Evaluación de los parámetros de operación y la incidencia de las condiciones ambientales en la aplicación de insumos líquidos para la agricultura desde un vehículo aéreo no tripulado

dc.contributor.advisorCamacho Tamayo, Jesús Hernán
dc.contributor.advisorMendoza Castiblanco, Christian José
dc.contributor.authorOrdóñez Suárez, Luis David
dc.date.accessioned2026-02-09T13:13:28Z
dc.date.available2026-02-09T13:13:28Z
dc.date.issued2026
dc.descriptionIlustraciones, diagramas, fotografías, gráficosspa
dc.description.abstractEste estudio abordó la influencia de las condiciones operativas de un sistema aéreo no tripulado (UAS) y de variables climáticas sobre la aplicación de insumos líquidos en un contexto agrícola. Se evaluaron diversas combinaciones de altura de vuelo, velocidad de desplazamiento y tipo de boquilla, junto con datos meteorológicos tomados en campo, incluyendo velocidad del viento, humedad relativa y temperatura. A través del uso de tarjetas hidrosensibles, se obtuvieron indicadores como cobertura, densidad de gotas y diámetro volumétrico medio. Los análisis estadísticos mostraron que la boquilla y la velocidad de vuelo tienen un efecto significativo sobre la calidad de aplicación, mientras que la altura demostró una influencia menor. Asimismo, se evidenció que la velocidad del viento fue el factor ambiental más determinante. A partir de esta información, se desarrolló un enfoque basado en ventanas climáticas favorables utilizando datos históricos de la estación meteorológica Tibaitatá, cercana al área de estudio. Este procedimiento permitió identificar los días óptimos para la aplicación de productos líquidos, aportando un insumo clave para la elaboración de protocolos técnicos adaptados a condiciones locales. Se concluye que integrar criterios técnicos y ambientales permite mejorar la eficiencia, seguridad y sostenibilidad de la aspersión aérea con UAS. (Texto tomado de la fuente)spa
dc.description.abstractThis study examined the influence of unmanned aerial system (UAS) operating parameters and environmental conditions on the application of liquid agricultural inputs. Different combinations of flight height, speed, and nozzle type were tested under field conditions, alongside measurements of wind speed, humidity, and temperature. Water-sensitive papers were used to determine spray quality indicators such as coverage, droplet density, and volume median diameter. Statistical analyses revealed that nozzle type and flight speed significantly influenced spray deposition quality, while flight height had a lesser effect. Wind speed emerged as the most impactful environmental variable. Based on these findings, a methodology was developed to identify favorable weather windows using historical data from the Tibaitatá meteorological station, located near the experimental site. This approach enabled accurate identification of optimal spraying days, supporting the development of technical application protocols tailored to local agroclimatic conditions. The integration of operational and environmental criteria is shown to improve the effectiveness, safety, and sustainability of drone-based aerial sprayingeng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Biosistemas
dc.description.researchareaMecanización y Automatización agrícola
dc.format.extentxiii, 119 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89413
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícola
dc.relation.referencesAhmad, F., Qiu, B., Dong, X., Ma, J., Huang, X., Ahmed, S., & Ali Chandio, F. (2020). Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Computers and Electronics in Agriculture, 172. https://doi.org/10.1016/j.compag.2020.105350
dc.relation.referencesAhmad, F., Zhang, S., Qiu, B., Ma, J., Xin, H., Qiu, W., Ahmed, S., Chandio, F. A., & Khaliq, A. (2022). Comparison of Water Sensitive Paper and Glass Strip Sampling Approaches to Access Spray Deposit by UAV Sprayers. Agronomy, 12(6). https://doi.org/10.3390/agronomy12061302
dc.relation.referencesAkesson, N. B., Osmun, J. V, Cromwell, R. P., Roth, L. O., Dewey, J. E., Smith, D. B., King, R., Walla, W. J., Helms, W., Ware, G. W., & Mcwhorter, C. G. (1983). Reducing Pesticide Application Drift-Losses. College of Agriculture the University of Arizona, 1–42. http://pestworld.stjohn.hawaii.edu/studypackets/driftlos.html
dc.relation.referencesAldás, J., & Uriel, E. (2017). Análisis multivariante aplicado con R (Alfacentauro, Ed.; Segunda edición). Ediciones Paraninfo
dc.relation.referencesANDEF – Associação Nacional de Defesa Vegetal. (2010). MANUAL DE TECNOLOGIA DE APLICAÇÃO DE PRODUTOS FITOSSANITÁRIOS. COGAP – Comitê de Boas Práticas Agrícolas. www.andef.com.br
dc.relation.referencesAnderson, M. J. (2017). Permutational Multivariate Analysis of Variance ( PERMANOVA ) . En Wiley StatsRef: Statistics Reference Online (pp. 1–15). Wiley. https://doi.org/10.1002/9781118445112.stat07841
dc.relation.referencesASABE. (2009). STANDARD ANSI/ASAE S572.1 MAR2009 Spray Nozzle Classification by Droplet Spectra. https://cdn2.hubspot.net/hub/95784/file-32015844-pdf/docs/asabe_s572.1_droplet_size_classification.pdf
dc.relation.referencesAsela, D., Del Puerto Rodríguez, M., Susana, D., Tamayo, S., Daniel, L., & Palacio Estrada, E. (2014). Efectos de los plaguicidas sobre el ambiente y la salud Effects of pesticides on health and the environment. En Revista Cubana de Higiene y Epidemiología (Vol. 52, Número 3). http://scielo.sld.cu
dc.relation.referencesBaio, F. H. R., Oliveira, J. T. de, Alves, M. E. M., Teodoro, L. P. R., Cunha, F. F. da, & Teodoro, P. E. (2025). Characterization of the Droplet Population Generated by Centrifugal Atomization Nozzles of UAV Sprayers. AgriEngineering, 7(1). https://doi.org/10.3390/agriengineering7010015
dc.relation.referencesBiglia, A., Grella, M., Bloise, N., Comba, L., Mozzanini, E., Sopegno, A., Pittarello, M., Dicembrini, E., Alcatrão, L. E., Guglieri, G., Balsari, P., Aimonino, D. R., & Gay, P. (2022). UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Science of the Total Environment, 845. https://doi.org/10.1016/j.scitotenv.2022.157292
dc.relation.referencesBornacelli, C. L. (2002). Técnicas de acplicación Aérea de Plaguicidas Agrícolas. Revista Innovación & Cambio Tecnológico - Corpoica, 60–69. https://repository.agrosavia.co/bitstream/handle/20.500.12324/766/110752_67943.pdf?sequence=1&isAllowed=y
dc.relation.referencesCampbell, G. S. ., & Norman, J. M. . (2009). An introduction to environmental biophysics (Second Edition). Springer
dc.relation.referencesCarvalho, F. K., Chechetto, R. G., Mota, A. A. B., & Antuniassi, U. R. (2020). Challenges of aircraft and drone spray applications. Outlooks on Pest Management, 31(2), 83–88. https://doi.org/10.1564/v31_apr_07
dc.relation.referencesCerruto, E., Manetto, G., Longo, D., Failla, S., & Papa, R. (2019). A model to estimate the spray deposit by simulated water sensitive papers. Crop Protection, 124. https://doi.org/10.1016/j.cropro.2019.104861
dc.relation.referencesChen, P., Ouyang, F., Wang, G., Qi, H., Xu, W., Yang, W., Zhang, Y., & Lan, Y. (2021). Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters. Industrial Crops and Products, 163. https://doi.org/10.1016/j.indcrop.2021.113324
dc.relation.referencesChojnacki, J., & Pachuta, A. (2021). Impact of the parameters of spraying with a small unmanned aerial vehicle on the distribution of liquid on young cherry trees. Agriculture (Switzerland), 11(11). https://doi.org/10.3390/agriculture11111094
dc.relation.referencesda Silva, A. R. (2022). hydropaper: An R package for analyzing water-sensitive paper images. GitHub. https://github.com/arsilva87/hydropaper
dc.relation.referencesDe Marchi, M., Diantini, A., & Pappalardo, S. E. (2022). Drones and Geographical Information Technologies in Agroecology and Organic Farming: Contributions to Technological Sovereignty. En Drones and Geographical Information Technologies in Agroecology and Organic Farming: Contributions to Technological Sovereignty. CRC Press. https://doi.org/10.1201/9780429052842
dc.relation.referencesDelavarpour, N., Koparan, C., Zhang, Y., Steele, D. D., Betitame, K., Bajwa, S. G., & Sun, X. (2023). A REVIEW OF THE CURRENT UNMANNED AERIAL VEHICLE SPRAYER APPLICATIONS IN PRECISION AGRICULTURE. Journal of the ASABE, 66(3), 703–721. https://doi.org/10.13031/ja.15128
dc.relation.referencesDJI Agriculture. (2023). Better Growth, Better Life. https://ag.dji.com
dc.relation.referencesFaiçal, B. S., Freitas, H., Gomes, P. H., Mano, L. Y., Pessin, G., de Carvalho, A. C. P. L. F., Krishnamachari, B., & Ueyama, J. (2017). An adaptive approach for UAV-based pesticide spraying in dynamic environments. Computers and Electronics in Agriculture, 138, 210–223. https://doi.org/10.1016/j.compag.2017.04.011
dc.relation.referencesFAO. (2002). Guías sobre buenas prácticas para la aplicación aérea de plaguicidas. Organización de las Naciones Unidas para la Agricultura y la Alimentación. https://www.fao.org/3/y2766s/y2766s00.htm
dc.relation.referencesGrant, S., Perine, J., Abi-Akar, F., Lane, T., Kent, B., Mohler, C., Scott, C., & Ritter, A. (2022a). A Wind-Tunnel Assessment of Parameters That May Impact Spray Drift during UAV Pesticide Application. Drones, 6(8). https://doi.org/10.3390/drones6080204
dc.relation.referencesGrant, S., Perine, J., Abi-Akar, F., Lane, T., Kent, B., Mohler, C., Scott, C., & Ritter, A. (2022b). A Wind-Tunnel Assessment of Parameters That May Impact Spray Drift during UAV Pesticide Application. Drones, 6(8). https://doi.org/10.3390/drones6080204
dc.relation.referencesHao, Z., Li, M., Yang, W., & Li, X. (2022). Evaluation of UAV spraying quality based on 1D-CNN model and wireless multi-sensors system. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2022.07.004
dc.relation.referencesHE, J., SUN, K., WANG, T., SONG, Z., & LIU, L. (2024). CENTRIFUGAL SPRAYING SYSTEM DESIGN AND DROPLET DISTRIBUTION CHARACTERIZATION FOR MAIZE PLANT PROTECTION UAV. INMATEH Agricultural Engineering, 73–83. https://doi.org/10.35633/inmateh-73-06
dc.relation.referencesHetz, E., Saavedra, M., Venegas, A., & López, M. (2004). Ventana de aplicación de plaguicidas en huertos de arándano (Vaccinium sp.) de la zona de Los Ángeles, Chile. Agricultura Técnica, 64(4). https://doi.org/10.4067/s0365-28072004000400006
dc.relation.referencesHunter, J. E., Gannon, T. W., Richardson, R. J., Yelverton, F. H., & Leon, R. G. (2020). Coverage and drift potential associated with nozzle and speed selection for herbicide applications using an unmanned aerial sprayer. Weed Technology, 34(2), 235–240. https://doi.org/10.1017/wet.2019.101
dc.relation.referencesKim, J., Kim, S., Ju, C., & Son, H. Il. (2019). Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. En IEEE Access (Vol. 7,pp. 105100–105115). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2019.2932119
dc.relation.referencesKlauser, F., & Pauschinger, D. (2021). Entrepreneurs of the air: Sprayer drones as mediators of volumetric agriculture. Journal of Rural Studies, 84, 55–62. https://doi.org/10.1016/j.jrurstud.2021.02.016
dc.relation.referencesKoo, D., Gonçalves, C. G., & Askew, S. D. (2024). Agricultural spray drone deposition, Part 2: Operational height and nozzle influence pattern uniformity, drift, and weed control. Weed Science, 72(6), 824–832. https://doi.org/10.1017/wsc.2024.67
dc.relation.referencesLan, X., Wang, J., Chen, P., Liang, Q., Zhang, L., & Ma, C. (2024). Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Ecotoxicology and Environmental Safety, 282. https://doi.org/10.1016/j.ecoenv.2024.116675
dc.relation.referencesLevin R. I., & Rubin, D. S. (2006). Estadística para administración y economía (University of Arizona, Trad.; Séptima edición). Pearson Educación
dc.relation.referencesLi, L., Hu, Z., Liu, Q., Yi, T., Han, P., Zhang, R., & Pan, L. (2022). Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.981494
dc.relation.referencesLi, X., Giles, D. K., Niederholzer, F. J., Andaloro, J. T., Lang, E. B., & Watson, L. J. (2021). Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Management Science, 77(1), 527–537. https://doi.org/10.1002/ps.6052
dc.relation.referencesLing, W., Du, C., Mengchao, Z., Yu, W., Ze, Y., & Shumao, W. (2018). CFD Simulation of Low-attitude Droplets Deposition Characteristics for UAV based on Multi-feature Fusion. 51(17), 648–653. https://doi.org/10.1016/j.ifacol.2018.08.123
dc.relation.referencesLiu, Q., Chen, S., Wang, G., & Lan, Y. (2021). Drift evaluation of a quadrotor unmanned aerial vehicle (UAV) sprayer: Effect of liquid pressure and wind speed on drift potential based on wind tunnel test. Applied Sciences (Switzerland), 11(16). https://doi.org/10.3390/app11167258
dc.relation.referencesLochan, K., Khan, A., Elsayed, I., Suthar, B., Seneviratne, L., & Hussain, I. (2024). Advancements in Precision Spraying of Agricultural Robots: A Comprehensive Review. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3450904
dc.relation.referencesLou, Z., Xin, F., Han, X., Lan, Y., Duan, T., & Fu, W. (2018). Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites. Agronomy, 8(9). https://doi.org/10.3390/agronomy8090187
dc.relation.referencesMagdalena, J. C., Castillo Herrán, B., Di Prinzio, A., Homer Bannister, I., Villalba, J., & Teixeira, M. M. (2010). Tecnología de aplicación de agroquímicos Edición, Corrección y Diseño: Área de Comunicaciones del INTA Alto Valle.
dc.relation.referencesMagnojet. (2023). Catálogo técnico de boquillas y accesorios
dc.relation.referencesMaldonado, Iván D, Reyes, & Diana M. (2023). Optimización financiera del uso de drones en cultivos extensivos: caso de estudio cultivo de arroz en el municipio de Trinidad, Casanare, Colombia. Revista espacios. https://doi.org/10.48082/espacios-a23v44n03p07
dc.relation.referencesMantovani, E. C., & Magdalena, C. (2014). Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y Agroindustrial del Cono Sur. https://repositorio.iica.int/items/37234767-6b65-4844-86f7-60ee88a41ee8
dc.relation.referencesMartin, D. E., Perine, J. W., Grant, S., Abi-Akar, F., Henry, J. L., & Latheef, M. A. (2025a). Spray Deposition and Drift as Influenced by Wind Speed and Spray Nozzles from a Remotely Piloted Aerial Application System. Drones, 9(1). https://doi.org/10.3390/drones9010066
dc.relation.referencesMartin, D. E., Perine, J. W., Grant, S., Abi-Akar, F., Henry, J. L., & Latheef, M. A. (2025b). Spray Deposition and Drift as Influenced by Wind Speed and Spray Nozzles from a Remotely Piloted Aerial Application System. Drones, 9(1). https://doi.org/10.3390/drones9010066
dc.relation.referencesMatthews, G. A. (2000). Pesticide Application Methods Third Edition (Third edition). https://onlinelibrary.wiley.com/doi/book/10.1002/9780470760130
dc.relation.referencesMcCabe, K. (2023, enero 27). What is wind? Royal Meteorological Society. https://www.rmets.org/metmatters/what-wind?
dc.relation.referencesMeng, Y., Su, J., Song, J., Chen, W. H., & Lan, Y. (2020). Experimental evaluation of UAV spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution. Computers and Electronics in Agriculture, 170. https://doi.org/10.1016/j.compag.2020.105282
dc.relation.referencesMogili, U. R., & Deepak, B. B. V. L. (2018). Review on Application of Drone Systems in Precision Agriculture. Procedia Computer Science, 133, 502–509. https://doi.org/10.1016/j.procs.2018.07.063
dc.relation.referencesMonteith, J. L., & Unsworth, M. H. (2013). Principles of Environmental Physics (Vol. 4th). ELSEVIER. https://doi.org/https://doi.org/10.1016/C2009-0-61113-5
dc.relation.referencesOrdóñez, N., & Bolívar, A. (2014). Levantamiento agrológico del Centro Agropecuario Marengo (CAM) (First, Vol. 1). Universidad Nacional de Colombia, Sede Bogotá : IGAC, Instituto Geográfico Agustín Codazzi
dc.relation.referencesOzkan, E. (2023, abril 10). Drones for Spraying Pesticides—Opportunities and Challenges | Ohioline. https://ohioline.osu.edu/factsheet/fabe-540
dc.relation.referencesPierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. https://www.sciencedirect.com/science/article/abs/pii/S0065211308605131
dc.relation.referencesQin, W. C., Qiu, B. J., Xue, X. Y., Chen, C., Xu, Z. F., & Zhou, Q. Q. (2016). Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85, 79–88. https://doi.org/10.1016/j.cropro.2016.03.018
dc.relation.referencesRadons, S. Z., Heldwein, A. B., da Silva, J. R., da Silva, A. V., Schepke, E., & Lucas, D. D. P. (2022). Weather conditions favorable for agricultural spraying in rio grande do sul state. Revista Brasileira de Engenharia Agricola e Ambiental, 26(1), 36–43. https://doi.org/10.1590/1807-1929/agriambi.v26n1p36-43
dc.relation.referencesRepública de Colombia. (1991). Decreto 1843 de 1991: Por el cual se reglamenta parcialmente el uso y manejo de plaguicidas. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=114357
dc.relation.referencesShan, C., Xue, C., Zhang, L., Song, C., Kaousar, R., Wang, G., & Lan, Y. (2024). Effects of different spray parameters of plant protection UAV on the deposition characteristics of droplets in apple trees. Crop Protection, 184. https://doi.org/10.1016/j.cropro.2024.106835
dc.relation.referencesSilva, J. E., da Silva, W. H. B., Ferraz, M. A. J., Menezes, E. A. S., da Costa, O. P., Inácio, F. D., Barboza, T. O. C., Melo, C. A. D., Carvalho, G. R., & Santos, A. F. dos. (2024). Impact of spray volume and flight speed on the efficiency of drone applications in coffee plants of different ages. Smart Agricultural Technology, 9. https://doi.org/10.1016/j.atech.2024.100694
dc.relation.referencesTalaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. En Artificial Intelligence in Agriculture (Vol. 4, pp. 58–73). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2020.04.002
dc.relation.referencesTang, Y., Hou, C. J., Luo, S. M., Lin, J. T., Yang, Z., & Huang, W. F. (2018). Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle. Computers and Electronics in Agriculture, 148, 1–7. https://doi.org/10.1016/j.compag.2018.02.026
dc.relation.referencesTeixeira, M. M. (2010). Estudio de la población de gotas de pulverización. En Tecnología de aplicación de agroquímicos: Vol. Uno (Primera, pp. 67–76)
dc.relation.referencesThomson, S. J., Womac, A. R., & Mulrooney, J. E. (2013). Reducing Pesticide Drift by Considering Propeller Rotation Effects From Aerial Application Near Buffer Zones. Sustainable Agriculture Research, 2(3), 41. https://doi.org/10.5539/sar.v2n3p41
dc.relation.referencesThroneberry, G., Hocut, C. M., & Abdelkefi, A. (2021). Multi-rotor wake propagation and flow development modeling: A review. En Progress in Aerospace Sciences (Vol. 127). Elsevier Ltd. https://doi.org/10.1016/j.paerosci.2021.100762
dc.relation.referencesTukey, J. W. (1977). Exploratory Data Analysis (F. MOSTELLER, Ed.). Addison-Wesley. https://consoleflare.com/blog/wp-content/uploads/2022/09/Exploratory-Data-Analysis-1977-John-Tukey.pdf
dc.relation.referencesUnidad Administrativa Especial de Aeronáutica Civil. (2024). RAC 100: Operación de sistemas de aeronaves no tripuladas (UAS). https://www.aerocivil.gov.co/normatividad/RAC/RAC%20100-Operación%20de%20Sistemas%20de%20Aeronaves%20no%20Tripuladas%20UAS.pdf
dc.relation.referencesUnidad Administrativa Especial de Aeronáutica Civil – Aerocivil. (2012). RAC 137: Normas de Aeronavegabilidad y Operaciones en Aviación Agrícola. https://www.aerocivil.gov.co/normatividad/VERSION%20OCT%2031%202016/RAC%20%20137%20-%20Normas%20de%20Aeronavegabilidad%20y%20Operaciones%20en%20Aviaci%C3%B3n%20Agr%C3%ADcola.pdf
dc.relation.referencesWang, C., Herbst, A., Zeng, A., Wongsuk, S., Qiao, B., Qi, P., Bonds, J., Overbeck, V., Yang, Y., Gao, W., & He, X. (2021). Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Science of the Total Environment, 777. https://doi.org/10.1016/j.scitotenv.2021.146181
dc.relation.referencesWang, D., Xu, S., Li, Z., & Cao, W. (2022). Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method. Agriculture (Switzerland), 12(2). https://doi.org/10.3390/agriculture12020131
dc.relation.referencesWang, G., Han, Y., Li, X., Andaloro, J., Chen, P., Hoffmann, W. C., Han, X., Chen, S., & Lan, Y. (2020). Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Science of the Total Environment, 737. https://doi.org/10.1016/j.scitotenv.2020.139793
dc.relation.referencesWang, G., Lan, Y., Qi, H., Chen, P., Hewitt, A., & Han, Y. (2019). Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest Management Science, 75(6), 1546–1555. https://doi.org/10.1002/ps.5321
dc.relation.referencesWang, J., Lan, Y. Bin, Zhang, H. H., Zhang, Y. L., Wen, S., Yao, W. X., & Deng, J. (2018). Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. International Journal of Agricultural and Biological Engineering, 11(6), 5–12. https://doi.org/10.25165/j.ijabe.20181106.4038
dc.relation.referencesWang, J., Ma, C., Chen, P., Yao, W., Yan, Y., Zeng, T., Chen, S., & Lan, Y. (2023). Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Areca catechu protection. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1093912
dc.relation.referencesWang, P., He, M., Li, M., Yang, Y., Li, H., Xi, W., & Zhang, T. (2024). Optimization of Application Parameters for UAV-Based Liquid Pollination in Pear Orchards: A Yield and Cost Perspective. Agronomy, 14(9), 2033. https://doi.org/10.3390/agronomy14092033
dc.relation.referencesWen, S., Han, J., Ning, Z., Lan, Y., Yin, X., Zhang, J., & Ge, Y. (2019). Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds. Computers and Electronics in Agriculture, 166. https://doi.org/10.1016/j.compag.2019.105036
dc.relation.referencesWilliamson, J. R., & Neilsen, W. A. (2000). The influence of forest site on rate and extent of soil compaction and profile disturbance of skid trails during ground-based harvesting
dc.relation.referencesWorld Meteorological Organization. (2008). Guide to Meteorological Instruments and Methods of Observation
dc.relation.referencesYallappa, D., Kavitha, R., Surendrakumar, A., Balaji, K., Suthakar, B., Kumar, A. P. M., Ravi, Y., Ashoka, N., & Kavan, K. (2024). Downwash airflow distribution pattern of hexa-copter unmanned aerial vehicles. International Journal of Agricultural and Biological Engineering, 17(4), 24–34. https://doi.org/10.25165/j.ijabe.20241704.7754
dc.relation.referencesYao, W., Lan, Y., Wang, J., Wen, S., Wang, G., & Chen, S. (2017). Droplet drift characteristics of aerial spraying of AS350B3e helicopter. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 33(22), 75–83. https://doi.org/10.11975/j.issn.1002-6819.2017.22.010
dc.relation.referencesZhang, B., Tang, Q., Chen, L. ping, Zhang, R. rui, & Xu, M. (2018). Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach. Biosystems Engineering, 166, 184–199. https://doi.org/10.1016/j.biosystemseng.2017.11.017
dc.relation.referencesZhang, H., Qi, L., Wu, Y., Musiu, E. M., Cheng, Z., & Wang, P. (2020). Numerical simulation of airflow field from a six–rotor plant protection drone using lattice Boltzmann method. Biosystems Engineering, 197, 336–351. https://doi.org/10.1016/j.biosystemseng.2020.07.018
dc.relation.referencesZhang, P., Deng, L., Lyu, Q., He, S. L., Yi, S. L., De Liu, Y., Yu, Y. X., & Pan, H. Y. (2016). Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution. International Journal of Agricultural and Biological Engineering, 9(4), 45–52. https://doi.org/10.3965/j.ijabe.20160904.2178
dc.relation.referencesZhang, X.-Q., Song, X.-P., & Liang, Y.-J. (2020). Effects of Spray Parameters of Drone on the Droplet Deposition in Sugarcane Canopy. Sugar Tech, 22(4), 583–588. https://doi.org/10.1007/s12355-019-00792-z
dc.relation.referencesZhang, Y., Li, Y., He, Y., Liu, F., Cen, H., & Fang, H. (2018). Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions. Computers and Electronics in Agriculture, 148, 8–18. https://doi.org/10.1016/j.compag.2017.08.004
dc.relation.referencesZhu, Z., Yang, M., Li, Y., Wongsuk, S., Zhao, C., Xu, L., Zhang, Y., He, X., & Wang, C. (2024). Optimization Design and Atomization Performance of a Multi-Disc Centrifugal Nozzle for Unmanned Aerial Vehicle Sprayer. Agronomy, 14(12). https://doi.org/10.3390/agronomy14122914
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.blaaAplicación aérea
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.lembAspersión en agriculturaspa
dc.subject.lembSpraying and dusting in agricultureeng
dc.subject.lembMeteorología agrícolaspa
dc.subject.lembMeteorology, agriculturaleng
dc.subject.proposalAplicación aéreaspa
dc.subject.proposalVariables climáticasspa
dc.subject.proposalDrones agrícolasspa
dc.subject.proposalCoberturaspa
dc.subject.proposalAerial sprayingeng
dc.subject.proposalClimatic conditionseng
dc.subject.proposalAgricultural droneseng
dc.subject.proposalCoverageeng
dc.subject.wikidataDron agrícolaspa
dc.subject.wikidataAgricultural droneeng
dc.titleEvaluación de los parámetros de operación y la incidencia de las condiciones ambientales en la aplicación de insumos líquidos para la agricultura desde un vehículo aéreo no tripuladospa
dc.title.translatedEvaluation of operational parameters and the influence of environmental conditions on the application of liquid inputs for agriculture using an unmanned aerial vehicleeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Final en Maestría en Ingeniería.pdf
Tamaño:
3.19 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: