Planificación de redes eléctricas de distribución incluyendo generación distribuida, almacenamiento de energía y gestión de la demanda (DSM Y DR)

dc.contributor.advisorRivera Rodríguez, Sergio Raúl
dc.contributor.advisorSantamaría Piedrahita, Francisco
dc.contributor.authorAlarcon Villamil, Jorge Alexander
dc.contributor.researchgroupGrupo de Investigación Emc-Unspa
dc.date.accessioned2022-08-08T15:04:26Z
dc.date.available2022-08-08T15:04:26Z
dc.date.issued2022-08-05
dc.descriptionilustraciones, graficasspa
dc.description.abstractEste trabajo investiga la manera de mejorar el planeamiento de las redes eléctricas de distribución (REDis) en torno a su modernización, analizando aspectos como la integración de recursos distribuidos, sistemas de almacenamiento de energía y la posible implementación de estrategias de respuesta a la demanda. El trabajo analiza los modelos matemáticos utilizados para representar cada uno de los dispositivos y estrategias indicadas anteriormente, plantea modelos para la integración de estos dispositivos en el planeamiento, y finalmente describe los procedimientos y métodos desarrollados para ejecutar el planeamiento en algunos casos de prueba. Los modelos planteados permiten la inclusión de aspectos técnicos, ambientales y económicos en los objetivos de optimización del problema, con lo cual genera un aporte interesante para esta área de la ingeniería, porque permite la evaluación simultánea (multiobjetivo) de los tres criterios de evaluación. Dentro de los resultados y aportes del trabajo de investigación se incluyen los modelos matemáticos desarrollados, índices para medir qué tan eficiente es el uso de los activos del sistema de distribución, y los diagramas de flujo que describen los procedimientos propuestos para el desarrollo del planeamiento. Adicionalmente se presentan resultados de los casos de estudio evaluados con las metodologías y con los índices propuestos, en los que se mide y compara cada uno de los aspectos evaluados (técnicos, económicos y ambientales) mostrando las ventajas de los métodos desarrollados, respecto de métodos propuestos por otros autores. Los resultados permiten concluir que el uso de técnicas de optimización matemática genera buenos resultados para el problema del planeamiento, y permite la valoración simultánea de los tres criterios de evaluación. También se comprueba que las metodologías propuestas y los modelos planteados funcionan de manera adecuada para encontrar los resultados. Con los resultados obtenidos se cumple el objetivo propuesto en esta tesis de Doctorado que es: “Desarrollar e implementar un modelo multi-objetivo para el planeamiento de redes eléctricas de distribución que permita la integración simultánea de generación distribuida, sistemas de almacenamiento de energía con baterías y estrategias de respuesta a la demanda”. También se cumple con los objetivos específicos propuestos que son: “Analizar el efecto que tienen las tecnologías de generación distribuida, almacenamiento con baterías y gestión de la demanda (DSM y DR) en la planificación de las redes de distribución primaria, identificando los aspectos que deben ser incluidos en la metodología a desarrollar”, “Desarrollar el modelo que representa el problema de planificación multi-objetivo incluyendo los aspectos técnicos, económicos y ambientales, y determinar la técnica de solución a utilizar”, y finalmente “Implementar el modelo de planificación desarrollado y evaluar sus resultados mediante el análisis de al menos dos de los casos de prueba usados para validar este tipo de problemas.” (Texto tomado de la fuente)spa
dc.description.abstractThis research work search new ways to improve the planning of power distribution networks, having into account aspects as the integration of DERS, BESS, and demand response strategies, into the planning models. The work analyze the mathematical models used to represent the DERS, BESS and the DR strategies previously indicated, it also propose the models to include the DER and BESS devices into the planning, and describe the methods and procedures to implement the model to solve planning some test systems. The proposed models allow the inclusion of technical, economic and environmental aspects among the optimization objectives of the problem, which generates an important contribution to this area of engineering, because it allows the simultaneous evaluation (multi-objective) of the three optimization-criteria. The results and contributions of this research work include the developed mathematical models, the indices used to measure how efficiently the assets on the distribution system are used, and the flow charts used to describe the procedures proposed for developing the planning. Additionally, the results of the cases study evaluated with the proposed methodologies and indices are presented, showing the advantages of the developed methods concerning other conventional methods. The results let us obtain good results for the planning problem by using mathematical optimization techniques and allow the simultaneous evaluation of the three optimization-criteria. It also proved that the proposed methodologies and models work adequately to get good planning results. With the obtained results, the main objective proposed in this doctoral thesis is fulfilled, which is: "Develop and implement a multi-objective model for the planning of electrical distribution networks that allows the simultaneous integration of distributed generation, energy storage systems with batteries and demand response strategies. The proposed specific objectives, which are: "Analyze the effect of distributed generation, battery storage, and demand management (DSM and DR) technologies in the planning of primary distribution networks, identifying the aspects that should be included in the methodology to be developed”, “Develop the model that represents the multi-objective planning problem including technical, economic and environmental aspects, and determine the solution technique to be used”, and finally “Implement the planning model developed and evaluate its results by analyzing at least two of the test cases used to validate this type of problem”, are also met.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.methodsMetodología de investigación basada en el modelamiento y simulación de equipos y fenómenos eléctricosspa
dc.description.researchareaRedes eléctricas de distribuciónspa
dc.format.extentxvii, 160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81801
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesA. Pillay, S. Prabhakar Karthikeyan, and D. P. Kothari, “Congestion management in power systems - A review,” Int. J. Electr. Power Energy Syst., vol. 70, pp. 83–90, 2015, doi: 10.1016/j.ijepes.2015.01.022spa
dc.relation.referencesL. Gabriel and M. Díaz, “Comparación de métodos de asignación a redes para distintos volumenes de transito,” Rev. UIS Ing., vol. 9, no. 1, pp. 77–84, 2010spa
dc.relation.referencesM. Vaziri, K. Tomsovic, and T. Gonen, “Distribution expansion problem revisited. Part 1 Cateorical analysis and future directions,” Math. Program., 2000, [Online]. Available: http://web.eecs.utk.edu/~tomsovic/Vitae/Publications/VAZI00a.pdf.spa
dc.relation.referencesA. J. Urdaneta, P. C. Paiva, H. Khodr, J. Dominguez-Navarro, and J. M. Yusta, “Integral planning of primary-secondary distribution systems using mixed integer linear programming,” IEEE Power Eng. Soc. Gen. Meet. 2005, vol. 20, no. 2, pp. 489–489, 2005, doi: 10.1109/PES.2005.1489185spa
dc.relation.referencesA. Klose and A. Drexl, “Facility location models for distribution system design,” Eur. J. Oper. Res., vol. 162, no. 1, pp. 4–29, 2005, doi: 10.1016/j.ejor.2003.10.031spa
dc.relation.referencesC. L. T. Borges and D. M. Falcão, “Optimal distributed generation allocation for reliability, losses, and voltage improvement,” Int. J. Electr. Power Energy Syst., vol. 28, no. 6, pp. 413–420, 2006, doi: 10.1016/j.ijepes.2006.02.003spa
dc.relation.referencesJ. L. Morillo, J. F. Perez, N. Quijano, and A. Cadena, “Planning open and closed-loop feeders with efficiency analysis,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232656spa
dc.relation.referencesF. Voulgaris, D. Asteriou, and G. Agiomirgianakis, “Capital structure, asset utilization, profitability and growth in the Greek manufacturing sector,” Appl. Econ., vol. 34, no. 11, pp. 1379–1388, 2002, doi: 10.1080/00036840110096822spa
dc.relation.referencesZ. Fu-min, M. Li, L. Nian, and C. Jin-shan, “Assessment for Distribution Network Planning Schemes of Urban Electric Power System,” Energy Procedia, vol. 14, no. 2011, pp. 1067–1074, 2012, doi: 10.1016/j.egypro.2011.12.1056spa
dc.relation.referencesT. L. Lee and S. H. Hu, “An Active Filter with Resonant Current Control to Suppress Harmonic Resonance in a Distribution Power System,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 1, pp. 198–209, 2016, doi: 10.1109/JESTPE.2015.2478149spa
dc.relation.referencesM. S. Islam, N. A. Chowdhury, A. K. Sakil, A. Khandakar, A. Iqbal, and H. Abu-Rub, “Power quality effect of using incandescent, fluorescent, CFL and LED lamps on utility grid,” 2015 1st Work. Smart Grid Renew. Energy, SGRE 2015, no. Sgre, pp. 3–7, 2015, doi: 10.1109/SGRE.2015.7208731spa
dc.relation.referencesM. Arends and P. H. J. Hendriks, “Smart grids, smart network companies,” Util. Policy, vol. 28, pp. 1–11, Mar. 2014, doi: 10.1016/j.jup.2013.10.003spa
dc.relation.referencesR. F. Arritt and R. C. Dugan, “Distribution system analysis and the future smart grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2343–2350, 2011spa
dc.relation.referencesR. F. Arritt and R. C. Dugan, “Distribution system analysis and the future smart grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2343–2350, 2011spa
dc.relation.referencesR. F. Arritt and R. C. Dugan, “Distribution system analysis and the future smart grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2343–2350, 2011. Power Syst. Res., vol. 121, pp. 89–100, Apr. 2015, doi: 10.1016/j.epsr.2014.12.010spa
dc.relation.referencesI. T. Papaioannou, A. Purvins, and E. Tzimas, “Demand shifting analysis at high penetration of distributed generation in low voltage grids,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 540–546, 2013, doi: 10.1016/j.ijepes.2012.07.054spa
dc.relation.referencesS. C. E. Jupe and P. C. Taylor, “Distributed generation output control for network power flow management,” IET Renew. Power Gener., vol. 3, no. 4, p. 371, 2009, doi: 10.1049/iet-rpg.2008.0029spa
dc.relation.referencesM. Nick, R. Cherkaoui, and M. Paolone, “Optimal siting and sizing of distributed energy storage systems via alternating direction method of multipliers,” Int. J. Electr. Power Energy Syst., Mar. 2015, doi: 10.1016/j.ijepes.2015.02.008spa
dc.relation.referencesJ. A. P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins, “Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1189–1203, Jul. 2007, doi: 10.1016/j.epsr.2006.08.016spa
dc.relation.referencesA. Rezaee Jordehi, “Allocation of distributed generation units in electric power systems: A review,” Renew. Sustain. Energy Rev., vol. 56, pp. 893–905, Apr. 2016, doi: 10.1016/j.rser.2015.11.086spa
dc.relation.referencesC. L. T. Borges and D. M. Falcão, “Optimal distributed generation allocation for reliability, losses, and voltage improvement,” Int. J. Electr. Power Energy Syst., vol. 28, no. 6, pp. 413–420, Jul. 2006, doi: 10.1016/j.ijepes.2006.02.003spa
dc.relation.referencesA. Colmenar-Santos, C. Reino-Rio, D. Borge-Diez, and E. Collado-Fernández, “Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks,” Renew. Sustain. Energy Rev., vol. 59, pp. 1130–1148, Jun. 2016, doi: 10.1016/j.rser.2016.01.023spa
dc.relation.referencesR. E. Brown, “Impact of Smart Grid on Distribution System design,” 2008spa
dc.relation.referencesC. Brivio, S. Mandelli, and M. Merlo, “Battery energy storage system for primary control reserve and energy arbitrage,” Sustain. Energy, Grids Networks, vol. 6, pp. 152–165, 2016, doi: 10.1016/j.segan.2016.03.004spa
dc.relation.referencesP. D. Lund, J. Lindgren, J. Mikkola, and J. Salpakari, “Review of energy system flexibility measures to enable high levels of variable renewable electricity,” Renew. Sustain. Energy Rev., vol. 45, pp. 785–807, May 2015, doi: 10.1016/j.rser.2015.01.057spa
dc.relation.referencesH. Jiayi, J. Chuanwen, and X. Rong, “A review on distributed energy resources and MicroGrid,” Renew. Sustain. Energy Rev., vol. 12, no. 9, pp. 2472–2483, Dec. 2008, doi: 10.1016/j.rser.2007.06.004spa
dc.relation.referencesX. Han, T. Ji, Z. Zhao, and H. Zhang, “Economic evaluation of batteries planning in energy storage power stations for load shifting,” Renew. Energy, vol. 78, pp. 643–647, Jun. 2015, doi: 10.1016/j.renene.2015.01.056spa
dc.relation.referencesC. Zhou et al., “Business model and economic analysis of user-side BESS in industrial parks in China,” IET Conf. Publ., vol. 2019, no. CP764, pp. 1–6, 2019, doi: 10.1049/cp.2019.0281spa
dc.relation.referencesY. Y. Hsu and Y. Jwo-Hwu, “Planning of distribution substations, feeders and sectionalizing switches using heuristic algorithms,” Int. J. Electr. Power Energy Syst., vol. 18, no. 5, pp. 315–322, 1996, doi: 10.1016/0142-0615(95)00075-5spa
dc.relation.referencesC. M. Affonso and L. C. P. da Silva, “Potential benefits of implementing load management to improve power system security,” Int. J. Electr. Power Energy Syst., vol. 32, no. 6, pp. 704–710, Jul. 2010, doi: 10.1016/j.ijepes.2010.01.004spa
dc.relation.referencesL. Gelazanskas and K. A. A. Gamage, “Demand side management in smart grid: A review and proposals for future direction,” Sustain. Cities Soc., vol. 11, pp. 22–30, 2014, doi: 10.1016/j.scs.2013.11.001spa
dc.relation.referencesM. H. Albadi and E. F. El-Saadany, “Demand response in electricity markets: An overview,” 2007spa
dc.relation.referencesG. Gutiérrez-Alcaraz, J. H. Tovar-Hernández, and C. N. Lu, “Effects of demand response programs on distribution system operation,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 230–237, 2016, doi: 10.1016/j.ijepes.2015.07.018spa
dc.relation.referencesA. A. Eajal and M. E. El-Hawary, “Optimal capacitor placement and sizing in distorted radial distribution systems Part III: Numerical results,” ICHQP 2010 - 14th Int. Conf. Harmon. Qual. Power, 2010, doi: 10.1109/ICHQP.2010.5625474spa
dc.relation.referencesI. Ziari, G. Ledwich, A. Ghosh, and G. Platt, “Optimal distribution network reinforcement considering load growth, line loss, and reliability,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 587–597, 2013, doi: 10.1109/TPWRS.2012.2211626spa
dc.relation.referencesR. B. Hiremath, S. Shikha, and N. H. Ravindranath, “Decentralized energy planning; modeling and application—a review,” Renew. Sustain. Energy Rev., vol. 11, no. 5, pp. 729–752, Jun. 2007, doi: 10.1016/j.rser.2005.07.005spa
dc.relation.referencesR. H. Fletcher and K. Strunz, “Optimal Distribution System Horizon Planning-Part I: Formulation,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 791–799, 2007, doi: 10.1109/TPWRS.2007.895173spa
dc.relation.referencesR. H. Fletcher, S. Member, and K. Strunz, “Planning – Part II : Application,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 862–870, 2007spa
dc.relation.referencesD. Hongwei, Y. Yixin, and H. Chunhua, “Optimal planning of distribution substation locations and sizes - model and algorithm,” Electr. Power Energy Syst., vol. 18, no. 6, pp. 353–357, 1996, doi: http://dx.doi.org/10.1016/0140-6701(96)89794-3spa
dc.relation.referencesS. K. Khator and L. C. Leung, “Power distribution planning: a review of models and issues,” IEEE Trans. Power Syst., vol. 12, no. 3, pp. 1151–1159, 1997, doi: 10.1109/59.630455spa
dc.relation.referencesH. K. Temraz and V. H. Quintana, “Distribution system expansion planning models: An overview,” Electr. Power Syst. Res., vol. 26, no. 1, pp. 61–70, 1993, doi: 10.1016/0378-7796(93)90069-Qspa
dc.relation.referencesR. B. Hiremath, S. Shikha, and N. H. Ravindranath, “Decentralized energy planning; modeling and application-a review,” Renewable and Sustainable Energy Reviews, vol. 11, no. 5. pp. 729–752, 2007, doi: 10.1016/j.rser.2005.07.005spa
dc.relation.referencesS. Haffner, L. F. A. Pereira, L. A. Pereira, and L. S. Barreto, “Multistage Model for Distribution Expansion Planning with Distributed Generation - Part II: Numerical Results,” IEEE Trans. Power Deliv., vol. 23, no. 2, pp. 924–929, 2008, doi: 10.1109/TPWRD.2008.917911spa
dc.relation.referencesU. G. W. Knight, “The logical design of electrical networks using linear programming methods,” Proc. IEE-Part A Power Eng., vol. 107, no. 33, pp. 306–314, 1960spa
dc.relation.referencesJ. V OLDFIELD and T. Lang, “The long-term design of electrical power distribution systems,” IEEE PICA, May, 1965spa
dc.relation.referencesT. Gorien, M. Sc, D. Ph, and I. E. E. E. Mem, “Distribution-system planning using mixed-integer programming,” Gener. Transm. Distrib. IEE Proc. C, vol. 128, no. 2, pp. 70–79, 1981, doi: 10.1049/ip-c:19810010spa
dc.relation.referencesD. M. Crawford and S. B. Holt, “A mathematical optimization technique for locating and sizing distribution substations, and deriving their optimal service areas,” IEEE Trans. power Apar. Syst., no. 2, pp. 2–7, 1975spa
dc.relation.referencesR.N. Adams M.A. Laughton, “Optimal planning of power networks using Mixed integer programming,” IEE Proc., no. 1, 1971spa
dc.relation.referencesB. N. Soares, A. Da Rosa Abaide, and D. Bernardon, “Methodology for prioritizing investments in distribution networks electricity focusing on operational efficiency and regulatory aspects,” Proc. Univ. Power Eng. Conf., pp. 1–6, 2014, doi: 10.1109/UPEC.2014.6934727spa
dc.relation.referencesA. M. Cossi, L. G. W. da Silva, R. a. R. Lázaro, and J. R. S. Mantovani, “Primary power distribution systems planning taking into account reliability, operation and expansion costs,” IET Gener. Transm. Distrib., vol. 6, no. 3, p. 274, 2012, doi: 10.1049/iet-gtd.2010.0666spa
dc.relation.referencesM. Tabarzadi and V. Vahidinasab, “A comprehensive expansion planning model for smart electric distribution networks,” 2015 3rd Int. Istanbul Smart Grid Congr. Fair, ICSG 2015, 2015, doi: 10.1109/SGCF.2015.7354916spa
dc.relation.referencesP. C. Paiva, H. M. Khodr, J. A. Dominguez-Navarro, J. M. Yusta, and A. J. Urdaneta, “Integral Planning of Primary–Secondary Distribution Systems Using Mixed Integer Linear Programming,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1134–1143, May 2005, doi: 10.1109/TPWRS.2005.846108spa
dc.relation.referencesR. D. Prasad, R. C. Bansal, and A. Raturi, “Multi-faceted energy planning: A review,” Renew. Sustain. Energy Rev., vol. 38, pp. 686–699, Oct. 2014, doi: 10.1016/j.rser.2014.07.021spa
dc.relation.referencesR. Siddaiah and R. P. Saini, “A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications,” Renew. Sustain. Energy Rev., vol. 58, pp. 376–396, May 2016, doi: 10.1016/j.rser.2015.12.281spa
dc.relation.referencesA. S. Bin Humayd and K. Bhattacharya, “Comprehensive multi-year distribution system planning using back-propagation approach,” IET Gener. Transm. Distrib., vol. 7, no. 12, pp. 1415–1425, 2013, doi: 10.1049/iet-gtd.2012.0706spa
dc.relation.referencesG. D. Ferreira and A. S. Bretas, “A nonlinear binary programming model for electric distribution systems reliability optimization,” Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 384–392, 2012, doi: DOI 10.1016/j.ijepes.2012.05.070spa
dc.relation.referencesH. Saboori, R. Hemmati, and V. Abbasi, “Multistage distribution network expansion planning considering the emerging energy storage systems,” Energy Convers. Manag., vol. 105, pp. 938–945, 2015, doi: 10.1016/j.enconman.2015.08.055spa
dc.relation.referencesN. C. Koutsoukis, Di. O. Siagkas, P. S. Georgilakis, and N. D. Hatziargyriou, “Online Reconfiguration of Active Distribution Networks for Maximum Integration of Distributed Generation,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 437–448, 2017, doi: 10.1109/TASE.2016.2628091spa
dc.relation.referencesK. Nara, T. Satoh, K. Kuwabara, K. Aoki, M. Kitagawa, and T. Ishihara, “Distribution Systems Expansion Planning by Multi-Stage Branch Exchange,” Trans. Power Syst., vol. 7, no. 1, pp. 208–214, 1992spa
dc.relation.referencesT. Gonen and I. J. Ramirez-Rosado, “Optimal Multi-Stage Planning of Power Distribution Systems,” IEEE Trans. Power Deliv., vol. 2, no. 2, pp. 512–519, 1987, doi: 10.1109/TPWRD.1987.4308135spa
dc.relation.referencesA. Soroudi and M. Ehsan, “A distribution network expansion planning model considering distributed generation options and techo-economical issues,” Energy, vol. 35, no. 8, pp. 3364–3374, Aug. 2010, doi: 10.1016/j.energy.2010.04.022spa
dc.relation.referencesS. N. Ravadanegh and R. G. Roshanagh, “On optimal multistage electric power distribution networks expansion planning,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 487–497, 2014, doi: 10.1016/j.ijepes.2013.07.008spa
dc.relation.referencesA. Zidan, M. F. Shaaban, and E. F. El-Saadany, “Long-term multi-objective distribution network planning by DG allocation and feeders’ reconfiguration,” Electr. Power Syst. Res., vol. 105, pp. 95–104, 2013, doi: 10.1016/j.epsr.2013.07.016spa
dc.relation.referencesH. Falaghi, C. Singh, M.-R. Haghifam, and M. Ramezani, “DG integrated multistage distribution system expansion planning,” Int. J. Electr. Power Energy Syst., vol. 33, no. 8, pp. 1489–1497, Oct. 2011, doi: 10.1016/j.ijepes.2011.06.031spa
dc.relation.referencesM. Gitizadeh, A. A. Vahed, and J. Aghaei, “Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms,” Appl. Energy, vol. 101, pp. 655–666, Jan. 2013, doi: 10.1016/j.apenergy.2012.07.010spa
dc.relation.referencesA. S. Al-Sumaiti, M. Salama, M. El-Moursi, T. S. Alsumaiti, and M. Marzband, “Enabling electricity access: A comprehensive energy efficient approach mitigating climate/weather variability – Part II,” IET Gener. Transm. Distrib., vol. 13, no. 12, pp. 2572–2583, 2019, doi: 10.1049/iet-gtd.2018.6413spa
dc.relation.referencesA. Arefi, A. Abeygunawardana, and G. Ledwich, “A new risk-managed planning of electric distribution network incorporating customer engagement and temporary solutions,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1646–1661, 2016, doi: 10.1109/TSTE.2016.2573290spa
dc.relation.referencesT. Baricevic, M. Skok, S. Zutobradic, and L. Wagmann, “Identifying energy efficiency improvements and savings potential in Croatian energy networks,” CIRED - Open Access Proc. J., vol. 2017, no. 1, pp. 2329–2333, 2017, doi: 10.1049/oap-cired.2017.0785spa
dc.relation.referencesS. H. Ibrahim, A. Baharun, and C. J. Chai, “Efficient Planning of Electrical Distribution System for Consumers in Sarawak, Malaysia,” vol. 1, pp. 103–109, 2015spa
dc.relation.referencesM. Zare, R. Azizipanah-Abarghooee, R. A. Hooshmand, and M. Malekpour, “Optimal reconfigurattion of distribution systems by considering switch and wind turbine placements to enhance reliability and efficiency,” IET Gener. Transm. Distrib., vol. 12, no. 6, pp. 1271–1284, 2018, doi: 10.1049/iet-gtd.2017.1011spa
dc.relation.referencesR. M. Vitorino, L. P. Neves, and H. M. Jorge, “Network reconfiguration to improve reliability and efficiency in distribution systems,” 2009 IEEE Bucharest PowerTech Innov. Ideas Towar. Electr. Grid Futur., pp. 1–7, 2009, doi: 10.1109/PTC.2009.5281806spa
dc.relation.referencesR. Syahputra, I. Robandi, and M. Ashari, “Distribution Network Efficiency Improvement Based on Fuzzy Multi-objective Method,” vol. 1, pp. 224–229, 2014spa
dc.relation.referencesS. Lakshmi and S. Ganguly, “Modelling and allocation of open-UPQC-integrated PV generation system to improve the energy efficiency and power quality of radial distribution networks,” IET Renew. Power Gener., vol. 12, no. 5, pp. 605–613, 2018, doi: 10.1049/iet-rpg.2017.0525spa
dc.relation.referencesD. A. Quijano, J. Wang, M. R. Sarker, and A. Padilha-Feltrin, “Stochastic assessment of distributed generation hosting capacity and energy efficiency in active distribution networks,” IET Gener. Transm. Distrib., vol. 11, no. 18, pp. 4617–4625, 2017, doi: 10.1049/iet-gtd.2017.0557spa
dc.relation.referencesJ. Zhao, Y. Wang, G. Song, P. Li, C. Wang, and J. Wu, “Congestion Management Method of Low-Voltage Active Distribution Networks Based on Distribution Locational Marginal Price,” IEEE Access, vol. 7, pp. 32240–32255, 2019, doi: 10.1109/ACCESS.2019.2903210spa
dc.relation.referencesI. A. Quadri, S. Bhowmick, and D. Joshi, “Multi-objective approach to maximise loadability of distribution networks by simultaneous reconfiguration and allocation of distributed energy resources,” IET Gener. Transm. Distrib., vol. 12, no. 21, pp. 5700–5712, 2018, doi: 10.1049/iet-gtd.2018.5618spa
dc.relation.referencesB. Kroposki, P. K. Sen, and K. Malmedal, “Selection of distribution feeders for implementing distributed generation and renewable energy applications,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2825–2834, 2013, doi: 10.1109/TIA.2013.2262091spa
dc.relation.referencesR. Dashti and S. Afsharnia, “Demand response regulation modeling based on distribution system asset efficiency,” Electr. Power Syst. Res., vol. 81, no. 2, pp. 667–676, 2011, doi: 10.1016/j.epsr.2010.10.031spa
dc.relation.referencesL. Ye et al., “The Reasonable Range of Life Cycle Utilization Rate of Distribution Network Equipment,” IEEE Access, vol. 6, pp. 23948–23959, 2018, doi: 10.1109/ACCESS.2018.2803840spa
dc.relation.referencesL. Ma, W. Liu, H. Chen, Y. Cui, Y. Wang, and S. Yuan, “Operation Efficiency Evaluation Frame and Its Criteria for Distribution Network Based on Annual Load Duration Curve,” Int. Conf. Innov. Smart Grid Technol. ISGT Asia 2018, pp. 373–378, 2018, doi: 10.1109/ISGT-Asia.2018.8467851spa
dc.relation.referencesJ. F. Prada, “The Value of Reliability in Power Systems: Pricing Operating Reserves,” Mit El 99-005 Wp, no. June, p. 79p, 1999spa
dc.relation.referencesZ. A. Vale et al., “Comparison between deterministic and meta-heuristic methods applied to ancillary services dispatch,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6096 LNAI, no. PART 1, pp. 731–741, 2010, doi: 10.1007/978-3-642-13022-9_73spa
dc.relation.referencesR. Dashti, S. Afsharnia, B. Bayat, and A. Barband, “Energy efficiency based asset management infrastructures in electrical distribution system,” PECon2010 - 2010 IEEE Int. Conf. Power Energy, pp. 880–885, 2010, doi: 10.1109/PECON.2010.5697703spa
dc.relation.referencesL. Suganthi and A. A. Samuel, “Energy models for demand forecasting—A review,” Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1223–1240, Feb. 2012, doi: 10.1016/j.rser.2011.08.014spa
dc.relation.referencesC. J. Bennett, R. A. Stewart, and J. W. Lu, “Forecasting low voltage distribution network demand profiles using a pattern recognition based expert system,” Energy, vol. 67, pp. 200–212, Apr. 2014, doi: 10.1016/j.energy.2014.01.032spa
dc.relation.referencesA. Aref, M. Davoudi, F. Razavi, and M. Davoodi, “Optimal DG Placement in Distribution Networks Using Intelligent Systems,” vol. 2012, no. March, pp. 92–98, 2012spa
dc.relation.referencesM. Pesaran H.A, P. D. Huy, and V. K. Ramachandaramurthy, “A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms,” Renew. Sustain. Energy Rev., vol. 75, no. October 2016, pp. 293–312, 2017, doi: 10.1016/j.rser.2016.10.071spa
dc.relation.referencesU. Sultana, A. B. Khairuddin, M. M. Aman, A. S. Mokhtar, and N. Zareen, “A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system,” Renew. Sustain. Energy Rev., vol. 63, pp. 363–378, 2016, doi: 10.1016/j.rser.2016.05.056spa
dc.relation.referencesP. Prakash and D. K. Khatod, “Optimal sizing and siting techniques for distributed generation in distribution systems: A review,” Renew. Sustain. Energy Rev., vol. 57, pp. 111–130, 2016, doi: 10.1016/j.rser.2015.12.099spa
dc.relation.referencesS. Gopiya Naik, D. K. Khatod, and M. P. Sharma, “Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks,” Int. J. Electr. Power Energy Syst., vol. 53, pp. 967–973, 2013, doi: 10.1016/j.ijepes.2013.06.008spa
dc.relation.referencesB. Pawar, S. Kaur, and G. B. Kumbhar, “An integrated approach for power loss reduction in primary distribution system,” in 2016 IEEE 6th International Conference on Power Systems (ICPS), Mar. 2016, pp. 1–6, doi: 10.1109/ICPES.2016.7584049spa
dc.relation.referencesM. Rahmani-andebili, “Simultaneous placement of DG and capacitor in distribution network,” Electr. Power Syst. Res., vol. 131, pp. 1–10, Feb. 2016, doi: 10.1016/J.EPSR.2015.09.014spa
dc.relation.referencesR. Viral and D. K. Khatod, “An analytical approach for sizing and siting of DGs in balanced radial distribution networks for loss minimization,” Int. J. Electr. Power Energy Syst., vol. 67, pp. 191–201, May 2015, doi: 10.1016/J.IJEPES.2014.11.017spa
dc.relation.referencesN. Acharya, P. Mahat, and N. Mithulananthan, “An analytical approach for DG allocation in primary distribution network,” Int. J. Electr. Power Energy Syst., vol. 28, no. 10, pp. 669–678, Dec. 2006, doi: 10.1016/J.IJEPES.2006.02.013spa
dc.relation.referencesK. Bhumkittipich and W. Phuangpornpitak, “Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction Using Particle Swarm Optimization,” Energy Procedia, vol. 34, pp. 307–317, Jan. 2013, doi: 10.1016/J.EGYPRO.2013.06.759spa
dc.relation.referencesS. Kansal, V. Kumar, and B. Tyagi, “Hybrid approach for optimal placement of multiple DGs of multiple types in distribution networks,” Int. J. Electr. Power Energy Syst., vol. 75, pp. 226–235, 2016, doi: 10.1016/j.ijepes.2015.09.002spa
dc.relation.referencesA. Ehsan and Q. Yang, “Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques,” Appl. Energy, vol. 210, no. July 2017, pp. 44–59, 2018, doi: 10.1016/j.apenergy.2017.10.106spa
dc.relation.referencesP. Paliwal, N. P. Patidar, and R. K. Nema, “Planning of grid integrated distributed generators: A review of technology, objectives and techniques,” Renew. Sustain. Energy Rev., vol. 40, pp. 557–570, 2014, doi: 10.1016/j.rser.2014.07.200spa
dc.relation.referencesH. Chen, Z. Wang, H. Yan, H. Zou, and B. Luo, “Integrated Planning of Distribution Systems with Distributed Generation and Demand Side Response,” Energy Procedia, vol. 75, no. 51322702, pp. 981–986, Aug. 2015, doi: 10.1016/j.egypro.2015.07.314spa
dc.relation.referencesM. A. Mejia, L. H. Macedo, G. Muñoz-Delgado, J. Contreras, and A. Padilha-Feltrin, “Medium-term planning of active distribution systems considering voltage-dependent loads, network reconfiguration, and CO2 emissions,” Int. J. Electr. Power Energy Syst., vol. 135, no. August 2021, 2022, doi: 10.1016/j.ijepes.2021.107541spa
dc.relation.referencesT. D. de Lima, A. Tabares, N. Bañol Arias, and J. F. Franco, “Investment & generation costs vs CO2 emissions in the distribution system expansion planning: A multi-objective stochastic programming approach,” Int. J. Electr. Power Energy Syst., vol. 131, no. January, 2021, doi: 10.1016/j.ijepes.2021.106925spa
dc.relation.referencesR. Hemmati, R. A. Hooshmand, and N. Taheri, “Distribution network expansion planning and DG placement in the presence of uncertainties,” Int. J. Electr. Power Energy Syst., vol. 73, pp. 665–673, 2015, doi: 10.1016/j.ijepes.2015.05.024spa
dc.relation.referencesA. C. Rueda-Medina, J. F. Franco, M. J. Rider, A. Padilha-Feltrin, and R. Romero, “A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems,” Electr. Power Syst. Res., vol. 97, pp. 133–143, Apr. 2013, doi: 10.1016/j.epsr.2012.12.009spa
dc.relation.referencesY. Li, B. Feng, G. Li, J. Qi, D. Zhao, and Y. Mu, “Optimal distributed generation planning in active distribution networks considering integration of energy storage,” Appl. Energy, vol. 210, no. April 2017, pp. 1073–1081, 2018, doi: 10.1016/j.apenergy.2017.08.008spa
dc.relation.referencesA. Chauhan and R. P. Saini, “A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control,” Renew. Sustain. Energy Rev., vol. 38, pp. 99–120, Oct. 2014, doi: 10.1016/j.rser.2014.05.079spa
dc.relation.referencesS. Roy Ghatak, S. Sannigrahi, and P. Acharjee, “Optimised planning of distribution network with photovoltaic system, battery storage, and DSTATCOM,” IET Renew. Power Gener., vol. 12, no. 15, pp. 1823–1832, 2018, doi: 10.1049/iet-rpg.2018.5088spa
dc.relation.referencesD. P. R. P., V. R. V.C., and G. M. T., “Ant Lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems,” J. Electr. Syst. Inf. Technol., vol. 5, no. 3, pp. 663–680, 2018, doi: 10.1016/j.jesit.2017.06.001spa
dc.relation.referencesM. T. Kuo, S. Der Lu, and M. C. Tsou, “Considering Carbon Emissions in Economic Dispatch Planning for Isolated Power Systems: A Case Study of the Taiwan Power System,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 987–997, 2018, doi: 10.1109/TIA.2017.2771338spa
dc.relation.referencesC. Jiang, Y. Xue, J. Huang, F. Xue, F. Wen, and K. Li, “Aggregated impact of allowance allocation and power dispatching on emission reduction,” J. Mod. Power Syst. Clean Energy, vol. 5, no. 6, pp. 936–946, 2017, doi: 10.1007/s40565-017-0321-0spa
dc.relation.referencesS. Espinosa, D. Arias Cazco, and M. Yanez Salcedo, “Economic Dispatch hydrothermal system with CO2 Emissions Constraints,” IEEE Lat. Am. Trans., vol. 15, no. 11, pp. 2090–2096, 2017, doi: 10.1109/TLA.2017.8070413spa
dc.relation.referencesE. Arriagada, E. Lopez, M. Lopez, G. Lefranc, R. Lopez, and M. Poloujadoff, “A probabilistic economic/CO2eq emissions dispatch model: Real applications,” IEEE Lat. Am. Trans., vol. 16, no. 9, pp. 2362–2369, 2018, doi: 10.1109/TLA.2018.8789556spa
dc.relation.referencesL. Bai, J. Wang, C. Wang, C. Chen, and F. Li, “Distribution Locational Marginal Pricing (DLMP) for Congestion Management and Voltage Support,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4061–4073, 2018, doi: 10.1109/TPWRS.2017.2767632spa
dc.relation.referencesN. Zhang, Z. Hu, D. Dai, S. Dang, M. Yao, and Y. Zhou, “Unit commitment model in smart grid environment considering carbon emissions trading,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 420–427, 2016, doi: 10.1109/TSG.2015.2401337spa
dc.relation.referencesM. F. Tahir, C. Haoyong, A. Khan, M. S. Javed, N. A. Laraik, and K. Mehmood, “Optimizing size of variable renewable energy sources by incorporating energy storage and demand response,” IEEE Access, vol. 7, pp. 103115–103126, 2019, doi: 10.1109/ACCESS.2019.2929297spa
dc.relation.referencesH. Alharbi and K. Bhattacharya, “Optimal sizing of battery energy storage systems for microgrids,” Proc. - 2014 Electr. Power Energy Conf. EPEC 2014, pp. 275–280, 2014, doi: 10.1109/EPEC.2014.44spa
dc.relation.referencesY. Zhang, Z. Y. Dong, F. Luo, Y. Zheng, K. Meng, and K. P. Wong, “Optimal allocation of battery energy storage systems in distribution networks with high wind power penetration,” IET Renew. Power Gener., vol. 10, no. 8, pp. 1105–1113, 2016, doi: 10.1049/iet-rpg.2015.0542spa
dc.relation.referencesM. Sedghi, M. Aliakbar-Golkar, and M.-R. Haghifam, “Distribution network expansion considering distributed generation and storage units using modified PSO algorithm,” Int. J. Electr. Power Energy Syst., vol. 52, pp. 221–230, Nov. 2013, doi: 10.1016/j.ijepes.2013.03.041spa
dc.relation.referencesO. Babacan, W. Torre, and J. Kleissl, “Optimal allocation of battery energy storage systems in distribution networks considering high PV penetration,” IEEE Power Energy Soc. Gen. Meet., vol. 2016-Novem, pp. 1–5, 2016, doi: 10.1109/PESGM.2016.7741191spa
dc.relation.referencesY. Zheng, Z. Y. Dong, F. J. Luo, K. Meng, J. Qiu, and K. P. Wong, “Optimal allocation of energy storage system for risk mitigation of discos with high renewable penetrations,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 212–220, 2014, doi: 10.1109/TPWRS.2013.2278850spa
dc.relation.referencesV. V. V. S. N. Murty and A. Kumar, “Optimal energy management and techno-economic analysis in microgrid with hybrid renewable energy sources,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 5, pp. 929–940, 2020, doi: 10.35833/MPCE.2020.000273spa
dc.relation.referencesB. Wang, C. Zhang, and Z. Y. Dong, “Interval Optimization Based Coordination of Demand Response and Battery Energy Storage System Considering SOC Management in a Microgrid,” IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 2922–2931, 2020, doi: 10.1109/TSTE.2020.2982205spa
dc.relation.referencesC. Huang, H. Zhang, Y. Song, L. Wang, T. Ahmad, and X. Luo, “Demand Response for Industrial Micro-Grid Considering Photovoltaic Power Uncertainty and Battery Operational Cost,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 3043–3055, 2021, doi: 10.1109/TSG.2021.3052515spa
dc.relation.referencesH. Alharbi and K. Bhattacharya, “Stochastic optimal planning of battery energy storage systems for isolated microgrids,” IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 211–227, 2018, doi: 10.1109/TSTE.2017.2724514spa
dc.relation.referencesW. Liu, S. Niu, and H. Xu, “Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system,” J. Mod. Power Syst. Clean Energy, vol. 5, no. 2, pp. 177–186, 2017, doi: 10.1007/s40565-016-0197-4spa
dc.relation.referencesL. F. Grisales, A. Grajales, O. D. Montoya, R. A. Hincapie, M. Granada, and C. A. Castro, “Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach,” IEEE Lat. Am. Trans., vol. 15, no. 6, pp. 1084–1090, 2017, doi: 10.1109/TLA.2017.7932696spa
dc.relation.referencesS. Ganguly, N. C. Sahoo, and D. Das, “Multi-objective planning of electrical distribution systems using dynamic programming,” Int. J. Electr. Power Energy Syst., vol. 46, pp. 65–78, Mar. 2013, doi: 10.1016/j.ijepes.2012.10.030spa
dc.relation.referencesA. Alarcon-Rodriguez, G. Ault, and S. Galloway, “Multi-objective planning of distributed energy resources: A review of the state-of-the-art,” Renew. Sustain. Energy Rev., vol. 14, no. 5, pp. 1353–1366, 2010, doi: 10.1016/j.rser.2010.01.006spa
dc.relation.referencesS. Ganguly, N. C. Sahoo, and D. Das, “Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation,” Fuzzy Sets Syst., vol. 213, pp. 47–73, Feb. 2013, doi: 10.1016/j.fss.2012.07.005spa
dc.relation.referencesM. Nayeripour, S. Hasanvand, and H. Fallahzadeh-Abarghouei, “Optimal expansion planning of distribution system capacity with respect to distributed generations,” Int. J. Renew. Energy Res., vol. 6, no. 3, pp. 817–824, 2016spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.lembREDES ELECTRICASspa
dc.subject.lembElectric networkseng
dc.subject.lembDISTRIBUCION DE ENERGIA ELECTRICAspa
dc.subject.lembElectric power distributioneng
dc.subject.lembALMACENAMIENTO DE ENERGIAspa
dc.subject.lembEnergy storageeng
dc.subject.proposalGeneración distribuidaspa
dc.subject.proposalPlaneamiento de redes eléctricasspa
dc.subject.proposalSistemas de distribuciónspa
dc.subject.proposalImpacto ambientalspa
dc.subject.proposalGestión de demandaspa
dc.subject.proposalAlmacenamiento de energíaspa
dc.subject.proposalPlanning of distribution networkseng
dc.subject.proposalDistributed generationeng
dc.subject.proposalDistribution systemseng
dc.subject.proposalEnvironmental impacteng
dc.subject.proposalDemand side managementeng
dc.subject.proposalEnergy storageeng
dc.titlePlanificación de redes eléctricas de distribución incluyendo generación distribuida, almacenamiento de energía y gestión de la demanda (DSM Y DR)spa
dc.title.translatedPlanning of power distribution networks including distributed generation, battery energy storage systems, and demand management (DSM Y DR)eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
7314677.2022.pdf
Tamaño:
3.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Doctorado en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: