Producción de acetato de fusel por destilación reactiva

dc.contributor.advisorRodríguez Niño, Gerardospa
dc.contributor.advisorGil Chaves, Iván Daríospa
dc.contributor.authorSánchez Correa, César Augustospa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2020-07-06T15:55:04Zspa
dc.date.available2020-07-06T15:55:04Zspa
dc.date.issued2020-07-02spa
dc.description.abstractEn este trabajo se investigan las trayectorias directas de procesos de destilación reactiva (DR) para la síntesis de acetatos a partir de la esterificación de ácido acético con aceite de fusel (AF). El problema se encuentra limitado a una descripción aproximada donde el AF se considera como una mezcla de alcohol isoamílico + agua + etanol. Esta versión simplificada del problema puede ocurrir aproximadamente en la práctica. En este contexto el objetivo principal del trabajo consistió en diseñar un proceso de DR para la producción de acetato de fusel. Los objetivos específicos son: a) desarrollar un modelo termodinámico adecuado para predecir los equilibrios de fases líquido – vapor y líquido – líquido – vapor del sistema multicomponente a partir de la información experimental (generada y recopilada en la literatura) de los subsistemas binarios y ternarios; b) desarrollar un modelo cinético apropiado para describir la esterificación directa del ácido acético con aceite de fusel en fase líquida; c) sintetizar a nivel conceptual alternativas de proceso para la tecnología de DR; y d) calcular los tamaños de los equipos y el costo total anualizado para alternativas de proceso técnicamente factibles. Desde el punto de vista experimental, se generó información nueva en dos casos: a) para el equilibrio líquido – vapor de las mezclas binarias de acetatos; y b) datos de velocidad de reacción para la esterificación de ácido acético con alcohol isoamílico (y con mezclas de alcohol isoamílico y etanol) utilizando la resina Amberlyst 70 como catalizador. La información experimental se utilizó para correlacionar y validar los modelos termodinámico y cinético. Desde el punto de vista teórico se desarrolló la caracterización termodinámica completa del sistema multicomponente reactivo, y se usaron los planos de fases reactivos para sintetizar estructuras de proceso que se caracterizaron utilizando los estados estacionarios de máxima conversión. Se encontró que es posible implementar un proceso de DR con alimentos en la proporción estequiométrica, altas conversiones (~99%) y alta recuperación de los acetatos (≥99%).spa
dc.description.abstractThis work is a research on the direct trajectories of a reactive distillation process to synthetize acetates by the acetic acid esterification with fusel oil. The problem is bounding into the approximated description where the fusel oil is modeled as a mixture of isoamyl alcohol + ethanol + water. This simplified version of the problem can occur in the real world. In this context, the main objective of this work was to design a reactive distillation process for the fusel acetate production. The specific objectives are: a) to develop a thermodynamic model suitable for the prediction of the multicomponent phase equilibria (vapor – liquid and vapor – liquid – liquid) from experimental information (generated and extracted from literature) related with the associated binary and ternary subsystems; b) to develop a kinetic model suitable to describe the acetic acid esterification with fusel oil in the liquid phase; c) to synthetize, in the conceptual level, process alternatives for the reactive distillation technology; and d) to calculate the dimensions for the process units and the total annualized cost for the technically feasible process alternatives. From the experimental view, new information was generated in two subjects: a) vapor – liquid equilibrium for binary mixtures of acetates; and b) kinetic data for the liquid phase acetic acid esterification with isoamyl alcohol (or with binary mixtures of isoamyl alcohol and ethanol) using the Amberlyst 70 resin as catalyst. The experimental information was used to correlate and validate the thermodynamic and kinetic models. From a theoretical view, a complete thermodynamic characterization for the multicomponent reactive system was calculated, and the reactive phase diagrams were used to synthesize process structures that were characterized using the stationary states with maximum conversion. It was found that is possible to implement a reactive distillation process with the feeds in the stoichiometric proportion, high conversions for the reactants (~ 99 %) and high recoveries for the acetates (≥ 99 %)spa
dc.description.degreelevelDoctoradospa
dc.format.extent167spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77741
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbbott, M.M., Smith, J.M.M., Van Ness, H.C., Ness, H. Van, Abbott, M.M., 2005. Introduction to chemical engineering thermodynamics. McGraw-Hill.spa
dc.relation.referencesAli, S.H., 2009. Kinetics of catalytic esterification of propionic acid with different alcohols over Amberlyst 15. Int. J. Chem. Kinet. 41, 432–448. https://doi.org/10.1002/kin.20416spa
dc.relation.referencesAli, S.H., Merchant, S.Q., 2006. Kinetics of the esterification of acetic acid with 2-propanol: Impact of different acidic cation exchange resins on reaction mechanism. Int. J. Chem. Kinet. 38, 593–612. https://doi.org/10.1002/kin.20193spa
dc.relation.referencesAndreeva, N.G., Komarova, L.F., Garber, Y.N., 1978. Investigation of constituents of the system water - butyl alcohol - butyl acetate - isoamyl acetate. Zh. Prikl. Khim 51, 2031–2036.spa
dc.relation.referencesArce, A., Blanco, A., Martínez-Ageitos, J., Vidal, I., 1994. Optimization of UNIQUAC structural parameters for individual mixtures; application to new experimental liquid-liquid equilibrium data for aqueous solutions of methanol and ethanol with isoamyl acetate. Fluid Phase Equilib. 93, 285–295. https://doi.org/10.1016/0378-3812(94)87014-4spa
dc.relation.referencesArnikar, H.J., Rao, T.S., Bodhe, A.A., 1970. A gas chromatographic study of the kinetics of the uncatalysed esterification of acetic acid by ethanol. J. Chromatogr. A 47, 265–268. https://doi.org/10.1016/0021-9673(70)80037-1spa
dc.relation.referencesAsocaña, 2019. Aspectos generales del sector agroindustrial de la caña 2018-2019. Informe anual. [WWW Document]. Asocaña. URL https://www.asocana.org/ (accessed 2.14.20).spa
dc.relation.referencesBastidas, P., 2015. Diseño y montaje de un sistema piloto de destilación-reacción para la producción de acetato de isoamilo. Tesis de Maestría. Universidad Nacional de Colombia.spa
dc.relation.referencesBastidas, P., Parra, J., Gil, I., Rodríguez, G., 2012. Alcohol Distillation Plant Simulation: Thermal and Hydraulic Studies. Procedia Eng. 42, 80–89. https://doi.org/10.1016/j.proeng.2012.07.397spa
dc.relation.referencesBerg, L., Yeh, A.-I., Ratanapupech, P., 1985. The recovery of ethyl acetate by extractive distillation. Chem. Eng. Commun. 39, 193–199. https://doi.org/10.1080/00986448508911670spa
dc.relation.referencesBi, F., Ali, A., Iqbal, S., Arman, M., Ul-Hassan, M., 2008. Chemical Esterification of Fusel Oil Alcohol for the Production of Flavor and Fragrance Esters. J. Chem. Soc. Pak. 30, 919–923.spa
dc.relation.referencesBird, R.B., Stewart, W.E., Lightfoot, E.N., 2006. Transport Phenomena, Revised 2nd Edition, John Wiley & Sons, Inc. https://doi.org/10.1002/aic.690070245spa
dc.relation.referencesBrau, H.M., 1957. Review on the origin and composition of fusel oil. Univ. Puerto Rico. Agric. Exp. Station. Tech. Pap. no. 17. 1–30.spa
dc.relation.referencesBravo, J.L., Rocha, J.A., Fair, J.R., 1985. Mass transfer in gauze packings. Hydrocarb. Process. (International ed.) 64, 91–95.spa
dc.relation.referencesBringué, R., Ramírez, E., Fité, C., Iborra, M., Tejero, J., 2011. Kinetics of 1-Pentanol Etherification without Water Removal. Ind. Eng. Chem. Res. 50, 7911–7919. https://doi.org/10.1021/ie1025776spa
dc.relation.referencesBringué, R., Tejero, J., Iborra, M., Izquierdo, J., 2007. Water effect on the kinetics of 1-pentanol dehydration to di-n-pentyl ether (DNPE) on Amberlyst 70. Top. Catal. 45, 181–186.spa
dc.relation.referencesCarlson, E.C., 1996. Don’t Gamble With Physical Properties For Simulations. Chem. Eng. Prog. 36–46.spa
dc.relation.referencesCepeda, E.A., 2010. Isobaric Vapor−Liquid Equilibrium for Binary Mixtures of 3-Methyl-1-butanol + 3-Methyl-1-butyl Ethanoate and 1-Pentanol + Pentyl Ethanoate at 101.3 kPa. J. Chem. Eng. Data 55, 2349–2354. https://doi.org/10.1021/je900812vspa
dc.relation.referencesCho, T.H., Ochi, K., Kojima, K., 1984. Isobaric Vapor-liquid-equilibria for binary S-systems with limited miscibility, water-normal-amyl alcohol and water-isoamyl alcohol. Kagaku Kogaku Ronbunshu 10, 181–183.spa
dc.relation.referencesDeming, W.E., 1964. Statistical adjustment of data. Dover Publications.spa
dc.relation.referencesDimian, A.., Bildea, C.., Kiss, A.., 2019. Applications in Design and Simulation of Sustainable Chemical Processes. Elsevier.spa
dc.relation.referencesDoherty, M.F., 1990. A Topological Theory of Phase Diagrams for Multiphase Reacting Mixtures. Proc. R. Soc. A Math. Phys. Eng. Sci. 430, 669–678. https://doi.org/10.1098/rspa.1990.0112spa
dc.relation.referencesdu Toit, E., Nicol, W., 2004. The rate inhibiting effect of water as a product on reactions catalysed by cation exchange resins: Formation of mesityl oxide from acetone as case study. Appl. Catal. A Gen. 277, 219–225. https://doi.org/10.1016/j.apcata.2004.09.015spa
dc.relation.referencesDuque-Bernal, M., Quintero-Arias, J.D., Osorio-Viana, W., Dobrosz-Gómez, I., Fontalvo, J., Gómez-García, M.Á., 2013. Kinetic study on the homogeneous esterification of acetic acid with isoamyl alcohol. Int. J. Chem. Kinet. 45, 10–18. https://doi.org/10.1002/kin.20737spa
dc.relation.referencesDurán, J., 2013. Esterificación Del Alcohol Isoamílico Con Ácido N-Butírico: Estudio Del Equilibrio Químico Y De Fases. Tesis de Maestría. Universidad Nacional de Colombia.spa
dc.relation.referencesDurán, J., Córdoba, F., Gil, I., Rodríguez, G., Orjuela, A., 2013. Vapor–liquid equilibrium of the ethanol+3-methyl-1-butanol system at 50.66, 101.33 and 151.99 kPa. Fluid Phase Equilib. 338, 128–134.spa
dc.relation.referencesFedebiocombustibles, 2020. Estadísticas Fedebiocombustibles [WWW Document]. Fedebiocombustibles. URL https://www.fedebiocombustibles.com/ (accessed 1.1.16).spa
dc.relation.referencesFerreira, M.C., Meirelles, A.J.A., Batista, E.A.C., 2013. Study of the Fusel Oil Distillation Process. Ind. Eng. Chem. Res. 52, 2336–2351. https://doi.org/10.1021/ie300665zspa
dc.relation.referencesFinlayson, B.A., 2003. Nonlinear analysis in chemical engineering. Ravenna Park Pub.spa
dc.relation.referencesGolikova, A., Samarov, A., Trofimova, M., Rabdano, S., Toikka, M., Pervukhin, O., Toikka, A., 2017. Chemical Equilibrium for the Reacting System Acetic Acid–Ethanol–Ethyl Acetate–Water at 303.15 K, 313.15 K and 323.15 K. J. Solution Chem. 46, 374–387. https://doi.org/10.1007/s10953-017-0583-1spa
dc.relation.referencesGolikova, A., Tsvetov, N., Samarov, A., Toikka, M., Zvereva, I., Trofimova, M., Toikka, A., 2019. Excess enthalpies and heat of esterification reaction in ethanol + acetic acid + ethyl acetate + water system at 313.15 K. J. Therm. Anal. Calorim. 1–7. https://doi.org/10.1007/s10973-019-08488-yspa
dc.relation.referencesGonzález, D.R., Bastidas, P., Rodríguez, G., Gil, I., 2017. Design alternatives and control performance in the pilot scale production of isoamyl acetate via reactive distillation. Chem. Eng. Res. Des. 123, 347–359. https://doi.org/10.1016/J.CHERD.2017.05.028spa
dc.relation.referencesGuilera, J., Bringué, R., Ramírez, E., Fité, C., Tejero, J., 2014. Kinetic study of ethyl octyl ether formation from ethanol and 1-octanol on Amberlyst 70. AIChE J. 60, 2918–2928. https://doi.org/10.1002/aic.14497spa
dc.relation.referencesGuilera, J., Ramírez, E., Fité, C., Iborra, M., Tejero, J., 2013. Thermal stability and water effect on ion-exchange resins in ethyl octyl ether production at high temperature. Appl. Catal. A Gen. 467, 301–309. https://doi.org/10.1016/j.apcata.2013.07.024spa
dc.relation.referencesGüttinger, T.E., Morari, M., 1998. Predicting Multiple Steady States in Equilibrium Reactive Distillation. IFAC Proc. Vol. 31, 137–142. https://doi.org/10.1016/S1474-6670(17)44919-6spa
dc.relation.referencesGüttinger, T.E., Morari, M., 1997. Predicting multiple steady states in distillation: Singularity analysis and reactive systems. Comput. Chem. Eng. 21, S995–S1000. https://doi.org/10.1016/S0098-1354(97)87632-6spa
dc.relation.referencesGüvenç, A., Kapucu, N., Kapucu, H., Aydoğan, Ö., Mehmetoğlu, Ü., 2007. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme Microb. Technol. 40, 778–785. https://doi.org/10.1016/j.enzmictec.2006.06.010spa
dc.relation.referencesHarmsen, G.J., 2007. Reactive distillation: The front-runner of industrial process intensification. Chem. Eng. Process. Process Intensif. 46, 774–780. https://doi.org/10.1016/j.cep.2007.06.005spa
dc.relation.referencesHayden, J.G., O’Connell, J.P., 1975. A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Process Des. Dev. 14, 209–216. https://doi.org/10.1021/i260055a003spa
dc.relation.referencesHorsley, L., 1973. Azeotropic Data-III. Advances in Chemistry; American Chemical Society, Washington, DC.spa
dc.relation.referencesHyatt Jr Campbell, C., 1939. Process of concentrating aqueous aliphatic acid solutions by means of seven carbon atom aliphatic esters and five carbon atom aliphatic alcohol entrainers. Patent No 2,176,500.spa
dc.relation.referencesJaime-Leal, J.E., Bonilla-Petriciolet, A., Segovia-Hernández, J.G., Hernández, S., Hernández-Escoto, H., 2013. On the multiple solutions of the reactive distillation column for production of fuel ethers. Chem. Eng. Process. Process Intensif. 72, 31–41. https://doi.org/10.1016/J.CEP.2013.06.001spa
dc.relation.referencesKenig, E.Y., Bäder, H., Górak, A., Beßling, B., Adrian, T., Schoenmakers, H., 2001. Investigation of ethyl acetate reactive distillation process. Chem. Eng. Sci. 56, 6185–6193. https://doi.org/10.1016/S0009-2509(01)00206-8spa
dc.relation.referencesKiss, A.A., 2018. Novel Catalytic Reactive Distillation Processes for a Sustainable Chemical Industry. Top. Catal. 1–17. https://doi.org/10.1007/s11244-018-1052-9spa
dc.relation.referencesKiva, V.N., Hilmen, E.K., Skogestad, S., 2003. Azeotropic phase equilibrium diagrams: a survey. Chem. Eng. Sci. 58, 1903–1953. https://doi.org/10.1016/S0009-2509(03)00018-6spa
dc.relation.referencesKooijman, H.A., Taylor, R., 1991. Estimation of diffusion coefficients in multicomponent liquid systems. Ind. Eng. Chem. Res. 30, 1217–1222. https://doi.org/10.1021/ie00054a023spa
dc.relation.referencesKrishna, R., 2002. Reactive separations: more ways to skin a cat. Chem. Eng. Sci. 57, 1491–1504. https://doi.org/10.1016/S0009-2509(02)00020-9spa
dc.relation.referencesKrokhin, N.G., 1969. Liquid-Vapour Equilibrium in the System Acetic Acid – Isopentyl Alcohol – Isopentyl Acetate. III. The Ternary System. Russ. J. Phys. Chem. 43, 235–238.spa
dc.relation.referencesKrokhin, N.G., 1967. Liquid-Vapour Equilibrium in the System Acetic Acid – Isopentyl Alcohol – Isopentyl Acetate. I. The Binary Systems Acetic Acid –Isopentyl Alcohol. Russ. J. Phys. Chem. 41, 804–805.spa
dc.relation.referencesKüçücük, Z., Ceylan, K., 2009. Potential utilization of fusel oil: A kinetic approach for production of fusel oil esters through chemical reaction. Turkish J. Chem. 22, 289–300.spa
dc.relation.referencesKudryavtseva, L., Toome, M., 1984. Method for predicting ternary azeotropes. Chem. Eng. Commun. 26, 373–383. https://doi.org/10.1080/00986448408940223spa
dc.relation.referencesLee, H.Y., Yen, L.T., Chien, I.L., Huang, H.P., 2009. Reactive distillation for esterification of an alcohol mixture containing n-butanol and n-amyl alcohol. Ind. Eng. Chem. Res. 48, 7186–7204. https://doi.org/10.1021/ie801891qspa
dc.relation.referencesLee, L., Lin, R., 1999. Reaction and phase equilibria of esterification of isoamyl alcohol and acetic acid at 760 mm Hg. Fluid Phase Equilib. 165, 261–278. https://doi.org/10.1016/S0378-3812(99)00288-5spa
dc.relation.referencesLeyva, F., 2014. Isoamyl propionate production by the integration of reaction/distillation operations. Tesis Doctoral. Universidad Nacional de Colombia.spa
dc.relation.referencesLeyva, F., Orjuela, A., Kolah, A., Lira, C., Miller, D., Rodríguez, G., 2015. Isoamyl propionate production by reactive distillation. Sep. Purif. Technol. 146, 199–212. https://doi.org/10.1016/j.seppur.2015.03.039spa
dc.relation.referencesLeyva, F., Orjuela, A., Miller, D., Gil, I., Vargas, J., Rodríguez, G., 2013. Kinetics of Propionic Acid and Isoamyl Alcohol Liquid Esterification with Amberlyst 70 as Catalyst. Ind. Eng. Chem. Res. 52, 18153–18161.spa
dc.relation.referencesLuyben, W.L., Yu, C.-C., 2008. Reactive Distillation Design and Control. John Wiley & Sons, Inc., Hoboken, NJ, USA. https://doi.org/10.1002/9780470377741spa
dc.relation.referencesMalinen, I., Tanskanen, J., 2010. Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies. Comput. Chem. Eng. 34, 1761–1774. https://doi.org/10.1016/J.COMPCHEMENG.2010.03.013spa
dc.relation.referencesMazzotti, M., Kruglov, A., Neri, B., Gelosa, D., Morbidelli, M., 1996. A continuous chromatographic reactor: SMBR. Chem. Eng. Sci. 51, 1827–1836. https://doi.org/10.1016/0009-2509(96)00041-3spa
dc.relation.referencesMazzotti, M., Neri, B., Gelosa, D., Kruglov, A., Morbidelli, M., 1997. Kinetics of Liquid-Phase Esterification Catalyzed by Acidic Resins. Ind. Eng. Chem. Res. 36, 3–10. https://doi.org/10.1021/ie960450tspa
dc.relation.referencesMedina, E., Bringué, R., Tejero, J., Iborra, M., Fité, C., Izquierdo, J.F., Cunill, F., 2007. Dehydrocondensation of 1-hexanol to di-n-hexyl ether (DNHE) on Amberlyst 70.spa
dc.relation.referencesMichelsen, M.L., 1982. The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9, 1–19. https://doi.org/10.1016/0378-3812(82)85001-2spa
dc.relation.referencesMichelsen, M.L., Mollerup, J.M., 2004. Thermodynamic models : fundamentals & computational aspects. Tie-Line Publications.spa
dc.relation.referencesMontoya, N., Durán, J., Córdoba, F., Gil, I.D., Trujillo, C.A., Rodríguez, G., Rodríguez, G., 2016. Colombian fusel oil. Ing. e Investig. 36, 21–27. https://doi.org/10.15446/ing.investig.v36n2.52369spa
dc.relation.referencesOkasinski, M.J., Doherty, M.F., 1997. Thermodynamic behavior of reactive azeotropes. AIChE J. 43, 2227–2238. https://doi.org/10.1002/aic.690430909spa
dc.relation.referencesOnda, K., Takeuchi, H., Okumoto, Y., 1968. Mass transfer coefficients between gas and liquid phases in packed columns. J. Chem. Eng. Japan 1, 56–62. https://doi.org/10.1252/jcej.1.56spa
dc.relation.referencesOrjuela, A., Kolah, A., Hong, X., Lira, C., Miller, D., 2012a. Diethyl succinate synthesis by reactive distillation. Sep. Purif. Technol. 88, 151–162. https://doi.org/10.1016/j.seppur.2011.11.033spa
dc.relation.referencesOrjuela, A., Kolah, A., Lira, C., Miller, D., 2011. Mixed Succinic Acid/Acetic Acid Esterification with Ethanol by Reactive Distillation. Ind. Eng. Chem. Res. 50, 9209–9220. https://doi.org/10.1021/ie200133wspa
dc.relation.referencesOrjuela, A., Santaella, M.A., Molano, P.A., 2016. Process Intensification by Reactive Distillation, in: Process Intensification in Chemical Engineering. Springer International Publishing, Cham, pp. 131–181. https://doi.org/10.1007/978-3-319-28392-0_6spa
dc.relation.referencesOrjuela, A., Yanez, A., Santhanakrishnan, A., Lira, C., Miller, D., 2012b. Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst. Chem. Eng. J. 188, 98–107. https://doi.org/10.1016/j.cej.2012.01.103spa
dc.relation.referencesOrjuela, A., Yanez, A.J., Santhanakrishnan, A., Lira, C.T., Miller, D.J., 2013. Corrigendum to “Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst” [Chem. Eng. J. 188 (2012) 98–107]. Chem. Eng. J. 231, 561. https://doi.org/10.1016/j.cej.2013.06.001spa
dc.relation.referencesOrjuela Londoño, Á., Leiva Lenis, F., Boyacá Mendivelso, L.A., Rodríguez Niño, G., Luis María, S.C., 2005. Analysing chemical equilibrium conditions when studying butyl acetate synthesis. Ing. E Investig. 25, 13–21.spa
dc.relation.referencesOsorio-Pascuas, O.M., Santaella, M.A., Rodriguez, G., Orjuela, A., 2015. Esterification Kinetics of Tributyl Citrate Production Using Homogeneous and Heterogeneous Catalysts. Ind. Eng. Chem. Res. 54, 12534–12542.spa
dc.relation.referencesOsorio-Viana, W., Duque-Bernal, M., Fontalvo, J., Dobrosz-Gómez, I., Gómez-García, M.Á., 2013a. Kinetic study on the catalytic esterification of acetic acid with isoamyl alcohol over Amberlite IR-120. Chem. Eng. Sci. 101, 755–763. https://doi.org/10.1016/j.ces.2013.07.009spa
dc.relation.referencesOsorio-Viana, W., Duque-Bernal, M., Quintero-Arias, J.D., Dobrosz-Gómez, I., Fontalvo, J., Gómez-García, M. ángel, 2013b. Activity model and consistent thermodynamic features for acetic acid-isoamyl alcohol-isoamyl acetate-water reactive system. Fluid Phase Equilib. 345, 68–80. https://doi.org/10.1016/j.fluid.2013.02.006spa
dc.relation.referencesOsorio-Viana, W., Ibarra-Taquez, H.N., Dobrosz-Gómez, I., Gómez-García, M.Á., 2014. Hybrid membrane and conventional processes comparison for isoamyl acetate production. Chem. Eng. Process. Process Intensif. 76, 70–82. https://doi.org/10.1016/j.cep.2013.12.005spa
dc.relation.referencesOsorio, W., 2014. Desarrollo de un proceso intensificado para la producción de acetato de isoamilo mediante tecnología de membranas. Tesis de doctorado. Universidad Nacional de Colombia.spa
dc.relation.referencesOthmer, D.F., 1943. Composition of Vapors from Boiling Binary Solutions. Ind. Eng. Chem. 35, 614–620. https://doi.org/10.1021/ie50401a018spa
dc.relation.referencesÖzgülsün, A., Karaosmanôglu, F., Tüter, M., 2000. Esterification reaction of oleic acid with a fusel oil fraction for production of lubricating oil. J. Am. Oil Chem. Soc. 77, 105–109. https://doi.org/10.1007/s11746-000-0017-5spa
dc.relation.referencesPääkkönen, P.K., Krause, A.O.I., 2003. Diffusion and chemical reaction in isoamylene etherification within a cation-exchange resin. Appl. Catal. A Gen. 245, 289–301. https://doi.org/10.1016/S0926-860X(02)00650-6spa
dc.relation.referencesPatidar, P., Mahajani, S.M., 2013. Esterification of Fusel Oil Using Reactive Distillation. Part II: Process Alternatives. Ind. Eng. Chem. Res. 52, 16637–16647.spa
dc.relation.referencesPatidar, P., Mahajani, S.M., 2012. Esterification of fusel oil using reactive distillation – Part I: Reaction kinetics. Chem. Eng. J. 207–208, 377–387.spa
dc.relation.referencesPatil, A.G., Koolwal, S.M., Butala, H.D., 2002. Fusel oil: Composition, removal and potential utilization. Int.Sugar J. 104, 51–58.spa
dc.relation.referencesPerelygin, V.M., Volkov, A.G., 1971. Liquid-vapor equilibrium in the ethanol + isoamyl acetate and ethanol + water + isoamyl acetate systems. Fermentn. Spirt. Prom-st 37, 15–7.spa
dc.relation.referencesPérez, M.A., Bringué, R., Iborra, M., Tejero, J., Cunill, F., 2014. Ion exchange resins as catalysts for the liquid-phase dehydration of 1-butanol to di-n-butyl ether. Appl. Catal. A Gen. 482, 38–48. https://doi.org/10.1016/j.apcata.2014.05.017spa
dc.relation.referencesPiha, P., Peltonen, R.J., Kitunen, M., 2007. System amyl alcohol (from fusel oil)-acetic acid-water at 20°. J. Appl. Chem. 8, 576–580. https://doi.org/10.1002/jctb.5010080907spa
dc.relation.referencesPisarenko, Y.A., Shalunova, S.Y., Glushachenkova, E.A., Toikka, A.M., 2008. Analysis of possible forms of the azeotropic relationship for two-dimensional diagrams of equilibrium distillation. Theor. Found. Chem. Eng. 42, 291–298. https://doi.org/10.1134/S0040579508030093spa
dc.relation.referencesPöpken, T., Götze, L., Gmehling, J., 2000. Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis. Ind. Eng. Chem. Res. 39, 2601–2611. https://doi.org/10.1021/ie000063qspa
dc.relation.referencesPrausnitz, J.M.J., Anderson, T.F., Grens, E.A.E., Eckert, C.A., Hsieh, R., O’Connell, J.P., Anderson, F., Grens, E.A.E., Eckert, C.A., Hsieh, R., O’Connell, J., 1980. Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria. Prentice Hall, New Jersey.spa
dc.relation.referencesRaeva, V.M., Frolkova, A. V, Serafimov, L.A., 2009. Determination of concentration regions of existence of ternary azeotropes: Systems showing mixed deviations from ideal behavior. Theor. Found. Chem. Eng. 43, 676. https://doi.org/10.1134/S0040579509050091spa
dc.relation.referencesRaeva, V.M., Serafimov, L.A., Frolkova, A. V, 2006. Determination of concentration regions of existence of ternary azeotropes: II. Systems showing unlike deviations from ideal behavior. Theor. Found. Chem. Eng. 40, 38–46. https://doi.org/10.1134/S0040579506010064spa
dc.relation.referencesReid, R., Prausnitz, J., Poling, B., 1987. The properties of gases and liquids, 4a. ed. McGraw-Hill.spa
dc.relation.referencesRenon, H., Prausnitz, J.M., 1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144.spa
dc.relation.referencesRodríguez, G., 2012. Estudio técnico-económico de alternativas para la valorización del aceite de Fusel generado en la producción de bioetanol en Colombia. Proyecto de investigación financiado por COLCIENCIAS/ECOPETROL. Ejecutado por la Universidad Nacional de Colombia .spa
dc.relation.referencesRohm, Haas, 2005. Amberlyst 70 product data sheet. Rohm Haas Philadelphia, PA, USA 1–2.spa
dc.relation.referencesRojas, O., Salazar, A., Gil, I., Rodríguez, G., 2016. Effect of Pressure on the Azeotrope of the Mixture Isoamyl Acetate–Isoamyl Alcohol at 50.00, 101.32, 250.00, and 350.00 kPa. J. Chem. Eng. Data 61, 3109–3115. https://doi.org/10.1021/acs.jced.6b00197spa
dc.relation.referencesSaha, B., Alqahtani, A., Teo, H., 2005a. Production of iso-amyl acetate: Heterogeneous kinetics and techno-feasibility evaluation for catalytic distillation. Int. J. Chem. React. Eng. 3, 1–14. https://doi.org/10.2202/1542-6580.1231spa
dc.relation.referencesSaha, B., Teo, H., Alqahtani, A., 2005b. iso-Amyl acetate synthesis by catalytic distillation. Int. J. Chem. React. Eng. 3, 1–14. https://doi.org/10.2202/1542-6580.1250spa
dc.relation.referencesSánchez, C.A., Sánchez, O.A., Orjuela, A., Gil, I.D., Rodríguez, G., 2017. Vapor–Liquid Equilibrium for Binary Mixtures of Acetates in the Direct Esterification of Fusel Oil. J. Chem. Eng. Data 62, 11–19. https://doi.org/10.1021/acs.jced.6b00221spa
dc.relation.referencesSánchez, C.A.C.A., Herrera, A.A.A., Vargas, J.C.J.C., Gil, I.D.I.D., Rodríguez, G., 2019. Isobaric Vapor Liquid Equilibria for Binary Mixtures of Isoamyl Acetate + Ethyl Acetate at 50 and 100 kPa. J. Chem. \& Eng. Data 64, 2110–2115. https://doi.org/10.1021/acs.jced.8b01053spa
dc.relation.referencesSands, D.E., 1974. Weighting factors in least squares. J. Chem. Educ. 51, 473. https://doi.org/10.1021/ed051p473spa
dc.relation.referencesSantaella, M.A., Orjuela, A., Narváez, P.C., 2015. Comparison of different reactive distillation schemes for ethyl acetate production using sustainability indicators. Chem. Eng. Process. Process Intensif. 96, 1–13. https://doi.org/10.1016/J.CEP.2015.07.027spa
dc.relation.referencesSavescu, V., Ionescu, I., Mehedinteanu, L., 1997. Isobaric vapor-liquid equilibria for ethyl acetate+ isoamyl alcohol and ethyl acetate+ isoamyl acetate mixtures. Rev. Roum. Chim. 42, 51–54.spa
dc.relation.referencesSchmidt-Traub, H., Górak, A., 2006. Integrated Reaction and Separation Operations. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30304-9spa
dc.relation.referencesSerafimov, L.A., 2009. State of the art in the thermodynamic and topological analysis of phase diagrams. Theor. Found. Chem. Eng. 43, 268–278. https://doi.org/10.1134/S0040579509030051spa
dc.relation.referencesShah, M., Kiss, A.A., Zondervan, E., de Haan, A.B., 2012. A systematic framework for the feasibility and technical evaluation of reactive distillation processes. Chem. Eng. Process. Process Intensif. 60, 55–64. https://doi.org/10.1016/j.cep.2012.05.007spa
dc.relation.referencesSharifzadeh, M., 2013. Implementation of a steady-state inversely controlled process model for integrated design and control of an ETBE reactive distillation. Chem. Eng. Sci. 92, 21–39. https://doi.org/10.1016/j.ces.2013.01.026spa
dc.relation.referencesShigarov, A.B., Fadeev, S.I., Mikhailova, I.A., Kullkov, A. V., Korolev, V.K., Kuzin, N.A., Kirillov, V.A., 2002. Simplified Treatment of Mass Transfer for Gas-Phase Hydrogenation/Dehydrogenation of Heavy Compounds. Korean J. Chem. Eng. 19, 252–260. https://doi.org/10.1007/BF02698410spa
dc.relation.referencesSmith, J.M. (Joseph M., 1981. Chemical engineering kinetics. McGraw-Hill.spa
dc.relation.referencesSneesby, M.G., Tadé, M.O., Smith, T.N., 2008. Reaction Hysteresis: A New Cause of Output Multiplicity in Reactive Distillation. Dev. Chem. Eng. Miner. Process. 7, 41–56. https://doi.org/10.1002/apj.5500070106spa
dc.relation.referencesStephenson, R., Stuart, J., 1986. Mutual binary solubilities: water-alcohols and water-esters. J. Chem. Eng. Data 31, 56–70. https://doi.org/10.1021/je00043a019spa
dc.relation.referencesTang, Y.T., Chen, Y.W., Huang, H.P., Yu, C.C., Hung, S.B., Lee, M.J., 2005. Design of reactive distillations for acetic acid esterification. AIChE J. 51, 1683–1699. https://doi.org/10.1002/aic.10519spa
dc.relation.referencesTang, Y.T., Huang, H.-P., Chien, I.-L., 2003. Design of a Complete Ethyl Acetate Reactive Distillation System. J. Chem. Eng. JAPAN 36, 1352–1363. https://doi.org/10.1252/jcej.36.1352spa
dc.relation.referencesTaylor, R., Krishna, R., 1993. Multicomponent mass transfer. Wiley.spa
dc.relation.referencesTeo, H., Saha, B., 2004. Heterogeneous catalysed esterification of acetic acid with isoamyl alcohol: kinetic studies. J. Catal. 228, 174–182.spa
dc.relation.referencesToikka, A.M., Toikka, M.A., Pisarenko, Y.A., Serafimov, L.A., 2009. Vapor-liquid equilibria in systems with esterification reaction. Theor. Found. Chem. Eng. 43, 129–142. https://doi.org/10.1134/S004057950902002Xspa
dc.relation.referencesToit, E. Du, Schwarzer, R., Nicol, W., 2004. Acetone condensation on a cation exchange resin catalyst: The pseudo equilibrium phenomenon, in: Chemical Engineering Science. pp. 5545–5550. https://doi.org/10.1016/j.ces.2004.07.034spa
dc.relation.referencesTyn, M.T., Calus, W.F., 1975. Diffusion coefficients in dilute binary liquid mixtures. J. Chem. Eng. Data 20, 106–109. https://doi.org/10.1021/je60064a006spa
dc.relation.referencesUng, S., Doherty, M., 1995a. Calculation of residue curve maps for mixtures with multiple equilibrium chemical reactions. Ind. Eng. Chem. Res. 1, 3195–3202.spa
dc.relation.referencesUng, S., Doherty, M.F., 1995b. Vapor-liquid phase equilibrium in systems with multiple chemical reactions. Chem. Eng. Sci. 50, 23–48. https://doi.org/10.1016/0009-2509(94)00180-Yspa
dc.relation.referencesUng, S., Doherty, M.F., 1995c. Theory of phase equilibria in multireaction systems. Chem. Eng. Sci. 50, 3201–3216. https://doi.org/10.1016/0009-2509(95)00159-3spa
dc.relation.referencesUng, S., Doherty, M.F., 1995d. Synthesis of Reactive Distillation Systems with Multiple Equilibrium Chemical Reactions. Ind. Eng. Chem. Res. 34, 2555–2565.spa
dc.relation.referencesWasylkiewicz, S.K., Ung, S., 2000. Global phase stability analysis for heterogeneous reactive mixtures and calculation of reactive liquid–liquid and vapor–liquid–liquid equilibria. Fluid Phase Equilib. 175, 253–272. https://doi.org/10.1016/S0378-3812(00)00451-9spa
dc.relation.referencesWeisz, P.B., Prater, C.D., 1954. Interpretation of Measurements in Experimental Catalysis. Adv. Catal. 6, 143–196. https://doi.org/10.1016/S0360-0564(08)60390-9spa
dc.relation.referencesWu, Y.C., Lee, H.Y., Lee, C.H., Huang, H.P., Chien, I.L., 2013a. Design and control of thermally-coupled reactive distillation system for esterification of an alcohol mixture containing n -amyl alcohol and n -hexanol. Ind. Eng. Chem. Res. 52, 17184–17197.spa
dc.relation.referencesWu, Y.C., Lee, H.Y., Tsai, C.Y., Huang, H.P., Chien, I.L., 2013b. Design and control of a reactive-distillation process for esterification of an alcohol mixture containing ethanol and n-butanol. Comput. Chem. Eng. 57, 67–77.spa
dc.relation.referencesWyczesany, A., 2009. Chemical equilibrium constants in esterification of acetic acid with C1–C5 alcohols in the liquid phase. Chem. Process Eng. 30, 243–265.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalaceite de fuselspa
dc.subject.proposalisoamyl acetateeng
dc.subject.proposalethyl acetateeng
dc.subject.proposaldestilación reactivaspa
dc.titleProducción de acetato de fusel por destilación reactivaspa
dc.title.alternativeFusel acetate production by reactive distillationspa
dc.typeLibrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.redcolhttp://purl.org/redcol/resource_type/LIBspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
75091916.2020.pdf
Tamaño:
3.95 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: