Evaluación de los parámetros de operación y la incidencia de las condiciones ambientales en la aplicación de insumos líquidos para la agricultura desde un vehículo aéreo no tripulado
| dc.contributor.advisor | Camacho Tamayo, Jesús Hernán | |
| dc.contributor.advisor | Mendoza Castiblanco, Christian José | |
| dc.contributor.author | Ordóñez Suárez, Luis David | |
| dc.date.accessioned | 2026-02-09T13:13:28Z | |
| dc.date.available | 2026-02-09T13:13:28Z | |
| dc.date.issued | 2026 | |
| dc.description | Ilustraciones, diagramas, fotografías, gráficos | spa |
| dc.description.abstract | Este estudio abordó la influencia de las condiciones operativas de un sistema aéreo no tripulado (UAS) y de variables climáticas sobre la aplicación de insumos líquidos en un contexto agrícola. Se evaluaron diversas combinaciones de altura de vuelo, velocidad de desplazamiento y tipo de boquilla, junto con datos meteorológicos tomados en campo, incluyendo velocidad del viento, humedad relativa y temperatura. A través del uso de tarjetas hidrosensibles, se obtuvieron indicadores como cobertura, densidad de gotas y diámetro volumétrico medio. Los análisis estadísticos mostraron que la boquilla y la velocidad de vuelo tienen un efecto significativo sobre la calidad de aplicación, mientras que la altura demostró una influencia menor. Asimismo, se evidenció que la velocidad del viento fue el factor ambiental más determinante. A partir de esta información, se desarrolló un enfoque basado en ventanas climáticas favorables utilizando datos históricos de la estación meteorológica Tibaitatá, cercana al área de estudio. Este procedimiento permitió identificar los días óptimos para la aplicación de productos líquidos, aportando un insumo clave para la elaboración de protocolos técnicos adaptados a condiciones locales. Se concluye que integrar criterios técnicos y ambientales permite mejorar la eficiencia, seguridad y sostenibilidad de la aspersión aérea con UAS. (Texto tomado de la fuente) | spa |
| dc.description.abstract | This study examined the influence of unmanned aerial system (UAS) operating parameters and environmental conditions on the application of liquid agricultural inputs. Different combinations of flight height, speed, and nozzle type were tested under field conditions, alongside measurements of wind speed, humidity, and temperature. Water-sensitive papers were used to determine spray quality indicators such as coverage, droplet density, and volume median diameter. Statistical analyses revealed that nozzle type and flight speed significantly influenced spray deposition quality, while flight height had a lesser effect. Wind speed emerged as the most impactful environmental variable. Based on these findings, a methodology was developed to identify favorable weather windows using historical data from the Tibaitatá meteorological station, located near the experimental site. This approach enabled accurate identification of optimal spraying days, supporting the development of technical application protocols tailored to local agroclimatic conditions. The integration of operational and environmental criteria is shown to improve the effectiveness, safety, and sustainability of drone-based aerial spraying | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ingeniería - Ingeniería de Biosistemas | |
| dc.description.researcharea | Mecanización y Automatización agrícola | |
| dc.format.extent | xiii, 119 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89413 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ingeniería | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícola | |
| dc.relation.references | Ahmad, F., Qiu, B., Dong, X., Ma, J., Huang, X., Ahmed, S., & Ali Chandio, F. (2020). Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Computers and Electronics in Agriculture, 172. https://doi.org/10.1016/j.compag.2020.105350 | |
| dc.relation.references | Ahmad, F., Zhang, S., Qiu, B., Ma, J., Xin, H., Qiu, W., Ahmed, S., Chandio, F. A., & Khaliq, A. (2022). Comparison of Water Sensitive Paper and Glass Strip Sampling Approaches to Access Spray Deposit by UAV Sprayers. Agronomy, 12(6). https://doi.org/10.3390/agronomy12061302 | |
| dc.relation.references | Akesson, N. B., Osmun, J. V, Cromwell, R. P., Roth, L. O., Dewey, J. E., Smith, D. B., King, R., Walla, W. J., Helms, W., Ware, G. W., & Mcwhorter, C. G. (1983). Reducing Pesticide Application Drift-Losses. College of Agriculture the University of Arizona, 1–42. http://pestworld.stjohn.hawaii.edu/studypackets/driftlos.html | |
| dc.relation.references | Aldás, J., & Uriel, E. (2017). Análisis multivariante aplicado con R (Alfacentauro, Ed.; Segunda edición). Ediciones Paraninfo | |
| dc.relation.references | ANDEF – Associação Nacional de Defesa Vegetal. (2010). MANUAL DE TECNOLOGIA DE APLICAÇÃO DE PRODUTOS FITOSSANITÁRIOS. COGAP – Comitê de Boas Práticas Agrícolas. www.andef.com.br | |
| dc.relation.references | Anderson, M. J. (2017). Permutational Multivariate Analysis of Variance ( PERMANOVA ) . En Wiley StatsRef: Statistics Reference Online (pp. 1–15). Wiley. https://doi.org/10.1002/9781118445112.stat07841 | |
| dc.relation.references | ASABE. (2009). STANDARD ANSI/ASAE S572.1 MAR2009 Spray Nozzle Classification by Droplet Spectra. https://cdn2.hubspot.net/hub/95784/file-32015844-pdf/docs/asabe_s572.1_droplet_size_classification.pdf | |
| dc.relation.references | Asela, D., Del Puerto Rodríguez, M., Susana, D., Tamayo, S., Daniel, L., & Palacio Estrada, E. (2014). Efectos de los plaguicidas sobre el ambiente y la salud Effects of pesticides on health and the environment. En Revista Cubana de Higiene y Epidemiología (Vol. 52, Número 3). http://scielo.sld.cu | |
| dc.relation.references | Baio, F. H. R., Oliveira, J. T. de, Alves, M. E. M., Teodoro, L. P. R., Cunha, F. F. da, & Teodoro, P. E. (2025). Characterization of the Droplet Population Generated by Centrifugal Atomization Nozzles of UAV Sprayers. AgriEngineering, 7(1). https://doi.org/10.3390/agriengineering7010015 | |
| dc.relation.references | Biglia, A., Grella, M., Bloise, N., Comba, L., Mozzanini, E., Sopegno, A., Pittarello, M., Dicembrini, E., Alcatrão, L. E., Guglieri, G., Balsari, P., Aimonino, D. R., & Gay, P. (2022). UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Science of the Total Environment, 845. https://doi.org/10.1016/j.scitotenv.2022.157292 | |
| dc.relation.references | Bornacelli, C. L. (2002). Técnicas de acplicación Aérea de Plaguicidas Agrícolas. Revista Innovación & Cambio Tecnológico - Corpoica, 60–69. https://repository.agrosavia.co/bitstream/handle/20.500.12324/766/110752_67943.pdf?sequence=1&isAllowed=y | |
| dc.relation.references | Campbell, G. S. ., & Norman, J. M. . (2009). An introduction to environmental biophysics (Second Edition). Springer | |
| dc.relation.references | Carvalho, F. K., Chechetto, R. G., Mota, A. A. B., & Antuniassi, U. R. (2020). Challenges of aircraft and drone spray applications. Outlooks on Pest Management, 31(2), 83–88. https://doi.org/10.1564/v31_apr_07 | |
| dc.relation.references | Cerruto, E., Manetto, G., Longo, D., Failla, S., & Papa, R. (2019). A model to estimate the spray deposit by simulated water sensitive papers. Crop Protection, 124. https://doi.org/10.1016/j.cropro.2019.104861 | |
| dc.relation.references | Chen, P., Ouyang, F., Wang, G., Qi, H., Xu, W., Yang, W., Zhang, Y., & Lan, Y. (2021). Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters. Industrial Crops and Products, 163. https://doi.org/10.1016/j.indcrop.2021.113324 | |
| dc.relation.references | Chojnacki, J., & Pachuta, A. (2021). Impact of the parameters of spraying with a small unmanned aerial vehicle on the distribution of liquid on young cherry trees. Agriculture (Switzerland), 11(11). https://doi.org/10.3390/agriculture11111094 | |
| dc.relation.references | da Silva, A. R. (2022). hydropaper: An R package for analyzing water-sensitive paper images. GitHub. https://github.com/arsilva87/hydropaper | |
| dc.relation.references | De Marchi, M., Diantini, A., & Pappalardo, S. E. (2022). Drones and Geographical Information Technologies in Agroecology and Organic Farming: Contributions to Technological Sovereignty. En Drones and Geographical Information Technologies in Agroecology and Organic Farming: Contributions to Technological Sovereignty. CRC Press. https://doi.org/10.1201/9780429052842 | |
| dc.relation.references | Delavarpour, N., Koparan, C., Zhang, Y., Steele, D. D., Betitame, K., Bajwa, S. G., & Sun, X. (2023). A REVIEW OF THE CURRENT UNMANNED AERIAL VEHICLE SPRAYER APPLICATIONS IN PRECISION AGRICULTURE. Journal of the ASABE, 66(3), 703–721. https://doi.org/10.13031/ja.15128 | |
| dc.relation.references | DJI Agriculture. (2023). Better Growth, Better Life. https://ag.dji.com | |
| dc.relation.references | Faiçal, B. S., Freitas, H., Gomes, P. H., Mano, L. Y., Pessin, G., de Carvalho, A. C. P. L. F., Krishnamachari, B., & Ueyama, J. (2017). An adaptive approach for UAV-based pesticide spraying in dynamic environments. Computers and Electronics in Agriculture, 138, 210–223. https://doi.org/10.1016/j.compag.2017.04.011 | |
| dc.relation.references | FAO. (2002). Guías sobre buenas prácticas para la aplicación aérea de plaguicidas. Organización de las Naciones Unidas para la Agricultura y la Alimentación. https://www.fao.org/3/y2766s/y2766s00.htm | |
| dc.relation.references | Grant, S., Perine, J., Abi-Akar, F., Lane, T., Kent, B., Mohler, C., Scott, C., & Ritter, A. (2022a). A Wind-Tunnel Assessment of Parameters That May Impact Spray Drift during UAV Pesticide Application. Drones, 6(8). https://doi.org/10.3390/drones6080204 | |
| dc.relation.references | Grant, S., Perine, J., Abi-Akar, F., Lane, T., Kent, B., Mohler, C., Scott, C., & Ritter, A. (2022b). A Wind-Tunnel Assessment of Parameters That May Impact Spray Drift during UAV Pesticide Application. Drones, 6(8). https://doi.org/10.3390/drones6080204 | |
| dc.relation.references | Hao, Z., Li, M., Yang, W., & Li, X. (2022). Evaluation of UAV spraying quality based on 1D-CNN model and wireless multi-sensors system. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2022.07.004 | |
| dc.relation.references | HE, J., SUN, K., WANG, T., SONG, Z., & LIU, L. (2024). CENTRIFUGAL SPRAYING SYSTEM DESIGN AND DROPLET DISTRIBUTION CHARACTERIZATION FOR MAIZE PLANT PROTECTION UAV. INMATEH Agricultural Engineering, 73–83. https://doi.org/10.35633/inmateh-73-06 | |
| dc.relation.references | Hetz, E., Saavedra, M., Venegas, A., & López, M. (2004). Ventana de aplicación de plaguicidas en huertos de arándano (Vaccinium sp.) de la zona de Los Ángeles, Chile. Agricultura Técnica, 64(4). https://doi.org/10.4067/s0365-28072004000400006 | |
| dc.relation.references | Hunter, J. E., Gannon, T. W., Richardson, R. J., Yelverton, F. H., & Leon, R. G. (2020). Coverage and drift potential associated with nozzle and speed selection for herbicide applications using an unmanned aerial sprayer. Weed Technology, 34(2), 235–240. https://doi.org/10.1017/wet.2019.101 | |
| dc.relation.references | Kim, J., Kim, S., Ju, C., & Son, H. Il. (2019). Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. En IEEE Access (Vol. 7,pp. 105100–105115). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2019.2932119 | |
| dc.relation.references | Klauser, F., & Pauschinger, D. (2021). Entrepreneurs of the air: Sprayer drones as mediators of volumetric agriculture. Journal of Rural Studies, 84, 55–62. https://doi.org/10.1016/j.jrurstud.2021.02.016 | |
| dc.relation.references | Koo, D., Gonçalves, C. G., & Askew, S. D. (2024). Agricultural spray drone deposition, Part 2: Operational height and nozzle influence pattern uniformity, drift, and weed control. Weed Science, 72(6), 824–832. https://doi.org/10.1017/wsc.2024.67 | |
| dc.relation.references | Lan, X., Wang, J., Chen, P., Liang, Q., Zhang, L., & Ma, C. (2024). Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Ecotoxicology and Environmental Safety, 282. https://doi.org/10.1016/j.ecoenv.2024.116675 | |
| dc.relation.references | Levin R. I., & Rubin, D. S. (2006). Estadística para administración y economía (University of Arizona, Trad.; Séptima edición). Pearson Educación | |
| dc.relation.references | Li, L., Hu, Z., Liu, Q., Yi, T., Han, P., Zhang, R., & Pan, L. (2022). Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.981494 | |
| dc.relation.references | Li, X., Giles, D. K., Niederholzer, F. J., Andaloro, J. T., Lang, E. B., & Watson, L. J. (2021). Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Management Science, 77(1), 527–537. https://doi.org/10.1002/ps.6052 | |
| dc.relation.references | Ling, W., Du, C., Mengchao, Z., Yu, W., Ze, Y., & Shumao, W. (2018). CFD Simulation of Low-attitude Droplets Deposition Characteristics for UAV based on Multi-feature Fusion. 51(17), 648–653. https://doi.org/10.1016/j.ifacol.2018.08.123 | |
| dc.relation.references | Liu, Q., Chen, S., Wang, G., & Lan, Y. (2021). Drift evaluation of a quadrotor unmanned aerial vehicle (UAV) sprayer: Effect of liquid pressure and wind speed on drift potential based on wind tunnel test. Applied Sciences (Switzerland), 11(16). https://doi.org/10.3390/app11167258 | |
| dc.relation.references | Lochan, K., Khan, A., Elsayed, I., Suthar, B., Seneviratne, L., & Hussain, I. (2024). Advancements in Precision Spraying of Agricultural Robots: A Comprehensive Review. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3450904 | |
| dc.relation.references | Lou, Z., Xin, F., Han, X., Lan, Y., Duan, T., & Fu, W. (2018). Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites. Agronomy, 8(9). https://doi.org/10.3390/agronomy8090187 | |
| dc.relation.references | Magdalena, J. C., Castillo Herrán, B., Di Prinzio, A., Homer Bannister, I., Villalba, J., & Teixeira, M. M. (2010). Tecnología de aplicación de agroquímicos Edición, Corrección y Diseño: Área de Comunicaciones del INTA Alto Valle. | |
| dc.relation.references | Magnojet. (2023). Catálogo técnico de boquillas y accesorios | |
| dc.relation.references | Maldonado, Iván D, Reyes, & Diana M. (2023). Optimización financiera del uso de drones en cultivos extensivos: caso de estudio cultivo de arroz en el municipio de Trinidad, Casanare, Colombia. Revista espacios. https://doi.org/10.48082/espacios-a23v44n03p07 | |
| dc.relation.references | Mantovani, E. C., & Magdalena, C. (2014). Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y Agroindustrial del Cono Sur. https://repositorio.iica.int/items/37234767-6b65-4844-86f7-60ee88a41ee8 | |
| dc.relation.references | Martin, D. E., Perine, J. W., Grant, S., Abi-Akar, F., Henry, J. L., & Latheef, M. A. (2025a). Spray Deposition and Drift as Influenced by Wind Speed and Spray Nozzles from a Remotely Piloted Aerial Application System. Drones, 9(1). https://doi.org/10.3390/drones9010066 | |
| dc.relation.references | Martin, D. E., Perine, J. W., Grant, S., Abi-Akar, F., Henry, J. L., & Latheef, M. A. (2025b). Spray Deposition and Drift as Influenced by Wind Speed and Spray Nozzles from a Remotely Piloted Aerial Application System. Drones, 9(1). https://doi.org/10.3390/drones9010066 | |
| dc.relation.references | Matthews, G. A. (2000). Pesticide Application Methods Third Edition (Third edition). https://onlinelibrary.wiley.com/doi/book/10.1002/9780470760130 | |
| dc.relation.references | McCabe, K. (2023, enero 27). What is wind? Royal Meteorological Society. https://www.rmets.org/metmatters/what-wind? | |
| dc.relation.references | Meng, Y., Su, J., Song, J., Chen, W. H., & Lan, Y. (2020). Experimental evaluation of UAV spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution. Computers and Electronics in Agriculture, 170. https://doi.org/10.1016/j.compag.2020.105282 | |
| dc.relation.references | Mogili, U. R., & Deepak, B. B. V. L. (2018). Review on Application of Drone Systems in Precision Agriculture. Procedia Computer Science, 133, 502–509. https://doi.org/10.1016/j.procs.2018.07.063 | |
| dc.relation.references | Monteith, J. L., & Unsworth, M. H. (2013). Principles of Environmental Physics (Vol. 4th). ELSEVIER. https://doi.org/https://doi.org/10.1016/C2009-0-61113-5 | |
| dc.relation.references | Ordóñez, N., & Bolívar, A. (2014). Levantamiento agrológico del Centro Agropecuario Marengo (CAM) (First, Vol. 1). Universidad Nacional de Colombia, Sede Bogotá : IGAC, Instituto Geográfico Agustín Codazzi | |
| dc.relation.references | Ozkan, E. (2023, abril 10). Drones for Spraying Pesticides—Opportunities and Challenges | Ohioline. https://ohioline.osu.edu/factsheet/fabe-540 | |
| dc.relation.references | Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. https://www.sciencedirect.com/science/article/abs/pii/S0065211308605131 | |
| dc.relation.references | Qin, W. C., Qiu, B. J., Xue, X. Y., Chen, C., Xu, Z. F., & Zhou, Q. Q. (2016). Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85, 79–88. https://doi.org/10.1016/j.cropro.2016.03.018 | |
| dc.relation.references | Radons, S. Z., Heldwein, A. B., da Silva, J. R., da Silva, A. V., Schepke, E., & Lucas, D. D. P. (2022). Weather conditions favorable for agricultural spraying in rio grande do sul state. Revista Brasileira de Engenharia Agricola e Ambiental, 26(1), 36–43. https://doi.org/10.1590/1807-1929/agriambi.v26n1p36-43 | |
| dc.relation.references | República de Colombia. (1991). Decreto 1843 de 1991: Por el cual se reglamenta parcialmente el uso y manejo de plaguicidas. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=114357 | |
| dc.relation.references | Shan, C., Xue, C., Zhang, L., Song, C., Kaousar, R., Wang, G., & Lan, Y. (2024). Effects of different spray parameters of plant protection UAV on the deposition characteristics of droplets in apple trees. Crop Protection, 184. https://doi.org/10.1016/j.cropro.2024.106835 | |
| dc.relation.references | Silva, J. E., da Silva, W. H. B., Ferraz, M. A. J., Menezes, E. A. S., da Costa, O. P., Inácio, F. D., Barboza, T. O. C., Melo, C. A. D., Carvalho, G. R., & Santos, A. F. dos. (2024). Impact of spray volume and flight speed on the efficiency of drone applications in coffee plants of different ages. Smart Agricultural Technology, 9. https://doi.org/10.1016/j.atech.2024.100694 | |
| dc.relation.references | Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. En Artificial Intelligence in Agriculture (Vol. 4, pp. 58–73). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2020.04.002 | |
| dc.relation.references | Tang, Y., Hou, C. J., Luo, S. M., Lin, J. T., Yang, Z., & Huang, W. F. (2018). Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle. Computers and Electronics in Agriculture, 148, 1–7. https://doi.org/10.1016/j.compag.2018.02.026 | |
| dc.relation.references | Teixeira, M. M. (2010). Estudio de la población de gotas de pulverización. En Tecnología de aplicación de agroquímicos: Vol. Uno (Primera, pp. 67–76) | |
| dc.relation.references | Thomson, S. J., Womac, A. R., & Mulrooney, J. E. (2013). Reducing Pesticide Drift by Considering Propeller Rotation Effects From Aerial Application Near Buffer Zones. Sustainable Agriculture Research, 2(3), 41. https://doi.org/10.5539/sar.v2n3p41 | |
| dc.relation.references | Throneberry, G., Hocut, C. M., & Abdelkefi, A. (2021). Multi-rotor wake propagation and flow development modeling: A review. En Progress in Aerospace Sciences (Vol. 127). Elsevier Ltd. https://doi.org/10.1016/j.paerosci.2021.100762 | |
| dc.relation.references | Tukey, J. W. (1977). Exploratory Data Analysis (F. MOSTELLER, Ed.). Addison-Wesley. https://consoleflare.com/blog/wp-content/uploads/2022/09/Exploratory-Data-Analysis-1977-John-Tukey.pdf | |
| dc.relation.references | Unidad Administrativa Especial de Aeronáutica Civil. (2024). RAC 100: Operación de sistemas de aeronaves no tripuladas (UAS). https://www.aerocivil.gov.co/normatividad/RAC/RAC%20100-Operación%20de%20Sistemas%20de%20Aeronaves%20no%20Tripuladas%20UAS.pdf | |
| dc.relation.references | Unidad Administrativa Especial de Aeronáutica Civil – Aerocivil. (2012). RAC 137: Normas de Aeronavegabilidad y Operaciones en Aviación Agrícola. https://www.aerocivil.gov.co/normatividad/VERSION%20OCT%2031%202016/RAC%20%20137%20-%20Normas%20de%20Aeronavegabilidad%20y%20Operaciones%20en%20Aviaci%C3%B3n%20Agr%C3%ADcola.pdf | |
| dc.relation.references | Wang, C., Herbst, A., Zeng, A., Wongsuk, S., Qiao, B., Qi, P., Bonds, J., Overbeck, V., Yang, Y., Gao, W., & He, X. (2021). Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Science of the Total Environment, 777. https://doi.org/10.1016/j.scitotenv.2021.146181 | |
| dc.relation.references | Wang, D., Xu, S., Li, Z., & Cao, W. (2022). Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method. Agriculture (Switzerland), 12(2). https://doi.org/10.3390/agriculture12020131 | |
| dc.relation.references | Wang, G., Han, Y., Li, X., Andaloro, J., Chen, P., Hoffmann, W. C., Han, X., Chen, S., & Lan, Y. (2020). Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Science of the Total Environment, 737. https://doi.org/10.1016/j.scitotenv.2020.139793 | |
| dc.relation.references | Wang, G., Lan, Y., Qi, H., Chen, P., Hewitt, A., & Han, Y. (2019). Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest Management Science, 75(6), 1546–1555. https://doi.org/10.1002/ps.5321 | |
| dc.relation.references | Wang, J., Lan, Y. Bin, Zhang, H. H., Zhang, Y. L., Wen, S., Yao, W. X., & Deng, J. (2018). Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. International Journal of Agricultural and Biological Engineering, 11(6), 5–12. https://doi.org/10.25165/j.ijabe.20181106.4038 | |
| dc.relation.references | Wang, J., Ma, C., Chen, P., Yao, W., Yan, Y., Zeng, T., Chen, S., & Lan, Y. (2023). Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Areca catechu protection. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1093912 | |
| dc.relation.references | Wang, P., He, M., Li, M., Yang, Y., Li, H., Xi, W., & Zhang, T. (2024). Optimization of Application Parameters for UAV-Based Liquid Pollination in Pear Orchards: A Yield and Cost Perspective. Agronomy, 14(9), 2033. https://doi.org/10.3390/agronomy14092033 | |
| dc.relation.references | Wen, S., Han, J., Ning, Z., Lan, Y., Yin, X., Zhang, J., & Ge, Y. (2019). Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds. Computers and Electronics in Agriculture, 166. https://doi.org/10.1016/j.compag.2019.105036 | |
| dc.relation.references | Williamson, J. R., & Neilsen, W. A. (2000). The influence of forest site on rate and extent of soil compaction and profile disturbance of skid trails during ground-based harvesting | |
| dc.relation.references | World Meteorological Organization. (2008). Guide to Meteorological Instruments and Methods of Observation | |
| dc.relation.references | Yallappa, D., Kavitha, R., Surendrakumar, A., Balaji, K., Suthakar, B., Kumar, A. P. M., Ravi, Y., Ashoka, N., & Kavan, K. (2024). Downwash airflow distribution pattern of hexa-copter unmanned aerial vehicles. International Journal of Agricultural and Biological Engineering, 17(4), 24–34. https://doi.org/10.25165/j.ijabe.20241704.7754 | |
| dc.relation.references | Yao, W., Lan, Y., Wang, J., Wen, S., Wang, G., & Chen, S. (2017). Droplet drift characteristics of aerial spraying of AS350B3e helicopter. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 33(22), 75–83. https://doi.org/10.11975/j.issn.1002-6819.2017.22.010 | |
| dc.relation.references | Zhang, B., Tang, Q., Chen, L. ping, Zhang, R. rui, & Xu, M. (2018). Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach. Biosystems Engineering, 166, 184–199. https://doi.org/10.1016/j.biosystemseng.2017.11.017 | |
| dc.relation.references | Zhang, H., Qi, L., Wu, Y., Musiu, E. M., Cheng, Z., & Wang, P. (2020). Numerical simulation of airflow field from a six–rotor plant protection drone using lattice Boltzmann method. Biosystems Engineering, 197, 336–351. https://doi.org/10.1016/j.biosystemseng.2020.07.018 | |
| dc.relation.references | Zhang, P., Deng, L., Lyu, Q., He, S. L., Yi, S. L., De Liu, Y., Yu, Y. X., & Pan, H. Y. (2016). Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution. International Journal of Agricultural and Biological Engineering, 9(4), 45–52. https://doi.org/10.3965/j.ijabe.20160904.2178 | |
| dc.relation.references | Zhang, X.-Q., Song, X.-P., & Liang, Y.-J. (2020). Effects of Spray Parameters of Drone on the Droplet Deposition in Sugarcane Canopy. Sugar Tech, 22(4), 583–588. https://doi.org/10.1007/s12355-019-00792-z | |
| dc.relation.references | Zhang, Y., Li, Y., He, Y., Liu, F., Cen, H., & Fang, H. (2018). Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions. Computers and Electronics in Agriculture, 148, 8–18. https://doi.org/10.1016/j.compag.2017.08.004 | |
| dc.relation.references | Zhu, Z., Yang, M., Li, Y., Wongsuk, S., Zhao, C., Xu, L., Zhang, Y., He, X., & Wang, C. (2024). Optimization Design and Atomization Performance of a Multi-Disc Centrifugal Nozzle for Unmanned Aerial Vehicle Sprayer. Agronomy, 14(12). https://doi.org/10.3390/agronomy14122914 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.blaa | Aplicación aérea | |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | |
| dc.subject.lemb | Aspersión en agricultura | spa |
| dc.subject.lemb | Spraying and dusting in agriculture | eng |
| dc.subject.lemb | Meteorología agrícola | spa |
| dc.subject.lemb | Meteorology, agricultural | eng |
| dc.subject.proposal | Aplicación aérea | spa |
| dc.subject.proposal | Variables climáticas | spa |
| dc.subject.proposal | Drones agrícolas | spa |
| dc.subject.proposal | Cobertura | spa |
| dc.subject.proposal | Aerial spraying | eng |
| dc.subject.proposal | Climatic conditions | eng |
| dc.subject.proposal | Agricultural drones | eng |
| dc.subject.proposal | Coverage | eng |
| dc.subject.wikidata | Dron agrícola | spa |
| dc.subject.wikidata | Agricultural drone | eng |
| dc.title | Evaluación de los parámetros de operación y la incidencia de las condiciones ambientales en la aplicación de insumos líquidos para la agricultura desde un vehículo aéreo no tripulado | spa |
| dc.title.translated | Evaluation of operational parameters and the influence of environmental conditions on the application of liquid inputs for agriculture using an unmanned aerial vehicle | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |

