pierre, S., Fratamico, P., ... & Armstrong, C. M. (2020). Detection of Shiga toxin-producing Escherichia coli (STEC) in beef products using droplet digital PCR. International journal of food microbiology, 319, 108499.
dc.relation.referencesCenters for Disease Control and Prevention. (2022). Summary of possible multistate Enteric (intestinal) disease outbreaks in 2017–2020. Cdc.gov. https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/annual-summaries/annual-summaries-2017-2020.html
dc.relation.referencesChoi, H., Hwang, B. K., Kim, B. S., & Choi, S. H. (2020). Influence of pathogen contamination on beef microbiota under different storage temperatures. Food Research International, 132, 109118.
dc.relation.referencesChu, C., Yang, G., Yang, J., Liang, D., Liu, R., Chen, G., ... & Wang, H. (2024). Trends in epidemiological characteristics and etiologies of diarrheal disease in children under five: an ecological study based on Global Burden of Disease study 2021. Science in One Health, 100086.
dc.relation.referencesCondalab. (s. f.). Agar MacConkey con Sorbitol (CT-SMAC) ISO Formato 500 g. https://www.condalab.com/medios-de-cultivo-deshidratados/148-14711-agar-macconkey-con-sorbitol-ct-smac-iso.html
dc.relation.referencesCondalab. (s. f.-b). Base de Agar Cromogénico E. coli O157:H7 Formato 500 g. https://www.condalab.com/medios-de-cultivo-para-diagnostico/1242-15456-base-de-agar-cromogenico-e-coli-o157-h7.html
dc.relation.referencesde Freitas, C. F., Carvalho, L. M. V. F., Camargo, A. C., de Almeida, O. G. G., de Oliveira, R. R., De Martinis, E. P., ... & Nero, L. A. (2024). Bacterial microbiota shifts in vacuum-packed beef during storage at different temperatures: Impacts on blown pack spoilage. Food Microbiology, 119, 104448.
dc.relation.referencesDemaître, N., Van Damme, I., De Zutter, L., Geeraerd, A., Rasschaert, G., & De Reu, K. (2020). Occurrence, distribution and diversity of Listeria monocytogenes contamination on beef and pig carcasses after slaughter. Meat Science, 169, 108177. https://doi.org/10.1016/j.meatsci.2020.108177
dc.relation.referencesDerzelle, S., Grine, A., Madic, J., de Garam, C. P., Vingadassalon, N., Dilasser, F., ... & Auvray, F. (2011). A quantitative PCR assay for the detection and quantification of Shiga toxin-producing Escherichia coli (STEC) in minced beef and dairy products. International journal of food microbiology, 151(1), 44-51.
dc.relation.referencesDorn-In, S., Mang, S., Cosentino, R. O., & Schwaiger, K. (2024). Changes in the microbiota from fresh to spoiled meat, determined by culture and 16S rRNA analysis. Journal of Food Protection, 87(2), 100212.
dc.relation.referencesEssam, N. (2024). What Are The Three Basic Steps of Conventional PCR? PraxiLabs. https://praxilabs.com/en/blog/2021/04/28/what-are-the-three-basic-steps-of-conventional pcr/#:~:text=PCR%20is%20based%20on%20three,DNA%20strands%20from%20the%20primers
dc.relation.referencesFatima, R., & Aziz, M. (2020). Enterohemorrhagic Escherichia Coli (EHEC). StatPearls [internet].
dc.relation.referencesFaour-Klingbeil, D., & C. D. Todd, E. (2020). Prevention and Control of Foodborne Diseases in Middle-East North African Countries: Review of National Control Systems. International Journal of Environmental Research and Public Health, 17(1), 70. https://doi.org/10.3390/ijerph17010070
dc.relation.referencesFayemi, O. E., Akanni, G. B., Elegbeleye, J. A., Aboaba, O. O., & Njage, P. M. (2021). Prevalence, characterization and antibiotic resistance of Shiga toxigenic Escherichia coli serogroups isolated from fresh beef and locally processed ready-to-eat meat products in Lagos, Nigeria. International Journal of Food Microbiology, 347(March), 109191. https://doi.org/10.1016/j.ijfoodmicro.2021.109191
dc.relation.referencesFerrari, A. J., Santomauro, D. F., Aali, A., Abate, Y. H., Abbafati, C., Abbastabar, H., ... & Bell, M. L. (2024). Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet, 403(10440), 2133-2161.
dc.relation.referencesFneish, F. H., Abd El Galil, K. H., & Domiati, S. A. (2025). Evaluation of Single and Multi-Strain Probiotics with Gentamicin Against E. coli O157:H7: Insights from In Vitro and In Vivo Studies. Microorganisms, 13(2), 460. https://doi.org/10.3390/microorganisms13020460
dc.relation.referencesFoddai, A. C., & Grant, I. R. (2020). Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Applied Microbiology and Biotechnology, 104, 4281-4288.
dc.relation.referencesGalarce, N., Sánchez, F., Escobar, B., Lapierre, L., Cornejo, J., Alegría-Morán, R., Neira, V., Martínez, V., Johnson, T., Fuentes-Castillo, D., Sano, E., & Lincopan, N. (2021). Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals, 11(7), 1845. https://doi.org/10.3390/ani11071845
dc.relation.referencesGambushe, S. M., Zishiri, O. T., & El Zowalaty, M. E. (2022). Review of Escherichia coli O157: H7 prevalence, pathogenicity, heavy metal and antimicrobial resistance, African perspective. Infection and Drug Resistance, 4645-4673.
dc.relation.referencesGamil, B., Salem, A. M., Arab, W. S., & Sabeq, I. I. (2024). The microbiological quality, shelf-life, and multidrug-resistant Salmonella contamination rates assessment in chicken giblets purchased from live poultry shops. The Microbe, 3, 100057.
dc.relation.referencesGarrido-Maestu, A., Azinheiro, S., Carvalho, J., Fuciños, P., & Prado, M. (2020). Optimized sample treatment, combined with real-time PCR, for same-day detection of E. coli O157 in ground beef and leafy greens. Food Control, 108, 106790.
dc.relation.referencesGouali, M., Ruckly, C., Carle, I., Lejay-Collin, M., & Weill, F. X. (2013). Evaluation of CHROMagar STEC and STEC O104 chromogenic agar media for detection of Shiga toxin-producing Escherichia coli in stool specimens. Journal of clinical microbiology, 51(3), 894-900.
dc.relation.referencesGutierrez, M. E., Janes, M. E., Torrico, D. D., Carabante, K. M., & Prinyawiwatkul, W. (2016). Assessment of the ability of five culture media for the detection of Escherichia coli O157. International Journal of Food Science and Technology, 51(8), 1910-1915.
dc.relation.referencesGwak, S. H., Kim, J. H., & Oh, S. W. (2020). How to rapidly and sensitively detect for Escherichia coli O157: H7 and Salmonella Typhimurium in cabbage using filtration, DNA concentration, and real-time PCR after short-term enrichment. LWT, 132, 109840.
dc.relation.referencesHammad, A. M., Eltahan, A., Hassan, H. A., Abbas, N. H., Hussien, H., & Shimamoto, T. (2022). Loads of coliforms and fecal coliforms and characterization of thermotolerant Escherichia coli in fresh raw milk cheese. Foods, 11(3), 332.
dc.relation.referencesHoff, C. (2021). Notes from the field: An outbreak of Escherichia coli O157: H7 infections linked to romaine lettuce exposure—United States, 2019. MMWR. Morbidity and Mortality Weekly Report, 70.
dc.relation.referencesHorr, T., & Pradhan, A. K. (2020). Evaluation of public health risk for Escherichia coli O157: H7 in cilantro. Food Research International, 136, 109545.
dc.relation.referencesIrvin, K., Viazis, S., Fields, A., Seelman, S., Blickenstaff, K., Gee, E., ... & Harris, S. (2021). An overview of traceback investigations and three case studies of recent outbreaks of Escherichia coli O157: H7 infections linked to romaine lettuce. Journal of Food Protection, 84(8), 1340-1356.
dc.relation.referencesJaradat, Z. W., Abulaila, S., Al-Rousan, E., & Ababneh, Q. O. (2024). Prevalence of Escherichia coli O157: H7 in foods in the MENA region between years 2000 and 2022: a review. Arab Journal of Basic and Applied Sciences, 31(1), 104–120. https://doi.org/10.1080/25765299.2024.2309793
dc.relation.referencesJenkins, C., Byrne, L., Vishram, B., Sawyer, C., Balasegaram, S., Ahyow, L., & Johnson, S. (2020). Shiga toxin-producing Escherichia coli haemolytic uraemic syndrome (STEC-HUS): diagnosis, surveillance and public-health management in England. Journal of medical microbiology, 69(7), 1034–1036. https://doi.org/10.1099/jmm.0.001215
dc.relation.referencesKhehra, N., Padda, I. S., & Swift, C. J. (2023). Polymerase chain reaction (PCR). En StatPearls. StatPearls Publishing. [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Ene-. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK589663/
dc.relation.referencesKing, H. (2020). Food Safety Management Systems: Achieving Active Managerial Control of Foodborne Illness Risk Factors in a Retail Food Service Business. Springer Nature.
dc.relation.referencesKreitmann, L., Miglietta, L., Xu, K., Malpartida-Cardenas, K., D'Souza, G., Kaforou, M., ... & Rodriguez-Manzano, J. (2023). Next-generation molecular diagnostics: Leveraging digital technologies to enhance multiplexing in real-time PCR. TrAC Trends in Analytical Chemistry, 160, 116963.
dc.relation.referencesKuruwita, D. P., Jiang, X., Darby, D., Sharp, J. L., & Fraser, A. M. (2020). Persistence of Escherichia coli O157:H7 and Listeria monocytogenes on the exterior of three common food packaging materials. Food Control, 112, 107153. https://doi.org/10.1016/j.foodcont.2020.107153
dc.relation.referencesLai, Y., Chung, Y., Wu, Y., Fang, C., & Chen, P. (2020). Disease burden from foodborne illnesses in Taiwan, 2012–2015. Journal of the Formosan Medical Association, 119(9), 1372-1381. https://doi.org/10.1016/j.jfma.2020.03.013
dc.relation.referencesLee, M. S., Yoon, J. W., & Tesh, V. L. (2020). Recent advances in understanding the pathogenesis of shiga toxin-producing Shigella and Escherichia coli. Frontiers in Cellular and Infection Microbiology, 10, 620703.
dc.relation.referencesLee, S. Y., Kim, J. H., & Oh, S. W. (2022). Combination of filtration and immunomagnetic separation based on real-time PCR to detect foodborne pathogens in fresh-cut apple. Journal of Microbiological Methods, 201, 106577.
dc.relation.referencesLewis, G. L., Cernicchiaro, N., & Moxley, R. A. (2020). Performance of chromogenic agar media for isolation of Shiga toxin–producing Escherichia coli from ground beef. Journal of food protection, 83(7), 1149-1154.
dc.relation.referencesLewis, G. L., Cernicchiaro, N., & Moxley, R. A. (2023). Effect of potassium tellurite concentration in a chromogenic agar medium on isolation of tellurite-resistant “Top Seven” Shiga toxin-producing Escherichia coli from ground beef. Journal of Food Protection, 86(1), 100017.
dc.relation.referencesLiang, T., Wu, X., Chen, B., Liu, J., Aguilar, Z. P., & Xu, H. (2020). The PCR-HCR dual signal amplification strategy for ultrasensitive detection of Escherichia coli O157:H7 in milk. Lwt, 130(May), 109642. https://doi.org/10.1016/j.lwt.2020.109642
dc.relation.referencesLiu, Q., Liu, M., & Liu, J. (2024). Global associations between the use of basic drinking water and sanitation services with diarrhoeal disease incidence in 200 countries and territories from 2000 to 2019. Public Health, 235, 202-210.
dc.relation.referencesLiu, Y., Kumblathan, T., Uppal, G. K., Zhou, A., Moe, B., Hrudey, S. E., & Li, X. F. (2020). A hidden risk: Survival and resuscitation of Escherichia coli O157:H7 in the viable but nonculturable state after boiling or microwaving. Water Research, 183, 116102. https://doi.org/10.1016/j.watres.2020.116102
dc.relation.referencesLiu, B., Furevi, A., Perepelov, A. V., Guo, X., Cao, H., Wang, Q., ... & Widmalm, G. (2020). Structure and genetics of Escherichia coli O antigens. FEMS microbiology reviews, 44(6), 655-683.
dc.relation.referencesLonczynski, T., & Cowin, L. (2021). The Validation of the SIMUL-qPCR Top 7 STEC Assay Collection: AOAC Performance Tested Method SM 022001. Journal of AOAC International, 104(4), 1098-1108.
dc.relation.referencesLv, X., Wang, L., Zhang, J., Zeng, H., Chen, X., Shi, L., ... & Zhao, L. (2020). Rapid and sensitive detection of VBNC Escherichia coli O157: H7 in beef by PMAxx and real-time LAMP. Food Control, 115, 107292.
dc.relation.referencesMayo Clinic. (2021). E. coli. https://www.mayoclinic.org/. Recuperado 25 de mayo de 2023, de https://www.mayoclinic.org/es-es/diseases-conditions/e-coli/diagnosis-treatment/drc-20372064
dc.relation.referencesMcMahon, T., Clarke, S., Deschênes, M., Tapp, K., Blais, B., & Gill, A. (2024). Real-time PCR primers and probes for the detection of Shiga toxin genes, including novel subtypes. International Journal of Food Microbiology, 419, 110744.
dc.relation.referencesMerck. (s. f.). Agar SIM (Sulfito Indol Motilidad) | 105470. https://www.merckmillipore.com/CO/es/product/SIM-Sulfite-Indole-Motility,MDA_CHEM-105470#anchor_DS
dc.relation.referencesMerck. (s. f.-b). Agar Triptona de Soya | 105458. https://www.merckmillipore.com/CO/es/product/Tryptic-Soy-agar,MDA_CHEM-105458#anchor_DS
dc.relation.referencesMerck. (s. f.-b). Caldo BRILA (Verde brillante-Bilis-Lactosa) | 105454. https://www.merckmillipore.com/CO/es/product/BRILA-Brilliant-green-bile-Lactose-broth,MDA_CHEM-105454?ReferrerURL=https%3A%2F%2Fwww.google.com%2F
dc.relation.referencesNakamura, A., Takahashi, H., Koike, F., Kuda, T., & Kobayashi, M. (2023). Transition of microbial contamination on the surface of carcass during the cattle slaughter process. Food Microbiology, 112, 104245.
dc.relation.referencesNgwa, G. A., Schop, R., Weir, S., León-Velarde, C. G., & Odumeru, J. A. (2013). Detection and enumeration of E. coli O157: H7 in water samples by culture and molecular methods. Journal of Microbiological Methods, 92(2), 164–172. https://doi.org/10.1016/j.mimet.2012.11.018
dc.relation.referencesNHGRI. (2019). Polymerase Chain Reaction (PCR) fact sheet. Genome.gov. https://www.genome.gov/about-genomics/fact-sheets/Polymerase-Chain-Reaction-Fact-Sheet
dc.relation.referencesNunes, B., Barata, A. R., Oliveira, R., Guedes, H., Almeida, C., da Silva, G. J., ... & Almeida, G. (2024). Occurrence and diversity of Listeria monocytogenes in Portuguese dairy farms. The Microbe, 3, 100063.
dc.relation.referencesOnyeka, L. O., Adesiyun, A. A., Keddy, K. H., Madoroba, E., Manqele, A., & Thompson, P. N. (2020). Shiga toxin–producing Escherichia coli contamination of raw beef and beef-based ready-to-eat products at retail outlets in Pretoria, South Africa. Journal of Food Protection, 83(3), 476–484. https://doi.org/10.4315/0362-028X.JFP-19-372
dc.relation.referencesPakbin, B., Brück, W. M., & Rossen, J. W. A. (2021). Virulence factors of enteric pathogenic Escherichia coli: A review. International Journal of Molecular Sciences, 22(18). https://doi.org/10.3390/ijms22189922
dc.relation.referencesPakbin, B., Brück, W. M., Brück, T. B., Allahyari, S., & Ashrafi Tamai, I. (2023). A quantitative prevalence of Escherichia coli O157 in different food samples using real‐time qPCR method. Food Science & Nutrition, 11(1), 228-235.
dc.relation.referencesPatiño, M., Valencia-Guerrero, M. F., Barbosa-Ángel, E. S., Martínez-Cordón, M. J., & Donado-Godoy, P. (2020). Evaluation of chemical and microbiological contaminants in fresh fruits and vegetables from peasant markets in Cundinamarca, Colombia. Journal of Food Protection, 83(10), 1726–1737. https://doi.org/10.4315/0362-028X/JFP-19-453
dc.relation.referencesPires, S. M., Desta, B. N., Mughini-Gras, L., Mmbaga, B. T., Fayemi, O. E., Salvador, E. M., ... & Devleesschauwer, B. (2021). Burden of foodborne diseases: think global, act local. Current Opinion in Food Science, 39, 152-159.
dc.relation.referencesPuligundla, P., & Lim, S. (2022). Biocontrol Approaches against Escherichia coli O157:H7 in Foods. Foods, 11(5), 756. https://doi.org/10.3390/foods11050756
dc.relation.referencesRani, A., Ravindran, V. B., Surapaneni, A., Mantri, N., & Ball, A. S. (2021). Trends in point-of-care diagnosis for Escherichia coli O157: H7 in food and water. International Journal of Food Microbiology, 349, 109233.
dc.relation.referencesRendueles, C., Duarte, A. C., Escobedo, S., Fernández, L., Rodríguez, A., García, P., & Martínez, B. (2022). Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. International Journal of Food Microbiology, 368, 109611.
dc.relation.referencesRíos-Castillo, A. G., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2022). Detection by real-time PCR and conventional culture of Salmonella Typhimurium and Listeria monocytogenes adhered to stainless steel surfaces under dry conditions. Food Control, 137, 108971.
dc.relation.referencesRivas, L., Duncan, D., Wang, J., Miller, H., & Wright, J. (2024). Using CHROMagar™ STEC medium exclusively does not recover all clinically relevant Shiga toxin-producing Escherichia coli in Aotearoa, New Zealand. Letters in Applied Microbiology, 77(4), ovae033.
dc.relation.referencesRosado-Porto, D., Bonivento-Calvo, J., Salcedo-Mendoza, S., Molina-Castillo, A., Maestre-Serrano, R., & del Carmen García, A. (2021). E. coli biotype 1 and E. coli O157: H7 determination in cattle carcasses at processing plants in the department of Atlántico (Colombia).
dc.relation.referencesSadeghi, Y., Kananizadeh, P., Moghadam, S. O., Alizadeh, A., Pourmand, M. R., Mohammadi, N., ... & Ranjbar, R. (2021). The sensitivity and specificity of loop-mediated isothermal amplification and PCR methods in detection of foodborne microorganisms: A systematic review and meta-analysis. Iranian Journal of Public Health, 50(11), 2172.
dc.relation.referencesSajeev, S., Hamza, M., Rajan, V., Vijayan, A., Sivaraman, G. K., Shome, B. R., & Holmes, M. A. (2023). Resistance profiles and genotyping of extended-spectrum beta-lactamase (ESBL)-producing and non-ESBL-producing E. coli and Klebsiella from retail market fishes. Infection, Genetics and Evolution, 112, 105446.
dc.relation.referencesSalama, G. G., Mostafa, W. H., & Emara, M. (2024). Indole production capacity in three different Escherichia coli strains. Journal of Advanced Pharmacy Research, 8(4), 231-237.
dc.relation.referencesSanli̇er, N., Sormaz, Ü., & Güneş, E. (2020). The effect of food safety education on food safety knowledge, attitudes, behaviors of individuals who work in food and beverage departments in Turkey. International Journal of Gastronomy and Food Science, 22, 100259.
dc.relation.referencesSaravanan, A., Kumar, P. S., Hemavathy, R. V., Jeevanantham, S., Kamalesh, R., Sneha, S., & Yaashikaa, P. R. (2021). Methods of detection of food-borne pathogens: a review. Environmental Chemistry Letters, 19, 189-207.
dc.relation.referencesSeverino, N., Reyes, C., Fernandez, Y., Azevedo, V., Francisco, L. E. D., Ramos, R. T., Maroto-Martín, L. O., & Franco, E. F. (2025). Bacterial Foodborne Diseases in Central America and the Caribbean: A Systematic Review. Microbiology Research, 16(4), 78. https://doi.org/10.3390/microbiolres16040078
dc.relation.referencesShan, Y., Lu, Y. N., Yi, W., Wang, B., Li, J., Guo, J., ... & Liu, F. (2023). On-site food safety detection: Opportunities, advancements, and prospects. Biosensors and Bioelectronics: X, 100350.
dc.relation.referencesShrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci, 2(1), 21-25.
dc.relation.referencesSyron PTE. LTD. (2024). What is FAM in qPCR? SyronOptics. Recuperado 3 de diciembre de 2024, de https://syronoptics.com/blogs/technical-article/what-is-fam-in-qpcr?srsltid=AfmBOopmFEmI0wIwOMbpiGcKITXOL-wqZV3j90TojmXuTWfuD0cyqXzG
dc.relation.referencesTack, D. M., Kisselburgh, H. M., Richardson, L. C., Geissler, A., Griffin, P. M., Payne, D. C., & Gleason, B. L. (2021). Shiga toxin-producing Escherichia coli outbreaks in the United States, 2010–2017. Microorganisms, 9(7), 1529.
dc.relation.referencesTao, M., Chen, J., & Huang, K. (2021). Bio-based antimicrobial delivery systems for improving microbial safety and quality of raw or minimally processed foods. Current opinion in food science, 41, 189-200. https://doi.org/10.1016/j.cofs.2021.04.011
dc.relation.referencesTeramura, H., Sanga, S., & Kodama, K. (2023). Possible solution of capturing viable Enterohemorrhagic Escherichia coli (EHEC) in clinical patient stool. Journal of Microorganism Control, 28(3), 129-134.
dc.relation.referencesTriplett, O. A., Xuan, J., Foley, S., Nayak, R., & Tolleson, W. H. (2019). Immunomagnetic capture of big six Shiga toxin–producing Escherichia coli strains in apple juice with detection by multiplex real-time PCR eliminates interference from the food matrix. Journal of food protection, 82(9), 1512-1523.
dc.relation.referencesVelez, M. V., Colello, R., Etcheverría, A. I., & Padola, N. L. (2023). Escherichia coli productora de toxina Shiga: el desafío de adherirse para sobrevivir. Revista argentina de microbiología, 55(1), 100-107.
dc.relation.referencesWerner, R. K., Werner, J. R., & Pinter, E. (2024). Escherichia coli O157: H7 (Enterohemorrhagic E. coli). In Ciottone's disaster medicine (pp. 782-784). Elsevier.
dc.relation.referencesWitte, S., Huijboom, L., Klamert, S., van de Straat, L., Hagens, S., Fieseler, L., ... & van Mierlo, J. T. (2022). Application of bacteriophages EP75 and EP335 efficiently reduces viable cell counts of Escherichia coli O157 on beef and vegetables. Food Microbiology, 104, 103978.
dc.relation.referencesWu, X., Zhan, F., Zhang, J., Chen, S., & Yang, B. (2022). Identification of hypervirulent Klebsiella pneumoniae carrying terW gene by MacConkey-potassium tellurite medium in the general population. Frontiers in Public Health, 10, 946370.
dc.relation.referencesXu, G., Wang, T., Wei, Y., Zhang, Y., & Chen, J. (2021). Fecal coliform distribution and health risk assessment in surface water in an urban-intensive catchment. Journal of Hydrology, 604, 127204. https://doi.org/10.1016/j.jhydrol.2021.127204
dc.relation.referencesYepes-Pérez, M., Carrero, K., Vásquez, N., & Correa, E. (2022). Validación de PCR convencional para detectar E. coli O157. Información tecnológica, 33(2), 3-12.
dc.relation.referencesYepes-Pérez, M., Carrero-Contreras, K., Vásquez-Araque, N. A., Mora Martínez, A. L., Correa-Londoño, G. A., & Leotta, G. (2024). Development of a SYBR Green qPCR Intralaboratory Validation for the Quantification of Escherichia coli O157: H7. Applied Biosciences, 3(3), 326-347.
dc.relation.referencesZhai, W., Wang, Y., Sun, H., Fu, B., Zhang, Q., Wu, C., ... & Wang, Y. (2024). Epidemiology and genetic characterization of tet (X4)-positive Klebsiella pneumoniae and Klebsiella quasipneumoniae isolated from raw meat in Chengdu City, China. Biosafety and Health, 6(02), 116-124.
dc.relation.referencesZhang, R., Lan, L., & Shi, H. (2021). Sublethal injury and recovery of Escherichia coli O157: H7 after freezing and thawing. Food Control, 120, 107488.
dc.relation.referencesZhou, Z., Zhang, Y., Guo, M., Huang, K., & Xu, W. (2020). Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157:H7. Biosensors and Bioelectronics, 167(17), 112475. https://doi.org/10.1016/j.bios.2020.112475
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.subject.decsEscherichia coli
dc.subject.lembInfecciones por Escherichia coli
dc.subject.lembEnfermedades transmitidas por alimentos
dc.subject.lembPolimerización
dc.subject.lembMicrobiología de alimentos
dc.subject.lembEnterobacterias
dc.subject.proposalE. coli O157:H7
dc.subject.proposaliQ Check
dc.subject.proposalCarnespa
dc.subject.proposalBovinosspa
dc.subject.proposalETAspa
dc.subject.proposalBeefeng
dc.subject.proposalCattleeng
dc.subject.proposalFBDeng
dc.titleDetección de Escherichia coli O157 a través de iQ-Check PCR y técnicas microbiológicasspa
dc.title.translatedDetection of Escherichia coli O157 by iQ-Check PCR and microbiological techniqueseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencia y Tecnología de Alimentos
Tamaño:
2.41 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: