Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear

dc.contributor.advisorAgulles Pedrós, Luis
dc.contributor.authorCoy López, Julián Andrés
dc.date.accessioned2022-10-25T15:05:52Z
dc.date.available2022-10-25T15:05:52Z
dc.date.issued2022-10-20
dc.descriptionilustraciones, fotografías a color, gráficasspa
dc.description.abstractEn el presente proyecto se estima la dosis impartida por radiación ionizante en el gel dosimétrico con formulación MAGIC. Este ha sido comúnmente utilizado para la medición de dosis de radiación superiores a 1 cGy por medio de técnicas de regresión entre los valores de tasa de relajación y dosis. El gel se caracteriza por estar compuesto de ácido metacrilico, usado en fantomas equivalentes a tejido blando. El radioisotopo 99mTc se utiliza para irradiar y así calibrar las muestras del gel con diferentes valores de dosis en el rango de dosis bajas (µSv-mSv). Se propone realizar regresiones lineales entre las mediciones teniendo en cuenta la desviación estándar en la medida y el valor de los ajustes con el (χ2/DoF), tal que se obtenga una mejor evaluación del ajuste. Se presenta un método que selecciona las zonas de las muestras del gel que ofrecen mayor fiabilidad en los datos y mejora la correlación entre dosis nominal y tasa de relajación. A través del método por píxel se obtiene 60 % de probabilidad de que los resultados medidos coincidan con el modelo propuesto, la sensibilidad del gel es de (1.2±0.4)×10−3 [ms−1 mGy−1 ], con incertidumbre relativa de 33%. Los resultados conseguidos permiten establecer que el gel polimérico MAGIC puede calibrarse con buena correlación a través de una regresión lineal para valores de dosis superiores a 0.8 mGy. No obstante, en el límite de dosis bajas el error sistemático de la estabilidad térmica del gel puede afectar su precisión y desempeño. (Texto tomado de la fuente)spa
dc.description.abstractIn this project, the imparted dose by ionizing radiation is measured in the dosimetric gel of MAGIC formulation. It has been widely used for measurement of radiation doses greater than 1 cGy through regression techniques between the measured values of relaxation rate and dose. The gel is composed of methacrylic acid, this is the main component in equivalent soft tissue phantoms. The 99mTc radioisotope is used to irradiate and calibrate the gel samples with different dose values in the low dose range (Sv − mSv). It is proposed to carry out linear regressions of measurements, taking into account the standard deviations and the (χ2/DoF) values of the adjustments, such that a better evaluation of the adjustment is obtained. A method is shown to select the regions of the samples that offer greater confidence in the data and let us improve the correlation between the nominal dose and the relaxation rate. Through the pixel method, a probability of 60 % between measured values and the proposed method is found, the gel sensitivity is (1.20.4) × 10−3 [ms−1 mGy−1 ], with a relative uncertainty of 33 %. The results allow establishing that the MAGIC polymeric gel can be calibrated with good correlation for dose values greater than 0.8 mGy. However, in the low dose limit, the systematic error in the thermal stability of the gel can affect its precision and performance.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.format.extentix, 78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82448
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesHelber Cortés. Implementación de un Dosímetro en Gel para Verificación Dosimétrica de Tratamientos con RapidArcTM. Tesis de maestría en física médica, Universidad Nacional de Colombia, 2014.spa
dc.relation.referencesAndrea et al. 2d dose distribution images of a hybrid low field mri-gamma detector. AIP Conference Proceedings, (1753) 080012:1–5, 2016.spa
dc.relation.referencesAndrea Abril. MRI-gamma Detector Hybrid System. Tesis de Doctorado, Universidad Nacional de Colombia, 2017.spa
dc.relation.referencesPedro Dorado. Dosis de radiación. Consejo de Seguridad Nacional, SDB 0407:1–15, 2010.spa
dc.relation.referencesC. Baldock. Polymer gel dosimetry. Institute of Physics and Engineering in Medicine, 55:1–86, 2010.spa
dc.relation.referencesY Deene. A basic study of some normoxic polymer gel dosimeters. Physics in Medicine and Biology, 47:3441–3463, 2002.spa
dc.relation.referencesAndrea Espinosa. Dosimetría en gel por imágenes de resonancia magnética. Trabajo Final de Maestría en Física Médica, Bogotá, 2019.spa
dc.relation.referencesM.G. Stabin. Radiation dosimetry in nuclear medicine. Applied Radiation and Isotopes, 50:73–87, 1999.spa
dc.relation.referencesHS1 et al. Yoon. Initial results of simultaneous pet/mri experiments with an mri compatible silicon photomultiplier pet scanner. Journal of Nuclear Medicine, 53:608– 614, 2012.spa
dc.relation.referencesThomas Beyer. Mr/pet hybrid imaging for the next decade. Magnetom Flash, Siemens:19–29, 2010.spa
dc.relation.referencesSimon Cherry. The integration of positron emission tomography with magnetic resonance imaging. Proceedings of the IEEE, 96:416–438, 2008.spa
dc.relation.referencesThomas Yankeelov. Simultaneous pet-mri in oncology: a solution looking for a problem? Magnetic Resonance Imaging, 30:1342–1356, 2012.spa
dc.relation.referencesChristian Goetz. Spect low-field mri system for small-animal imaging. The Journal of Nuclear Medicine, 49:88–93, 2008.spa
dc.relation.referencesA. Boni. A polyacrylamide gamma dosimeter. Radiation Research Society, 14:374–380, 1961.spa
dc.relation.referencesJ. Pavoni. What happens when spins meet for ionizing radiation dosimetry? American Institute of Physics, 1753:080023(1–6), 2016.spa
dc.relation.referencesB. Farhood. Dosimetric characteristics of passag as a new polymer gel dosimeter with negligible toxicity. Radiation Physics and Chemistry, 147:91–100, 2018.spa
dc.relation.referencesAmerican Association of Physicists in Medicine. Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities. AAPM report, 100:1–6, 2010.spa
dc.relation.referencesScott Bagwell et al. A linearised hp -finite element framework for acousto- magnetomechanical coupling in axisymmetric mri scanners. International Journal for Numerical Methods in Engineering, 112(10):1, 2017.spa
dc.relation.referencesChristakis Constantinides. Magnetic Resonance Imaging. Taylor and Francis Group, Boca Raton, 2014.spa
dc.relation.referencesGeneral Electric Healthcare. Signa explorer technical data. General Electric Company, 1:1–28, 2014.spa
dc.relation.referencesMarinus Vlaardingerbroek. Magnetic Resonance Imaging. Springer, Berlin-Heidelberg, 2003.spa
dc.relation.referencesAndrew Webb. Magnetic Resonance Technology. Royal Society of Chemistry, Cambridge, 2013.spa
dc.relation.referencesEloy Calvo. Resonancia Magnética para Técnicos. Independently Published, España, 2014.spa
dc.relation.referencesMalcolm H. Levitt. Basics of nuclear magnetic resonance, 2008.spa
dc.relation.referencesCarlos Rodrigues. NMR of liquid Crystal Dendrimers. Pan Stanford Publishing, Singapore, 2017.spa
dc.relation.referencesLuis Caro. Principios básicos de resonancia nuclear magnética. Morfolia, Universidad Nacional de Colombia, 1:26–33, 1991.spa
dc.relation.referencesMiroslava Cuperlovic. Experimental methodology. NMR Metabolomics in Cancer Research, 3:139–213, 2013.spa
dc.relation.referencesKumar Anil. Nmr fourier zeugmatography. Journal of Magnetic Resonance, 18:69–83, 1975.spa
dc.relation.referencesVadim Kuperman. Magnetic Resonance Imaging. Academic Press, San Diego, 2005.spa
dc.relation.referencesAlfred Horowitz. MRI Physics for Radiologists. Springer Verlag, Nueva York, 1992.spa
dc.relation.referencesWilliam Oldendorf. Basics of Magnetic Resonance Imaging. Martinus Nijhoff Publishing, Boston, 1988.spa
dc.relation.referencesY Deene. Essential characteristics of polymer gel dosimeters. Journal of Physics, Conf. Ser. 3 34:34–57, 2004.spa
dc.relation.referencesDeene et al. Y. De. Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal processing, 70:85–101, 1998.spa
dc.relation.referencesShankar Vallabhajosula. Molecular Imaging. Springer, Heidelberg, 2009.spa
dc.relation.referencesJhon Prince. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay. Journal of Nuclear Medicine, 20:162–164, 1979.spa
dc.relation.referencesPeter F. Sharp. Practical Nuclear Medicine. Springer–Verlag,3rd edition, London, 2005.spa
dc.relation.referencesBianca Costa. Technetium-99m metastable radiochemistry for pharmaceutical applications: old chemistry for new products. JOURNAL OF COORDINATION CHEMISTRY, 72:1–24, 2019.spa
dc.relation.referencesPillai Mra et al. Sustained availability of tc-99m: Possible paths forward. Journal of Nuclear Medicine, 54(2):1, 2012.spa
dc.relation.referencesEsam Hussein. Radiation Mechanics principles and practice. Elsevier Science, Oxford, 2007.spa
dc.relation.referencesKenneth Krane. Introductory Nuclear Physics. John Wiley and Sons, USA, 1988.spa
dc.relation.referencesW. Heitler. The quantum theory of radiation. University press, Oxford, 1960.spa
dc.relation.referencesPaula Ramos. Estudio de Rayos X de la Evolución de Cáncer de Mama en un Modelo Murino. Universidad de los Andes, monografía, Bogotá, 2019.spa
dc.relation.referencesNIST. mass attenuation coefficients. National Institute of Standards and Technology, NIST database:1, 2022.spa
dc.relation.referencesNath et al. Ravinder. Dosimetry of interstitial brachytherapy sources: Recomendations of the aapm radiation therapy commitee task group 43. Medical Physics, 22:210–221, 1995.spa
dc.relation.referencesCheng B et al. Saw. Review of aapm task group 43 reccomendations of interstitial brachytherapy sources dosimetry. Medical Dosimetry, 23:259–263, 1998.spa
dc.relation.referencesJohn Bevelacqua. Contemporary Health Physics. Wiley-VCh Verlag, Weinheim, 2009.spa
dc.relation.referencesAAPM task group. Specification of Brachytherapy source strength. American Association of Physicist in Medicine, New York, 1987.spa
dc.relation.referencesJohn Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, Sausalito, 1997.spa
dc.relation.referencesBhisham Gupta. Statistics and probability with applications for engineers and scientists using minitab, R and JMP. John Wiley and Sons, USA, 2020.spa
dc.relation.referencesRoger Sapsford. Data Collection and Analysis. SAGE publications, London, 2006.spa
dc.relation.referencesCiro Ramirez. Estadística y muestreo. Ecoe ediciones, Bogotá, 2008.spa
dc.relation.referencesAlvaro Tucci. Radiodiagnostico y radioterapia. Lulu, United Kingdom, 2012.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembRayos gammaspa
dc.subject.lembGamma rayseng
dc.subject.lembEspectrometría de rayos gammaspa
dc.subject.lembGamma ray spectrometryeng
dc.subject.proposalDetector Híbridospa
dc.subject.proposalHybrid detectoreng
dc.subject.proposalIRMspa
dc.subject.proposalMRIeng
dc.subject.proposalGel poliméricospa
dc.subject.proposalPolymeric Geleng
dc.subject.proposalTasa de relajaciónspa
dc.subject.proposalRelaxation rateeng
dc.titleDistribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclearspa
dc.title.translatedGamma radiation dose distribution in dosimetric gel by magnetic resonance imagingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1049640054.2022.pdf
Tamaño:
13.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: