Diagnóstico de la estimación de esfuerzo en métodos ágiles para desarrollo de software en Colombia

dc.contributor.advisorAponte Melo, Jairo Hernán
dc.contributor.authorGómez Cardozo, Diana
dc.contributor.researchgroupColectivo de Investigación en Ingeniería de Software Colswespa
dc.coverage.countryColombia
dc.date.accessioned2022-12-01T21:14:33Z
dc.date.available2022-12-01T21:14:33Z
dc.date.issued2022-11
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractLa estimación del esfuerzo de desarrollo de software (EEDS) es fundamental para planificar y controlar proyectos de software y crítica para su éxito. La práctica ha demostrado que el establecimiento de objetivos realistas, estimaciones precisas y una buena planificación y control son actividades esenciales para el éxito del proyecto. Además, el Desarrollo Ágil de Software (DAS) es hoy en día el modelo más utilizado para organizar todas las actividades requeridas para la construcción de software. Este trabajo de investigación se centra en conocer cómo los profesionales colombianos realizan estimaciones de esfuerzo dentro de proyectos de desarrollo ágil de software. Para este propósito, se realizó un estudio del estado del arte académico en temas relacionados con estimación de software para desarrollos ágiles dentro de Colombia y otros países, con el objetivo de poder comparar nuestras prácticas con las de otras regiones. Posteriormente se llevó a cabo una encuesta exploratoria realizada a profesionales colombianos con experiencia en estimación de esfuerzo para desarrollo ágil. El diseño de la encuesta se basó en los estudios similares identificados a nivel mundial con el fin de obtener resultados comparables. Esta encuesta fue el instrumento utilizado para recopilar información, mientras que una combinación de análisis cualitativo y cuantitativo se utilizó para interpretar los resultados; se pretende así conocer el estado de la práctica en Colombia con relación a las técnicas utilizadas para estimar esfuerzo en desarrollos ágiles, la medición de la exactitud de dichas estimaciones, perfil profesional y herramientas en las que se apoyan los participantes del estudio para la elaboración de sus estimaciones. Por último, se realiza una comparación de estos resultados, con los hallazgos de trabajos relacionados en otros lugares del mundo.spa
dc.description.abstractSoftware Development Effort Estimates (SDEE) are critical to planning and controlling software projects and fundamental to their success. Practice has shown that setting realistic goals, accurate estimates, and good planning and control are essential activities for project success. Furthermore, Agile Software Development (ASD) is today the most widely used model to organize all the activities required for software construction. This research work focuses on knowing how Colombian professionals make effort estimates within agile software development projects. For this purpose, a study of the academic state of the art was carried out on issues related to software estimation for agile developments within Colombia and other countries, with the objective of being able to compare our practices with those of other regions. Subsequently, an exploratory survey was carried out among Colombian professionals with experience in effort estimation for agile development. The survey design was based on similar studies identified globally in order to obtain comparable results. This survey was the instrument used to collect information, while a combination of qualitative and quantitative analysis was used to interpret the results; In this way, it is intended to know the state of the practice in Colombia in relation to the techniques used to estimate effort in agile developments, the measurement of the accuracy of such estimates, professional profile, and tools on which the study participants rely for estimating effort. Finally, a comparison of these results is made with the findings of related works in other parts of the world.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaMétodos y Tecnologías para el Desarrollo de Softwarespa
dc.format.extentxiii, 68 + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82831
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesM. Chemuturi, Software Estimation Best Practices & Techniques, Broward-Florida: J.Ross Publishing, 2009.spa
dc.relation.referencesI. Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOOK), Newtown Square-Pennsylvania USA: PMI Publishing Division, 2017.spa
dc.relation.referencesI. Sommerville, Software Engineering - Global Edition, 10th ed.Harlow, England: Pearson Education, 2016.spa
dc.relation.referencesM. Qureshi, "Agile Software Development Methodology for Medium and Large Projects," IET Software, vol. 6, no. 4, pp. 358-363, 2012.spa
dc.relation.referencesO. Malgonde and K. Chari, "An Ensemble-Based Model for Predicting Agile Software Development Effort," Empirical Software Engineering, vol. 24, no. 2, pp. 1017-1055, 2020.spa
dc.relation.referencesM. Fernandez-Diego, E. Mendez, F. Gonzalez, S. Abrahão and E. Insfran, "An Update on Effort Estimation in Agile Software Development: A Systematic Letreature Review," IEE Access, vol. 8, pp. 166768-166800, 2020.spa
dc.relation.referencesE. Ruel, W. E. Wagner III and B. J. Gillespie, The Practice of Survey Research, SAGE Publications, Inc., 2016.spa
dc.relation.referencesB. Kitchenham and S. Pfleeger, "Principles of Survey Research. Part 1," Software Engineering Notes, vol. 26, no. 1, pp. 16-18, 2001.spa
dc.relation.referencesJ. Floyd J. Fowler, Survey Research Methods. Fifth Edition, Boston: SAGE Publications, Inc., 2014.spa
dc.relation.referencesC. Wohlin, P. Runeson, M. H¨ost, M. C. Ohlsson and B. Regnell, Experimentation in software engineering, Springer, 2012.spa
dc.relation.referencesJ. Linåker, S. M. Sulaman, R. Maiani de Mello and M. Höst, "Guidelines for Conducting Surveys in Software Engineering," Department of Computer Science, Lund University, 2015.spa
dc.relation.referencesJ. Klagge, "Guidelines for Conducting Surveys," Arizona, 2018.spa
dc.relation.referencesS. Zia and S. Ziauddin, "An Effort Estimation Model for Agile Software Development," Adv. Comput. Sci. its Appl. ( ACSA ),, vol. 314, no. 1, pp. 2166-2924, 2012.spa
dc.relation.referencesT. Dingsøyr, T. Dybå and N. B. Moe, Agile Software Development: An Introduction and Overview, Heidelberg ,Germany: Springer, 2010.spa
dc.relation.references"Agile Manifesto for Software Development—Agile Alliance," [Online]. Available: https://www.agilealliance.org/agile101/the-agilemanifesto. [Accessed 5 Oct 2021].spa
dc.relation.referencesL. Williams and A. Cockburn, "Guest Editors' Introduction: Agile Software Development: It's About Feedback and Change," Computer, vol. 36, no. 6, p. 39–43, 2003.spa
dc.relation.referencesM. Usman, E. Mendes and J. Börstler, "Effort Estimation in Agile Software Development: A Survey on the State of the Practice," in 19th International Conference on Evaluation and Assessment in Software Engineering (EASE), Nanjing, China, 2015.spa
dc.relation.references"scrumalliance.org," [Online]. Available: https://scrumalliance.org. [Accessed 15 02 2022].spa
dc.relation.referencesAshmore, Sondra and K. Runyan, Introduction to Agile Methods, Addison-Wesley Professional, 2014.spa
dc.relation.referencesA. Singh, Agile & Scrum, Babelcube, Inc, 2021.spa
dc.relation.references"https://www.agilealliance.org/," .agilealliance.org, 15 01 2022. [Online]. Available: https://www.agilealliance.org/. [Accessed 2022].spa
dc.relation.referencesM. Poppendieck and T. Poppendieck, Lean Software Development: An Agile Toolkit, Addison-Wesley, 2003, 2003.spa
dc.relation.referencesP. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta, Agile Software Development Methods: Review and Analysis, 2017.spa
dc.relation.referencesM. Al-Zewairi, M. Biltawi, W. Etaiwi and A. Shaout, "Agile Software Development Methodologies:Survey of Surveys," Journal of Computer and Communications, vol. 5, pp. 74-97, 2017.spa
dc.relation.referencesC. G. Cobb, The Project Manager's Guide to Mastering Agile: Principles and Practices for an Adaptive Approach, Wiley, 2015.spa
dc.relation.references"https://www.scaledagileframework.com/," 21 04 2022. [Online]. Available: https://www.scaledagileframework.com/.spa
dc.relation.referencesP. M. Institute, Practice Standard for Project Estimating, Pennsylvania: Newtown Square, 2019.spa
dc.relation.referencesJ. Wen, S. Li, Z. Lin, Y. Hu and C. Huang, "Systematic Literature Review of Machine Learning Based Software Development Effort Estimation Models," Inf. Softw. Technol., vol. 54, no. 1, pp. 41-49, 2012.spa
dc.relation.referencesA. Trendowicz, Software Project Effort Estimation, Berlin, Germany: Springer-Verlag, 2014.spa
dc.relation.referencesP. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, Succi and G., "Effort Prediction in Iterative Software Development Processes - Incremental Versus Global Prediction Models," in 1st International Symposium on Empirical Software Engineering and Measurement, 2007.spa
dc.relation.referencesM. Cohn, Agile Estimating and Planning, Publisher: Prentice Hall, 2005.spa
dc.relation.referencesF. Tsui, O. Karam and B. Bernal, Essentials of Software Engineering, 5th Edition, Jones & Bartlett Learning, 2022.spa
dc.relation.referencesS. McConnell, Software Estimation: Demystifying the Black Art, Addison-Wesley Professional, 2006.spa
dc.relation.referencesM. A. Parthasarathy, Practical Software Estimation: Function Point Methods for Insourced and Outsourced Projects, Addison-Wesley Professional, 2007.spa
dc.relation.referencesB. Boehm, J. A. Lane, S. Koolmanojwong and R. Turner, The Incremental Commitment Spiral Model: Principles and Practices for Successful Systems and Software, Addison-Wesley Professional, 2014.spa
dc.relation.referencesM. Bisi and N. Goyal, Artificial Neural Network Applications for Software Reliability Prediction, Wiley-Scrivener, 2017.spa
dc.relation.referencesR. T. Futrell, D. F. Shafer and L. Safer, Quality Software Project Management, Pearson, 2002.spa
dc.relation.referencesR. Rishi, "Early Size Estimation using Machine Learning," in 8th International Conference on Computing for Sustainable Global Development, Rohtak, India, 2021.spa
dc.relation.referencesP. Monika, "Software effort estimation using machine learning," in 7th International Conference on Cloud Computing, Data Science & Engineering , Hisar, Haryana, 2017.spa
dc.relation.referencesE. T. Mueller, Commonsense Reasoning, 2nd Edition, Morgan Kaufmann, 2014.spa
dc.relation.referencesA. Stellman and J. Greene, Applied software project management, “O’Reilly, 2005.spa
dc.relation.referencesM. Jørgensen, "A Critique of How We Measure and Interpret the Accuracy of Software Development Effort Estimation," in 1st International Workshop on Software Productivity Analysis and Cost Estimation, Nagoya, Japan, 2007.spa
dc.relation.referencesD. Port and M. Korte, "Comparative Studies of the Model Evaluation Criterions MMRE and PRED in Software Cost Estimation Research.," in Proceedings of the Second International Symposium on Empirical Software Engineering and Measurement, Kaiserslautern, Germany, 2008.spa
dc.relation.referencesM. Usman, E. Mendes, F. Weidt and R. Britto, "Effort Estimation in Agile Software Development: A systematic literature review," in International Conference on Predictive Models in Software Engineering - PROMISE 2014, Turin, Italy, 2014.spa
dc.relation.referencesT. Vera, S. Ochoa and D. Perovich, "Understanding the Software Development Effort Estimation in Chilean Small Enterprises," University of Chile, Santiago de Chile, 2018.spa
dc.relation.referencesZ. Prokopova, P. Silhavy and R. Silhavy, "Analysis of the Software Project Estimation Process: A Case Study," Software Engineering Methods in Intelligent Algorithms, vol. 984, pp. 456-467, 2019.spa
dc.relation.referencesM. A. Ramessur and S. Nagowah, "Factors Affecting Sprint Effort Estimation," Advances in Intelligent Systems and Computing, vol. 1089, pp. 507-518, 2020.spa
dc.relation.referencesF. Prieto, "Estimación de esfuerzo en desarrollo de softearw ágil: Estudio del estado actual en Bogota," ITECKNE, vol. 17, no. 2, p. 22, 2020.spa
dc.relation.referencesM. Majchrzak and L. Madeyski, "Factors influencing User Story estimations: an industrial interview and a conceptual model," Cent. East. Eur. J. Manag. Econ, vol. 4, no. 4, pp. 261-280, 2016.spa
dc.relation.referencesP. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko and W. Pedrycz, "Predicting Development Effort from User Stories," in International Symposium on Empirical Software Engineering and Measurement, Banff, AB, Canada, 2011.spa
dc.relation.referencesV. Mahniˇc and T. Hovelja, "On Using Planning Poker for Estimating User Stories," Journal of Systems and Software, vol. 85, no. 9, pp. 2086-2095, 2012.spa
dc.relation.referencesN. C. Haugen, "An Empirical Study of Using Planning Poker for User Story Estimation," in Conf AGILE 2006 (AGILE'06), Minneapolis, MN, USA, 2006.spa
dc.relation.referencesColombia-MINTIC, "https://colombiatic.mintic.gov.co," Enero 2015. [Online]. Available: https://colombiatic.mintic.gov.co/679/w3-article-73973.html. [Accessed Agosto 2021].spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.lembMedición de software
dc.subject.lembSoftware measurement
dc.subject.lembIngeniería de software
dc.subject.lembSoftware engineering
dc.subject.proposalDesarrollo ágil de softwarespa
dc.subject.proposalEstimación de esfuerzo para desarrollo ágil de softwarespa
dc.subject.proposalMétodos de estimaciónspa
dc.subject.proposalEstimación de esfuerzospa
dc.subject.proposalEstudio empíricospa
dc.subject.proposalGestión de proyectos de softwarespa
dc.subject.proposalAgile software developmenteng
dc.subject.proposalEffort estimation for agile software developmenteng
dc.subject.proposalEstimation methodseng
dc.subject.proposalEffort estimationeng
dc.subject.proposalEmpirical studyeng
dc.subject.proposalSoftware project managementeng
dc.titleDiagnóstico de la estimación de esfuerzo en métodos ágiles para desarrollo de software en Colombiaspa
dc.title.translatedDiagnosis of effort estimation in agile methods for Software development in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
63524385.2022.pdf
Tamaño:
1.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: