Análisis genómico y transcriptómico de la interacción musa - pseudocercospora fijiensis como herramienta en la identificación y caracterización de genes fúngicos de virulencia y patogenicidad

dc.contributor.advisorArango Isaza, Rafael Eduardo
dc.contributor.advisorMorales Osorio, Juan Gonzalo
dc.contributor.authorTorres Bonilla, Javier Mauricio
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000004618spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Q2KIJBgAAAAJ&hl=esspa
dc.contributor.orcidTorres Bonilla, Javier Mauricio [0000000172138672]spa
dc.contributor.researchgroupBiotecnología Vegetal UNALMED-CIBspa
dc.date.accessioned2024-06-17T14:37:03Z
dc.date.available2024-06-17T14:37:03Z
dc.date.issued2024-03-20
dc.descriptionIlustracionesspa
dc.description.abstractLa Sigatoka negra causada por el hongo Mycosphaerella fijiensis, sinónimo de Pseudocercóspora fijiensis es la enfermedad más importante en el cultivo del banano en el mundo. La enfermedad afecta la capacidad fotosintética de planta y posteriormente el tamaño y calidad de la fruta, generando grandes pérdidas económicas. Son pocos los estudios genéticos reportados que permiten entender cómo el hongo enferma a la planta y cómo evade las defensas de esta; para ello es necesario identificar en el hongo genes candidatos asociados con la patogenicidad y la virulencia. En este trabajo se empleó un análisis bioinformático y de microarreglos para identificar en el hongo la presencia de proteínas secretadas ricas en cisteína (SSPs) con expresión diferencial durante la interacción incompatible planta - P. fijiensis. Adicionalmente, se realizó una búsqueda sistemática de genes mediante el ensamble y anotación de 27 genomas de P. fijiensis, P. musae y P. eumusae. Se encontraron 12 genes codificantes para SSPs con expresión diferencial, además, se encontraron 5 genes asociados con patogenicidad, 7 genes asociados con el desarrollo del patógeno y 7 genes asociados con la biosíntesis de la melanina. Una vez identificados, se procedió con la evaluación funcional de dos genes candidatos mediante nocauts para los genes SD y 85220, además de permitir la evaluación de un método de disrupción génica mediado por Agrobacterium tumefaciens, con lo cual se estableció un protocolo efectivo de evaluación génica, nuestros resultados posibilitan la incursión hacia futuros trabajos de análisis poblacional o de genes con importancia fisiológica en P. fijiensis. (texto tomado de la fuene)spa
dc.description.abstractBlack Sigatoka caused by the fungus Mycosphaerella fijiensis (anamorph Pseudocercospora fijiensis), is the most important disease in banana cultivation worldwide. The disease affects the plant's photosynthetic capacity and subsequently the size and quality of the fruit, leading to significant economic losses. There are few reported genetic studies that help understand how the fungus infects the plant and evades its defenses; therefore, it is necessary to identify candidate genes associated with pathogenicity and virulence in the fungus. In this study, a bioinformatic and microarray analysis was used to identify secreted cysteine-rich proteins (SSPs) with differential expression during the incompatible interaction between the plant and P. fijiensis. Additionally, a systematic search for genes was conducted by assembling and annotating 27 genomes of P. fijiensis, P. musae, and P. eumusae. Twelve genes encoding for SSPs with differential expression were found, as well as five genes associated with pathogenicity, seven genes associated with the pathogen's development, and seven genes associated with melanin biosynthesis. Once identified, two candidate genes were functionally evaluated through knockout experiments for the SD and 85220 genes, in addition to assessing a gene disruption method mediated by Agrobacterium tumefaciens. This established an effective protocol for genetic evaluation, and our results enable future population analysis or studies of genes with physiological importance in P. fijiensis.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaLínea patosistema mycosphaerella fijiensisspa
dc.format.extent103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86241
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesAgrios, G. N. 2004. Plant Diseases Caused by Fungy. En: Plant Pathology. (Fifth Edition ed.). Academic Press, Inc, San Diego New York. pp. 353 - 355.spa
dc.relation.referencesArango, M.E. 2002. Management alternatives for biological control of Black Sigatoka (Mycosphaerella fijiensis Morelet) in banana (Mussa AAA). In: Memories of reunión internacional Acrobat, Cartagena de Indias, Colombia. P. 130 - 134.spa
dc.relation.referencesAsociación de Bananeros de Colombia (2023). Coyuntura Bananera 2022 [Internet]. [citado 15 de junio de 2023]. Disponible en: https://augura.com.co/wp-content/uploads/2023/04/Coyuntura-Bananera-2022-2.pdfspa
dc.relation.referencesBeveraggi, A., X; Mourichon y G. Salle. 1993. Study of host-parasite interactions in susceptible and resistant bananas inoculated with Cercospora fijiensis, pathogen of black leaf streak disease. En: Breeding Banana and Plantain for resistance to disease and pests. J., Ganry, Editor., CIRAD, INIBAP: Montpellier, France., p 213- 220.spa
dc.relation.referencesBowyer, P., Clarke, B.R., Lunness, P., Daniels, M.J., and Osbourn, A.E. (1995). Host range of a plant pathogenic fungus determined y a saponin detoxifying enzyme. Science 267, 371-374.spa
dc.relation.referencesCABI (2019). Mycosphaerella fijiensis (black Sigatoka) datasheet. In: Invasive Species Compendium. Wallingford, UK. [online] URL: https://www.cabi.org/isc/datasheet/35278spa
dc.relation.referencesCampo-Arana, R., Vélez-Leiton, S., & Barrera-Violeth, J. (2020). La sigatoka negra Mycosphaerella fijiensis Morelet, en los cultivos de plátano y banano: una revisión. Fitopatología Colombiana, 44(2), 61-66.spa
dc.relation.referencesCanto, B.; Guille, D.; Peraza, L.; Conde, L. y James, A. 2007. Construction and characterization of a bacterial artificial chromosome library of the causal agent of Black Sigatoka fungal leaf spot disease of banana and plantain, Mycosphaerella fijiensis. En: Moliotechnol. 36, Pag 64-70.spa
dc.relation.referencesCarlier, J.; Lebrun, H.; Zapater, M. F.; Dubois, C. y Mourichon, X. 1996. Genetic structure of the global population of banana leaf streak fungus, Mycosphaerella fijiensis. En: Molecular Ecology, 5: 499-510.spa
dc.relation.referencesChuc-Uc, J. (2007). Caracterización del perfil de proteínas intracelulares y extracelulares durante el ciclo de cultivo in vitro de Mycosphaerella fijiensis. Tesis de Licenciatura, Instituto Tecnológico Superior del Sur del Estado de Yucatán, 50 páginas.spa
dc.relation.referencesConde-Ferráez, L., Canto-Canché, B., Waalkjwik, C., Kema, G., James, A., & Abeln, E. (2005). Cloning of the mating type locus of Mycosphaerella fjiensis. In Memorias VI Congreso sobre Biología Molecular y Celular de Hongos. Morelia, Michoacán, México. Resumen (p. 77).spa
dc.relation.referencesCoquerel, C. (1859). Note sur quelques insectes de Madagascar et de Bourbon. Annales de la Société Entomologique de France (3ième séries), 7, 239-260.spa
dc.relation.referencesCordeiro, Z.J., Matos, A.P. and Kimati, H. (2005) Doenças de bananeira. In: Kimati, H., Amorim, I., Rezende, J.A. and Camargo, L.E.A. (eds) Manual de Fitopatologia: Doenças de Plantas Cultivadas. Agronomica Ceres, São Paulo, pp. 99–117.spa
dc.relation.referencesCorrales, O.; Knight, S. y Madrigal, A. 2002. Control of Black Sigatoka (Mycosphaerella fijiensis Morelet) and the red burrowing nematode (Radopholus similis COBB) in banano using the plant activator Boost 50 SC within a reduced-input crop protection program. En: Memoires of reunión internacional Acrobat, Cartagena de Indias, Colombia. Pag. 143 - 147.spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística [DANE] (2019) Boletín técnico del comercio exterior - exportaciones. Disponible en: https://www.dane.gov.co/files/investigaciones/boletines/exportaciones/bol_exp_nov18.pdfspa
dc.relation.referencesDouaiher, M.-N., Nowak, E., Dumortier, V., Durand, R., Reignault, Ph. and Halama, P. (2007). Mycosphaerella graminicola produces a range of cell wall-degrading enzyme activities in vitro that vary with the carbon source. European Journal of Plant Pathology 117:71-79.spa
dc.relation.referencesEspinal G, Carlos; Covaleda M, Héctor y Marín P, Yadira. 2005. La Cadena de Banano en Colombia: Una mirada Global de su estructura y dinámica. DOCUMENTO DE TRABAJO No 60. Ministerio de Agricultura y desarrollo Rural, Observatorio Agrocadenas. Bogotá, Colombia. <www.agrocadenas.gov.co.> [Consulta: 20 Agosto 2018].spa
dc.relation.referencesFAOSTAT (2018). Faostat:Food and Agriculture Data. Rome: FAOSTAT. [online] URL: http://www.fao.org/faostat/en/#data/QCspa
dc.relation.referencesFAO. (2019a). Bananas and major tropical fruits in Latin America and the Caribbean. [Internet]. In: Biannual Report on Global Food Market. Roma. [online] URL: http://www.fao.org/3/ca4526en/ca4526en.pdf.spa
dc.relation.referencesFAO. (2019). Banana Market Review: Preliminary results for 2018 Rome. 12 pp. Licence: CC BY-NC-SA 3.0 IGO.spa
dc.relation.referencesFauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U. and Ball, L.A. (eds) (2005) Virus Taxonomy. Elsevier Academic Press, London, UK.spa
dc.relation.referencesFinlay, A. R., & Brown, A. E. (1993). The relative importance of Colletotrichum musae as a crown‐rot pathogen on Windward Island bananas. Plant Pathology, 42(1), 67-74.spa
dc.relation.referencesFrossard, P. (1980). Appearance of a new and serious leaf disease of bananas and plantains in Gabon: black streak disease, Mycosphaerella fijiensis Morelet. Fruits, 35(9), 519-578.spa
dc.relation.referencesGasparotto, L., Pereira, J. C. R., Urben, A. F., Hanada, R. E., & Pereira, M. C. (2005). Heliconia psittacorum: hospedeira de Mycosphaerella fijiensis, agente causal da sigatoka- negra da bananeira. Fitopatologia Brasileira, 30, 423-425.spa
dc.relation.referencesHorser, C.L., Harding, R.M. and Dale, J.L. (2001) Banana bunchy top nanovirus DNA-1 encodes the master replication initiation protein. Journal of General Virology 82, 459–464.spa
dc.relation.referencesHoss, R.; Helbig, J. y Bochow H. 2000. Function of Host and Fungal Metabolites in Resistance Response of Banana and Plantain in the Black Sigatoka Disease Pathosystem (Musa spp. -Mycosphaerella fijiensis). En: Journal of Phytopathology, Volume 148, Numbers 7-8., pp. 387-394(8).spa
dc.relation.referencesFraaije, B. A., Cools, H. J., Kim, S. H., Motteram, J., Clark, W. S., & Lucas, J. A. (2007). A novel substitution I381V in the sterol 14alpha-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Molecular plant pathology, 8(3), 245–254. https://doi.org/10.1111/j.1364-3703.2007.00388.xspa
dc.relation.referencesFullerton, R. A.; y Olsen T. L. Valmayor R. V.; Umali, B. E. y Bejosano C. P. 1991. Pathogenic variability in Mycosphaerella fijiensis Morelet. En: Banana Diseases in Asia and the Pacific. pp.105- 114. INIBAP, Montpellier.spa
dc.relation.referencesJones, D.R. (1990). Black Sigatoka - a threat to Australia. In: Fullerton RA, Stover RH, eds. Sigatoka Leaf Spot Diseases of Bananas, Proceedings of an International Workshop held at San José, Costa Rica, March 28-April 1, 1989. Montferrier-sur-Lez, France: INIBAP, 38- 46.spa
dc.relation.referencesJones, D. R. (2003). The distribution and importance of the Mycosphaerella leaf spot diseases of banana. Mycosphaerella leaf spot diseases of bananas: present status and outlook. INIBAP, San José, Costa Rica, 25-41.spa
dc.relation.referencesJones, D. R., & Daniells, J. W. (2019). Introduction to banana, abaca and enset. Handbook of diseases of banana, abacá and enset, 1-40.spa
dc.relation.referencesManrique-Trujillo, S. M., Ramírez-López, A. C., Ibarra-Laclette, E., & Gómez-Lim, M. A. (2007). Identification of genes differentially expressed during ripening of banana. Journal of plant physiology, 164(8), 1037-1050.spa
dc.relation.referencesManzo‐Sánchez, G., Orozco‐Santos, M., Islas‐Flores, I., Martínez‐Bolaños, L., Guzmán‐ González, S., Leopardi‐Verde, C. L., & Canto‐Canché, B. (2019). Genetic variability of Pseudocercospora fijiensis, the black Sigatoka pathogen of banana (Musa spp.) in Mexico. Plant Pathology, 68(3), 513-522.spa
dc.relation.referencesManzo-Sánchez, G., Orozco-Santos, M., Martínez-Bolaños, L., Garrido-Ramírez, E., & Canto-Canche, B. (2014). Enfermedades de importancia cuarentenaria y económica del cultivo de banano (Musa sp.) en México. Revista Mexicana de Fitopatología, 32(2), 89– 107.spa
dc.relation.referencesManzo-Sánchez, G., Zapater, M. F., Luna-Martínez, F., Conde-Ferráez, L., Carlier, J., James-Kay, A., & Simpson, J. (2008). Construction of a genetic linkage map of the fungal pathogen of banana Mycosphaerella fijiensis, causal agent of black leaf streak disease. Current genetics, 53, 299-311.spa
dc.relation.referencesMarin, D. H., Romero, R. A., Guzmán, M., & Sutton, T. B. (2003). Black Sigatoka: an increasing threat to banana cultivation. Plant disease, 87(3), 208-222.spa
dc.relation.referencesMartínez-Solórzano, G. E., & Rey-Brina, J. C. (2021). Bananos (Musa AAA): Importancia, producción y comercio en tiempos de Covid-19. Agronomy Mesoamerican, 1034-1046.spa
dc.relation.referencesMeredith, D. S. (1970). Banana leaf spot disease (sigatoka) caused by Mycosphaerella musicola Leach. Phytopathological papers, (11).spa
dc.relation.referencesMinisterio de Agricultura. 2013 Gobierno y bananeros invertirán cerca de $20.000 millones para mantener controlada “Sigatoka Negra” en Antioquia, Magdalena y Guajira. < https://www.minagricultura.gov.co/noticias/Paginas/Gobierno-y-bananeros- invertir%C3%A1n-cerca-de-$20-000-millones-para-mantener-controlada-%E2%80%9CSigatoka-Negra%E2%80%9D-en-Antioquia,-Magdalena.aspx > [Consulta: 27 de Abril 2014].spa
dc.relation.referencesMosquera M, O. M., Echeverry, L. M., & Niño Osorio, J. (2009). Evaluación de la actividad antifungica de extractos vegetales sobre el hongo Mycosphaerella fijiensis MORELET. Scientia et Technica, 1(41), 232–236.spa
dc.relation.referencesNadal-medina, R., Manzo-sánchez, G., Orozco-romero, J., Orozco-santos, M., & Guzmán- Gonzalez, S. (2009). Diversidad genética de bananos y plátanos (Musa spp.) determinada mediante marcadores rapd. Rev. Fitotec. Mex., 32(1), 1–7.spa
dc.relation.referencesOrozco Santos, M., García Mariscal, K., Manzo Sánchez, G., Guzmán González, S., Martínez Bolaños, L., Beltrán García, M., ... Canto Canché, B. (2013). La sigatoka negra y su manejo integrado en banano. Mexico: CIRPACINIFAP.spa
dc.relation.referencesPerrier, X., De Langhe, E., Donohue, M., Lentfer, C., Vrydaghs, L., Bakry, F., ... & Lebot, V. (2011). Multidisciplinary perspectives on banana (Musa spp.) domestication. Proceedings of the National Academy of Sciences, 108(28), 11311-11318.spa
dc.relation.referencesPhalip, V., Delalande, F., Carapito, C., Goubet, F., Hatsch, D., Leize-Wagner, E., Dupree, P., Van Dorsselaer, A. and Jeltsch, J. 2005. Diversity of exoproteome of Fusarium graminearum grown on plant cell wall. Current Genetics 48:366-379.spa
dc.relation.referencesPloetz, R. (2008) Tropical race 4 of Panama disease: risk assessment and an action plan to address the problem. In: Abstracts Workbook. XVIII ACORBAT International Meeting. Guayaquil, Ecuador. 10–14/XI/2008, 38.spa
dc.relation.referencesRaemaekers, R. (1975). Black leaf streak like disease in Zambia. PANS Pest Articles & News Summaries, 21(4), 396-400.spa
dc.relation.referencesRiveros, AE. 1992. Etude comparative de l'interaction hote- parasite entre un cultivar sensible et un cultivar resistant a la cercosporiose noire du bananier. Faculte des Sciences Agronomiques de Gembloux: Belgique p77.spa
dc.relation.referencesRhodes, P. L. (1964). A new Banana disease in Fiji. Commonwealth Phytopathological News, 10(3), 38-41.spa
dc.relation.referencesRobinson, J. C., & Saúco, V. G. (2010). Bananas and plantains(Vol. 19). Cabi.spa
dc.relation.referencesRodríguez, H. A., Hidalgo, W. F., Sanchez, J. D., Menezes, R. C., Schneider, B., Arango, R. E., & Morales, J. G. (2020). Differential regulation of jasmonic acid pathways in resistant (Calcutta 4) and susceptible (Williams) banana genotypes during the interaction with Pseudocercospora fijiensis. Plant pathology, 69(5), 872-882.spa
dc.relation.referencesSequeira, L. (1998). Bacterial wilt: the missing element in international banana improvement programs. In ‘Bacterial Wilt Disease; Molecular and Ecological Aspects’. (Eds P Prior, C Allen, J Elphinstone) pp. 6–14. (INRA Editions: Paris)spa
dc.relation.referencesSimmonds, N. W., & Shepherd, K. (1955). The taxonomy and origins of the cultivated bananas. Botanical Journal of the Linnean Society, 55(359), 302-312.spa
dc.relation.referencesSimmonds, N. W. (1962). The Evolution of the Bananas. (Longmans, London). Soto, M. (2014). Bananos I: conceptos básicos. 1 ed. Cartago, Costa Rica. Editorial Tecnológica de Costa Rica, 338p.spa
dc.relation.referencesStover, R.H. (1962). Fusarial Wilt (Panama Disease) of Bananas and Other Musa Species. Commonwealth Mycological Institute Phytoph. Papers 4. Commonwealth Mycological Institute, Kew, London, UK.spa
dc.relation.referencesStover, R. H. (1976). Distribution and cultural characteristics of the pathogens causing banana leaf spot. Tropical Agriculture, 53(2), 111-114.spa
dc.relation.referencesThordal-Christensen, H. (2003). Fresh insights into processes of nonhost resistance. Current opinion in plant biology, 6(4), 351-357.spa
dc.relation.referencesTomlinson, P. B. (1969). Anatomy of the monocotyledons. III. Commelinales- Zingiberales. Anatomy of the monocotyledons. III. Commelinales-Zingiberales.spa
dc.relation.referencesTushemereirwe W, Kangire A, Smith J, Ssekiwoko F, Nakyanzi M, et al. (2003). Outbreak of bacterial wilt on banana in Uganda. Infomusa 12, 6–8.spa
dc.relation.referencesAndrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.spa
dc.relation.referencesArango, I. P., Beltrán, E. R., Cardona, A. S., & Isaza, R. E. A. (2003). Diagnóstico y caracterización molecular de aislamientos de Mycosphaerella sp. Provenientes de plantaciones de banano y plátano de diferentes regiones de Colombia. Revista Facultad Nacional de Agronomía Medellín, 56(2), 1941-1950.spa
dc.relation.referencesArango Isaza, R. E., Diaz-Trujillo, C., Dhillon, B., Aerts, A., Carlier, J., Crane, C. F., ... & Kema, G. H. (2016). Combating a global threat to a clonal crop: banana black Sigatoka pathogen Pseudocercospora fijiensis (synonym Mycosphaerella fijiensis) genomes reveal clues for disease control. PLoS genetics, 12(8), e1005876.spa
dc.relation.referencesArcila-Galvis, J. E., Arango, R. E., Torres-Bonilla, J. M., & Arias, T. (2021). The mitochondrial genome of a plant fungal pathogen Pseudocercospora fijiensis (Mycosphaerellaceae), comparative analysis and diversification times of the Sigatoka disease complex using fossil calibrated phylogenies. Life, 11(3), 215.spa
dc.relation.referencesBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., ... & Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology, 19(5), 455-477.spa
dc.relation.referencesBebber, D. P. (2019). Climate change effects on Black Sigatoka disease of banana. Philosophical Transactions of the Royal Society B, 374(1775), 20180269.spa
dc.relation.referencesBoetzer, M., Henkel, C. V., Jansen, H. J., Butler, D., & Pirovano, W. (2011). Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 27(4), 578-579.spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120.spa
dc.relation.referencesBradnam, K. R., Fass, J. N., Alexandrov, A., Baranay, P., Bechner, M., Birol, I., ... & Korf, I. F. (2013). Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience, 2(1), 2047-217X.spa
dc.relation.referencesCarreto, L., Eiriz, M. F., Gomes, A. C., Pereira, P. M., Schuller, D., & Santos, M. A. (2008). Comparative genomics of wild type yeast strains unveils important genome diversity. BMC genomics, 9(1), 1-17.spa
dc.relation.referencesChang, T. C., Salvucci, A., Crous, P. W., & Stergiopoulos, I. (2016). Comparative genomics of the Sigatoka disease complex on banana suggests a link between parallel evolutionary changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and increased virulence on the banana host. PLoS Genetics, 12(8).spa
dc.relation.referencesChen, L. H., Kračun, S. K., Nissen, K. S., Mravec, J., Jørgensen, B., Labavitch, J., & Stergiopoulos, I. (2021). A diverse member of the fungal Avr4 effector family interacts with de-esterified pectin in plant cell walls to disrupt their integrity. Science advances, 7(19).spa
dc.relation.referencesChong, P., Vichou, A. E., Schouten, H. J., Meijer, H. J., Arango Isaza, R. E., & Kema, G. H. (2019). Pfcyp51 exclusively determines reduced sensitivity to 14α-demethylase inhibitor fungicides in the banana black Sigatoka pathogen Pseudocercospora fijiensis. Plos one, 14(10).spa
dc.relation.referencesChurchill, A. C. (2011). Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Molecular plant pathology, 12(4), 307-328.spa
dc.relation.referencesEbimieowei, E., & Wabiye, Y. H. (2011). Control of black Sigatoka disease: Challenges and prospects. African Journal of Agricultural Research, 6(3), 508-514.spa
dc.relation.referencesEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), 1792-1797.spa
dc.relation.referencesGalagan, J. E., Henn, M. R., Ma, L. J., Cuomo, C. A., & Birren, B. (2005). Genomics of the fungal kingdom: insights into eukaryotic biology. Genome research, 15(12), 1620-1631.spa
dc.relation.referencesGarcia-Rubio, R., Monzon, S., Alcazar-Fuoli, L., Cuesta, I., & Mellado, E. (2018). Genome- wide comparative analysis of Aspergillus fumigatus strains: the reference genome as a matter of concern. Genes, 9(7), 363.spa
dc.relation.referencesGladyshev, E. (2017). Repeat‐induced point mutation and other genome defense mechanisms in fungi. The fungal kingdom, 687-699.spa
dc.relation.referencesGirard, V., Dieryckx, C., Job, C., & Job, D. (2013). Secretomes: the fungal strike force. Proteomics, 13(3-4), 597-608.spa
dc.relation.referencesGregory, T. R., & Hebert, P. D. (1999). The modulation of DNA content: proximate causes and ultimate consequences. Genome Research, 9(4), 317-324.spa
dc.relation.referencesHanada, R. E., Gasparotto, L., & Pereira, J. C. R. (2002). Sobrevivência de conídios de Mycosphaerella fijiensis em diferentes materiais. Fitopatologia Brasileira, 27, 408-411.spa
dc.relation.referencesHayden, H. L., Jean Carlier, and Elizabeth AB Aitken. "Genetic structure of Mycosphaerella fijiensis populations from Australia, Papua New Guinea and the Pacific Islands." Plant pathology 52.6 (2003): 703-712.spa
dc.relation.referencesHunt, M., Kikuchi, T., Sanders, M., Newbold, C., Berriman, M., & Otto, T. D. (2013). REAPR: a universal tool for genome assembly evaluation. Genome biology, 14(5), 1-10.spa
dc.relation.referencesJauhal, A. A., & Newcomb, R. D. (2021). Assessing genome assembly quality prior to downstream analysis: N50 versus BUSCO. Molecular Ecology Resources, 21(5), 1416- 1421.spa
dc.relation.referencesKearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647- 1649.spa
dc.relation.referencesKoszul, R., Caburet, S., Dujon, B., & Fischer, G. (2004). Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. The EMBO journal, 23(1), 234-243.spa
dc.relation.referencesKumar, S., Nei, M., Dudley, J., & Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in bioinformatics, 9(4), 299- 306.spa
dc.relation.referencesLi, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674-1676.spa
dc.relation.referencesManzo‐Sánchez, G., Orozco‐Santos, M., Islas‐Flores, I., Martínez‐Bolaños, L., Guzmán‐ González, S., Leopardi‐Verde, C. L., & Canto‐Canché, B. (2019). Genetic variability of Pseudocercospora fijiensis, the black Sigatoka pathogen of banana (Musa spp.) in Mexico. Plant Pathology, 68(3), 513-522.spa
dc.relation.referencesMohanta, T. K., & Bae, H. (2015). The diversity of fungal genome. Biological procedures online, 17, 1-9.spa
dc.relation.referencesNadalin, F., Vezzi, F., & Policriti, A. (2012). GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC bioinformatics, 13(14), 1-16.spa
dc.relation.referencesNoar, R. D., Thomas, E., & Daub, M. E. (2022). Genetic characteristics and metabolic interactions between Pseudocercospora fijiensis and banana: Progress toward controlling black Sigatoka. Plants, 11(7), 948.spa
dc.relation.referencesNoblecilla, C. J. C. I., & Batista, C. R. M. G. (2018). Efecto del uso predominante de fungicidas sistémicos para el control de Sigatoka negra (Mycosphaerella Fijiensis Morelet) en el área foliar del banano. Revista Científica Agroecosistemas, 6(1), 128-136.spa
dc.relation.referencesOrmerod, K. L., Morrow, C. A., Chow, E. W., Lee, I. R., Arras, S. D., Schirra, H. J., ... & Fraser, J. A. (2013). Comparative genomics of serial isolates of Cryptococcus neoformans reveals gene associated with carbon utilization and virulence. G3: Genes, Genomes, Genetics, 3(4), 675-686.spa
dc.relation.referencesPeng, Y., Leung, H. C., Yiu, S. M., & Chin, F. Y. (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11), 1420-1428.spa
dc.relation.referencesPetrov, D. A. (2001). Evolution of genome size: new approaches to an old problem. TRENDS in Genetics, 17(1), 23-28.spa
dc.relation.referencesReuveni, M. (2021). Replacing Mancozeb with Tea Tree Oil-Based Timorex Gold for the Successful Control of Black Sigatoka and the Reduction of Chemical Load in Banana Plantations. Industrial Biotechnology, 17(5), 239-241.spa
dc.relation.referencesSimão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212.spa
dc.relation.referencesSimpson, J. T., & Durbin, R. (2012). Efficient de novo assembly of large genomes using compressed data structures. Genome research, 22(3), 549-556.spa
dc.relation.referencesSoares, J. M., Rocha, A. J., Nascimento, F. S., Santos, A. S., Miller, R. N., Ferreira, C. F., ... & Amorim, E. P. (2021). Genetic improvement for resistance to black Sigatoka in bananas: A systematic review. Frontiers in plant science, 12, 657916.spa
dc.relation.referencesStergiopoulos, I., Cordovez, V., Ökmen, B., Beenen, H. G., Kema, G. H., & De Wit, P. J. (2014). Positive selection and intragenic recombination contribute to high allelic diversity in effector genes of Mycosphaerella fijiensis, causal agent of the black leaf streak disease of banana. Molecular Plant Pathology, 15(5), 447-460.spa
dc.relation.referencesTaylor, J. W., Branco, S., Gao, C., Hann-Soden, C., Montoya, L., Sylvain, I., & Gladieux, P. (2017). Sources of fungal genetic variation and associating it with phenotypic diversity. The Fungal Kingdom, 635-655.spa
dc.relation.referencesÁlvarez, J. C., Rodríguez, H. A., Rodríguez-Arango, E., Monsalve, Z. I., & Arango, R. E. (2013). Characterization of a differentially expressed phenylalanine ammonia-lyase gene from banana Induced during Mycosphaerella fijiensis Infection. Journal of Plant Studies, 2(2), p35.spa
dc.relation.referencesBhadauria, V., Banniza, S., Wang, L. X., Wei, Y. D., & Peng, Y. L. (2010). Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts. European journal of plant pathology, 126(1), 81-95.spa
dc.relation.referencesBeveraggi, A., X; Mourichon y G. Salle. (1993). Study of host-parasite interactions in susceptible and resistant bananas inoculated with Cercospora fijiensis, pathogen of black leaf streak disease. En: Breeding Banana and Plantain for resistance to disease and pests. J., Ganry, Editor., CIRAD, INIBAP: Montpellier, France., p 213- 220.spa
dc.relation.referencesBishop, JG; Dean, A.M; Mitchell-Olds, T. 2000. Rapid evolution in plant chitinases: Molecular targets of selection in plant-patogen coevolution. En: PNAS. Vol. 97, No. 10. p 5322-5327.spa
dc.relation.referencesBöhmer, M., Colby, T., Bohmer, C., Brautigam, A., Schmidt, J., & Boker, M. (2007). Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics, 7, 675–685.spa
dc.relation.referencesBoller, T., Gehri, A., Mauch, F., & Vögeli, U. (1983). Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 157, 22–31.spa
dc.relation.referencesCañas‐Gutiérrez, G. P., Angarita‐Velásquez, M. J., Restrepo‐Flórez, J. M., Rodríguez, P., Moreno, C. X., & Arango, R. (2009). Analysis of the CYP51 gene and encoded protein in propiconazole‐resistant isolates of Mycosphaerella fijiensis. Pest management science, 65(8), 892-899.spa
dc.relation.referencesCools, H. J., Hawkins, N. J. and Fraaije, B. A. (2013), Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathology, 62: 36–42. doi: 10.1111/ppa.12128spa
dc.relation.referencesFoure, E. (1993). Characterization of the reactions of banana cultivars to Mycosphaerella fijiensis Morelet in cameroon and genetic resistance. En: Breeding banana and plantain for resistance to disease and pests. (Ganry, J. ed) CIRAD, INIBAP, Montpellier, France. pp. 159-170.spa
dc.relation.referencesFullerton, R. A.; y Olsen T. L. Valmayor R. V.; Umali, B. E. y Bejosano C. P. (1991). Pathogenic variability in Mycosphaerella fijiensis Morelet. En: Banana Diseases in Asia and the Pacific. pp.105- 114. INIBAP, Montpellier.spa
dc.relation.referencesKema, G.H.J. (2006) The pesticide reduction plan for banana. In: Anais XVII Reunião Internacional ACORBAT (Soprano, E., Tcacenco, F.A., Lichtemberg, L.A. and Silva, M.C., eds), pp. 3–4. Joinville, Santa Catarina: Bananicultura: um negócio sustentável ACORBAT.spa
dc.relation.referencesKuck, H. K. and J. P. Vors.: “Sterol biosynthesis inhibitors,” in: Modern crop protection compounds. Fungicides vol 2. (Ed.) Krämer, W.; U. Schirmer. Wiley -Vch Verlag GmbH & Co., pp. 605-646, Alemania, 2007.spa
dc.relation.referencesMahlert, M., Leveleki, L., Hlubek, A., Sandrock, B., & Bölker, M. (2006). Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Molecular microbiology, 59(2), 567-578.spa
dc.relation.referencesPark, J., Lee, S., Choi, J., Ahn, K., Park, B., Park, J., ... & Lee, Y. H. (2008). Fungal cytochrome P450 database. BMC genomics, 9(1), 402.spa
dc.relation.referencesPark, Gyungsoon, et al. Global analysis of serine-threonine protein kinase genes in Neurospora crassa. Eukaryotic cell, 2011, vol. 10, no 11, p. 1553-1564.spa
dc.relation.referencesRep, M. (2005). Small proteins of plant‐pathogenic fungi secreted during host colonization. FEMS microbiology letters, 253(1), 19-27.spa
dc.relation.referencesRomero, R. A., and T. B. Sutton. 1998. Characterization of benomyl resistance in Mycosphaerella fijiensis, cause of Black Sigatoka of banana, in Costa Rica. Plant Dis. 82: 931–934.spa
dc.relation.referencesRodriguez, H. A., Rodriguez, E., Falsarella, M., Mira, J. J., Kema, G. H. J., Arango, R. E., & Morales, J. G. (2013). Phytohormone modulation in Musa Acuminata during the interaction with the fungus Mycosphaerella fijiensis Morelet. XX ACORBAT meeting, Fortaleza, Brazil, 09-13 September 2013spa
dc.relation.referencesSepúlveda, L., Vásquez, L. E., Paniagua, C. I., Echeverry, D., Hernández, C. A., Rodríguez, E., & Arango, R. (2009). The presence and spectrum of light influences the in vitro conidia production of Mycosphaerella fijiensis causal agent of black Sigatoka. Australasian Plant Pathology, 38(5), 514-517.spa
dc.relation.referencesStergiopoulos, I., & de Wit, P. J. (2009). Fungal effector proteins. Annual review of phytopathology, 47, 233-263.spa
dc.relation.referencesStergiopoulos, I., van den Burg, H. A., Ökmen, B., Beenen, H. G., van Liere, S., Kema, G. H., & de Wit, P. J. (2010). Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proceedings of the National Academy of Sciences, 107(16), 7610-7615.spa
dc.relation.referencesStergiopoulos, I., Cordovez, V., Ökmen, B., Beenen, H. G., Kema, G. H., & De Wit, P. J. (2014). Positive selection and intragenic recombination contribute to high allelic diversity in effector genes of Mycosphaerella fijiensis, causal agent of the black leaf streak disease of banana. Molecular Plant Pathology, 15(5), 447-460.spa
dc.relation.referencesTorres, J. M., Calderón, H., Rodríguez-Arango, E., Morales, J. G., & Arango, R. (2012). Differential induction of pathogenesis-related proteins in banana in response to Mycosphaerella fijiensis infection. European journal of plant pathology, 133(4), 887-898.spa
dc.relation.referencesValencia-Quintana, R., Sánchez-Alarcón, J., (2009). Gómez-Arroyo, S., Gómez-Olivares, J. L., & Kubiak, S. M. W. Los citocromos P450 en los 5 reinos de Margulis. Ciencia en la frontera,spa
dc.relation.referencesVicente, L. P. (2006). Manejo convencional y alternativo de la Sigatoka Negra en bananos: estado actual y perspectivas. Control biológico, 10(1), 55.spa
dc.relation.referencesKantún-Moreno, N., Vázquez-Euán, R., Tzec-Simá, M., Peraza-Echeverría, L., Grijalva- Arango, R., Rodríguez-García, C., ... & Canto-Canché, B. (2013). Genome-wide in silico identification of GPI proteins in Mycosphaerella fijiensis and transcriptional analysis of two GPI-anchored β-1, 3-glucanosyltransferases. Mycologia, 105(2), 285-296.spa
dc.relation.referencesKihara, J., Moriwaki, A., Ueno, M., Tokunaga, T., Arase, S., & Honda, Y. (2004). Cloning, functional analysis and expression of a scytalone dehydratase gene (SCD1) involved in melanin biosynthesis of the phytopathogenic fungus Bipolaris oryzae. Current genetics, 45, 197-204.spa
dc.relation.referencesKubo, Y., Takano, Y., Endo, N., Yasuda, N., Tajima, S., & Furusawa, I. (1996). Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Applied and environmental microbiology, 62(12), 4340-4344.spa
dc.relation.referencesMeyer, V. (2008). Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnology advances, 26(2), 177-185.spa
dc.relation.referencesNoar, R. D., & Daub, M. E. (2016). Transcriptome sequencing of Mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes. BMC genomics, 17, 1-25.spa
dc.relation.referencesNoar, R. D., & Daub, M. E. (2016). Bioinformatics prediction of polyketide synthase gene clusters from Mycosphaerella fijiensis. PLoS One, 11(7), e0158471.spa
dc.relation.referencesPloetz, R. (2000). Black sigatoka. Pesticide Outlook, 11(1), 19-23.spa
dc.relation.referencesPortal, O., Izquierdo, Y., De Vleesschauwer, D., Sánchez-Rodríguez, A., Mendoza- Rodríguez, M., Acosta-Suárez, M., ... & Höfte, M. (2011). Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis–banana interaction. Plant cell reports, 30, 913-928.spa
dc.relation.referencesRodriguez, H. A., Rodriguez-Arango, E., Morales, J. G., Kema, G., & Arango, R. E. (2016). Defense gene expression associated with biotrophic phase of Mycosphaerella fijiensis M. Morelet infection in banana. Plant disease, 100(6), 1170-1175.spa
dc.relation.referencesRodríguez-García, C. M., Canché-Gómez, A. D., Sáenz-Carbonell, L., Peraza-Echeverría, L., Canto-Canché, B., Islas-Flores, I., & Peraza-Echeverría, S. (2016). Expression of MfAvr4 in banana leaf sections with black leaf streak disease caused by Mycosphaerella fijiensis: A technical validation. Australasian Plant Pathology, 45, 481-488.spa
dc.relation.referencesShao, C., Yin, Y., Qi, Z., Li, R., Song, Z., Li, Y., & Wang, Z. (2015). Agrobacterium tumefaciens-mediated transformation of the entomopathogenic fungus Nomuraea rileyi. Fungal Genetics and Biology, 83, 19-25.spa
dc.relation.referencesSteiner, U., & Oerke, E. C. (2007). Localized melanization of appressoria is required for pathogenicity of Venturia inaequalis. Phytopathology, 97(10), 1222-1230.spa
dc.relation.referencesStergiopoulos, I., Van Den Burg, H. A., Ökmen, B., Beenen, H. G., van Liere, S., Kema, G. H., & de Wit, P. J. (2010). Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proceedings of the National Academy of Sciences, 107(16), 7610-7615.spa
dc.relation.referencesWeld, R. J., Plummer, K. M., Carpenter, M. A., & Ridgway, H. J. (2006). Approaches to functional genomics in filamentous fungi. Cell research, 16(1), 31-44.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.lembBanano - Enfermedades y plagas
dc.subject.proposalGenes de patogenicidadspa
dc.subject.proposalGenómica de hongosspa
dc.subject.proposalBananospa
dc.subject.proposalSigatoka negraspa
dc.subject.proposalBlack Sigatokaeng
dc.subject.proposalPathogenicity geneseng
dc.subject.proposalBananaeng
dc.subject.proposalFungal Genomicseng
dc.subject.proposalHongo Mycosphaerella fijiensisspa
dc.subject.wikidataMycosphaerella fijiensis
dc.subject.wikidataPatogénesis
dc.titleAnálisis genómico y transcriptómico de la interacción musa - pseudocercospora fijiensis como herramienta en la identificación y caracterización de genes fúngicos de virulencia y patogenicidadspa
dc.title.translatedGenomic and transcryptomic analysis of the interaction musa - pseudocercospora fijiensis as tool in the identification and characterization of fungal genes of virulence and pathogenicityeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de ciencia tecnología e innovaciónspa
oaire.fundernameAsociación de Bananeros de Colombiaspa
oaire.fundernameCorporación para Investigaciones Biológicasspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1110444301.20241.pdf
Tamaño:
3.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: