Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification

dc.contributor.advisorOrjuela Londoño, Alvaro
dc.contributor.authorZabala Vásquez, Milena Alexandra
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.coverage.countryColombia
dc.date.accessioned2024-07-03T15:57:56Z
dc.date.available2024-07-03T15:57:56Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractMesoporous materials are attractive supporting structures for heterogeneous catalysis as they facilitate access and mobility of large molecules, thus improving yields in a variety of chemical reactions. Among different materials, Starbon® materials are mesoporous carbons which can be advantageously synthesized from biobased sources, be further acid-activated to be used as catalysts in esterification reactions. Conventionally, Starbons® are produced using a high-amylose-content starch, which guarantees a high mesopore volume due to the arrangement of amylose molecules during the synthesis process. Looking for the valorisation of waste streams and low-cost raw materials, the use of starch derived from common roots and tubers needs to be studied. According to Colombian National Planning Department, nearly 5 Mton of roots and tubers are produced in the country, nevertheless, nearly 30% are discarded during production stages as they do not meet quality standards. In this regard, this work focused on understanding and optimizing the surface properties of Starbon® materials derived from cassava starch for its subsequent use as catalyst in long-chain esterification reactions. The synthesis of Starbon materials involves gelatinization, retrogradation, solvent exchange and carbonization steps, which conditions were assessed, firstly by an exploratory analysis, and subsequently by a Factorial 32 and Box-Behnken experimental designs, taking surface area, pore volume and pore size as response variables. A method for the synthesis of cassava-derived Starbon was proposed. The obtained cassava-Starbon exhibited a surface area of 263 m2/g, with a mean pore diameter of 3.7 nm and a pore volume of 0.2cm3/g. Subsequently, the material was sulfonated and tested in the batch esterification of stearic acid with isopropyl alcohol, considering the growing market in fatty acid esters industry. Cassava-Starbon catalyst enabled slightly higher conversion and higher turn-over number (0.15 mol/s H+Eq) compared to widely used ion exchange resins.eng
dc.description.abstractEn la catálisis heterogénea, materiales mesoporosos son soportes atractivos al facilitan el acceso y la movilidad de moléculas de gran tamaño, mejorando así los rendimientos en diversas reacciones. Entre diferentes materiales, los materiales Starbon® son carbones mesoporosos que pueden sintetizarse ventajosamente a partir de fuentes biobasadas, y luego activarse con ácido para utilizarse como catalizadores en reacciones de esterificación. Convencionalmente, los Starbons® se producen utilizando almidón con alto contenido de amilosa, lo que garantiza un alto volumen de mesoporos debido a la disposición de las moléculas de amilosa durante el proceso de síntesis. En busca de la valorización de corrientes de residuales, es de interés estudiar el uso de almidón derivado de raíces y tubérculos comunes en la síntesis de estos materiales. Según el Departamento Nacional de Planeación de Colombia, se producen casi 5 millones de toneladas de raíces y tubérculos en el país, sin embargo, cerca del 30% se descartan durante las etapas de producción por no cumplir con los estándares de calidad. En este sentido, este trabajo se centró en comprender y optimizar las propiedades superficiales de los materiales Starbon® derivados del almidón de yuca para su uso posterior como catalizador en reacciones de esterificación de cadenas largas. La síntesis de los materiales Starbon implica gelatinización, retrogradación, intercambio de solventes y carbonización de los almidones. Estas condiciones fueron evaluadas para la síntesis empleando almidón de yuca, primero mediante un análisis exploratorio y luego mediante un diseño Factorial 32 y Box-Behnken, tomando la superficie, el volumen de poros y el tamaño de poros como variables de respuesta. De esta manera, fue posible proponer un método para la síntesis de Starbon derivado de yuca. El Starbon de yuca obtenido mostró una superficie de 263 m2/g, con un diámetro de poro promedio de 3.7 nm y un volumen de poro de 0.2cm3 /g. Este material fue sulfonado y probado en la esterificación batch de ácido esteárico con alcohol isopropílico, considerando el creciente mercado en la industria de ésteres de ácidos grasos. El catalizador Starbon de yuca permitió una conversión ligeramente superior y un TOF más Resumen and abstract XI alto (0.15 mol/s H+Eq) en comparación con las resinas de intercambio iónico ampliamente utilizadas (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaProcesos catalíticos y petroquímicosspa
dc.format.extentxxi, 116 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86374
dc.language.isoengeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAldana, A., Lartundo, L., Gómez, R., & Niño, M. (2012). Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid. Fuel, 100, 128–138. https://doi.org/10.1016/j.fuel.2012.02.025spa
dc.relation.referencesAuer, E., Freund, A., Pietsch, J., & Tacke, T. (1998). Carbons as supports for industrial precious metal catalysts. Applied Catalysis A: General, 173(2), 259–271. https://doi.org/10.1016/S0926-860X(98)00184-7spa
dc.relation.referencesBazuła, P., Lu, A. H., Nitz, J., & Schüth, F. (2008). Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. Microporous and Mesoporous Materials, 108(1–3), 266–275. https://doi.org/10.1016/j.micromeso.2007.04.008spa
dc.relation.referencesBekyarova, E., & Kaneko, K. (2000). Structure and physical properties of tailor-made Ce,Zr-doped carbon aerogels. Advanced Materials, 12(21), 1625–1628. https://doi.org/10.1002/1521-4095(200011)12:21<1625::AID-ADMA1625>3.0.CO;2-9spa
dc.relation.referencesBiliaderis, C., Page, C., Slade, L., & Sirett, R. (1985). Thermal Behavior of Amylose-Lipid Complexes. Carbohydrate Polymers, 55, 367–389spa
dc.relation.referencesBokhari, A., Chuah, L., Michelle, L., Asif, S., Shahbaz, M., Akbar, M., Inayat, A., Jami, F., Naqvi, S., & Yusup, S. (2019). Microwave enhanced catalytic conversion of canola based methyl ester: Optimization and parametric study. In Advanced Biofuels: Applications, Technologies and Environmental Sustainability. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102791-2.00006-4spa
dc.relation.referencesBorges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839–2849. https://doi.org/10.1016/j.rser.2012.01.071spa
dc.relation.referencesBorisova, A., De Bruyn, M., Budarin, V., Shuttleworth, P., Dodson, J., Segatto, M., & Clark, J. (2015). A Sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity. Macromolecular Rapid Communications, 36(8), 774–779. https://doi.org/10.1002/marc.201400680spa
dc.relation.referencesBosley, J. (1997). Turning upases into industrial biocatalysts. Biochemical Society Transactions, 25(1), 174–178. https://doi.org/10.1042/bst0250174spa
dc.relation.referencesBrouwer, T. (2017). Determining the influence of the starch amylose content on the mesoporosity of starbons (Issue September 2016) [Wageningen University]. https://edepot.wur.nl/409082spa
dc.relation.referencesBudarin, V., Clark, J., Hardy, J., Luque, R., Milkowski, K., Tavener, S., & Wilson, A. (2006). Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties. Angewandte Chemie - International Edition, 45(23), 3782–3786. https://doi.org/10.1002/anie.200600460spa
dc.relation.referencesBudarin, V., Clark, J., Luque, R., & Macquarrie, D. (2007). Versatile mesoporous carbonaceous materials for acid catalysis. Chemical Communications, 6, 634–636. https://doi.org/10.1039/b614537jspa
dc.relation.referencesBudarin, V., Clark, J., Luque, R., Macquarrie, D., Koutinas, A., & Webb, C. (2007). Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chemistry, 9(9), 992–999. https://doi.org/10.1039/b704055espa
dc.relation.referencesBudarin, V., Clark, J., Luque, R., Macquarrie, D., Milkowski, K., & White, R. (2007). Carbonaceous materials (Patent No. WO 2007/104798 A2).spa
dc.relation.referencesBudarin, V., Luque, R., Macquarrie, D., & Clark, J. (2007). Towards a bio-based industry: Benign catalytic esterifications of succinic acid in the presence of water. Chemistry - A European Journal, 13(24), 6914–6919. https://doi.org/10.1002/chem.200700037spa
dc.relation.referencesCanales, N., & Trujillo, M. (2021). The value chain of cassava and its potential in the bioeconomy of Colombia [in Spanish]. In Stockholm Environment Institute. https://cdn.sei.org/wp-content/uploads/2021/05/workingpaperyucabioeconomia canalestrujillo-mayo21.pdfspa
dc.relation.referencesChandane, V., Rathod, A., Wasewar, K., & Sonawane, S. (2017). Response Surface Optimization and Kinetics of Isopropyl Palmitate Synthesis using Homogeneous Acid Catalyst. International Journal of Chemical Reactor Engineering, 15(3), 1–10. https://doi.org/10.1515/ijcre-2016-0111spa
dc.relation.referencesChen, G., & Fang, B. (2011). Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresource Technology, 102(3), 2635–2640. https://doi.org/10.1016/j.biortech.2010.10.099spa
dc.relation.referencesCheng, Y., McPherson, A., Radosavljevic, M., Lee, V., Wong, K., & Jane, J. (1998). Effects of starch chemical structures on gelatinization and pasting properties. 4(17), 63–71.spa
dc.relation.referencesChoi, S., Drese, J., & Jones, C. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854. https://doi.org/10.1002/cssc.200900036spa
dc.relation.referencesClark, J. (2002). Solid acids for green chemistry. Accounts of Chemical Research, 35(9), 791–797. https://doi.org/10.1021/ar010072aspa
dc.relation.referencesClark, J., Budarin, V., Dugmore, T., Luque, R., Macquarrie, D., & Strelko, V. (2008). Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catalysis Communications, 9(8), 1709–1714. https://doi.org/10.1016/j.catcom.2008.01.037spa
dc.relation.referencesClohessy, J., & Kwapinski, W. (2020). Carbon-based catalysts for biodiesel production-A review. Applied Sciences (Switzerland), 10(3), 1–17. https://doi.org/10.3390/app10030918spa
dc.relation.referencesCruz, J., Silverio, J., Eliasson, A., & Larsson, K. (1996). A comparative study of gelatinization of cassava and potato starch in an aqueous lipid phase (L2) compared to water. Food Hydrocolloids, 10(3), 317–322. https://doi.org/10.1016/S0268- 005X(96)80007-5spa
dc.relation.referencesCzłonka, S., Bertino, M., Kośny, J., & Shukla, N. (2018). Freeze-drying method as a new approach to the synthesis of polyurea aerogels from isocyanate and water. Journal of Sol-Gel Science and Technology, 87(3), 685–695. https://doi.org/10.1007/s10971- 018-4769-9spa
dc.relation.referencesde Jong, M., Feijt, R., Zondervan, E., Nijhuis, T., & de Haan, A. (2009). Reaction kinetics of the esterification of myristic acid with isopropanol and n-propanol using p-toluene sulphonic acid as catalyst. Applied Catalysis A: General, 365(1), 141–147. https://doi.org/10.1016/j.apcata.2009.06.009spa
dc.relation.referencesDe, S., Balu, A., van der Waal, J., & Luque, R. (2015). Biomass-derived porous carbon materials: Synthesis and catalytic applications. ChemCatChem, 7(11), 1608–1629. https://doi.org/10.1002/cctc.201500081spa
dc.relation.referencesDíaz, I., Márquez, C., Mohino, F., Pérez, J., & Sastre, E. (2000). Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica. Journal of Catalysis, 193(2), 295–302. https://doi.org/10.1006/jcat.2000.2899spa
dc.relation.referencesDimian, A., & Rothenberg, G. (2016). An effective modular process for biodiesel manufacturing using heterogeneous catalysis. Catalysis Science & Technology, 6(15), 6097–6108. https://doi.org/10.1039/C6CY00426Aspa
dc.relation.referencesDome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, 12(3), 1–12. https://doi.org/10.3390/polym12030641spa
dc.relation.referencesDow Chemical Company. (2020). Amberlyst 15WET Product Data Sheet. 177.03087- 0313, 2. https://www.lenntech.com/Data-sheets/Dow-Amberlyst-15-wet-L.pdfspa
dc.relation.referencesDPN. (2016). Lost and waste of food in Colombia [in Spanish] (Vol. 39)spa
dc.relation.referencesDuPont de Nemours, I. (2019). AMBERLYSTTM 15DRY Polymeric Catalyst. 45, 1–2spa
dc.relation.referencesElkhatat, A., & Al, S. (2011). Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Advanced Materials, 23(26), 2887–2903. https://doi.org/10.1002/adma.201100283spa
dc.relation.referencesFallahi, P., Muthukumarappan, K., & Rosentrater, K. (2016). Functional and structural properties of corn, potato, and cassava starches as affected by a single-screw extruder. International Journal of Food Properties, 19(4), 768–788. https://doi.org/10.1080/10942912.2015.1042112spa
dc.relation.referencesFolgueras, M., Rodríguez, S., Maza, N., & Oliva, M. (2012). Harvest, processing, and preservation of cassava (Manihot esculenta Crantz). II: Preservation methods, packaging and transportation, and root harvesting systems [in Spanish]. Revista Científica UDO Agrícola, 12(4), 749–758.spa
dc.relation.referencesFu, Z., Wan, H., Hu, X., Cui, Q., & Guan, G. (2012). Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area. Reaction Kinetics, Mechanisms and Catalysis, 107(1), 203–213. https://doi.org/10.1007/s11144-012-0466-9spa
dc.relation.referencesGarcía, M., Cardona, A., & García, C. (2020). Diagnosis of cassava bran management in the department of Sucre [in Spanish]. Innovación En La Región Caribe de Colombia: Aportes Teóricos y Buenas Prácticas. https://doi.org/10.21892/9789585547858.9spa
dc.relation.referencesGeng, L., Wang, Y., Yu, G., & Zhu, Y. (2011). Efficient carbon-based solid acid catalysts for the esterification of oleic acid. Catalysis Communications, 13(1), 26–30. https://doi.org/10.1016/j.catcom.2011.06.014spa
dc.relation.referencesGrand View Research. (2020). Fatty Acid Ester Market Size, Share & Trends Analysis Report 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/fatty-acid esters-marketspa
dc.relation.referencesGregg, S., & Sing, K. (1982). Adsorption, Surface Area and Porosity (Second edi).spa
dc.relation.referencesGuan, J., & Hanna, M. (2004). Extruding foams from corn starch acetate and native corn starch. Biomacromolecules, 5(6), 2329–2339. https://doi.org/10.1021/bm049512mspa
dc.relation.referencesHanzawa, Y., Kaneko, K., Pekala, R., & Dresselhaus, M. (1996). Activated carbon aerogels. Langmuir, 12(26), 6167–6169. https://doi.org/10.1021/la960481tspa
dc.relation.referencesHara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J., Hayashi, S., & Domen, K. (2004). A carbon material as a strong protonic acid. Angewandte Chemie - International Edition, 43(22), 2955–2958. https://doi.org/10.1002/anie.200453947spa
dc.relation.referencesHernández, M., Torruco, J., Chel, L., & Betancur, D. (2008). Physicochemical Characterization of Starches from Tubers Cultivated in Yucatán, Mexico [in Spanish]. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101- 20612008000300031spa
dc.relation.referencesHu, B., Yu, S.-H., Wang, K., Liu, L., & Xu, X. (2008). Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Transactions, 9226(40), 5414–5423. https://doi.org/10.1039/b804644cspa
dc.relation.referencesHuang, J., Jian, Y., Li, H., & Fang, Z. (2022). Lignin-derived layered 3D biochar with controllable acidity for enhanced catalytic upgrading of Jatropha oil to biodiesel. Catalysis Today, 404(August 2021), 35–48. https://doi.org/10.1016/j.cattod.2022.04.016spa
dc.relation.referencesInagaki, M. (2013). Advanced Carbon Materials. In Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties (Second Edt, pp. 25–60). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385469-8.00002-2spa
dc.relation.referencesInagaki, M., & Kang, F. (2016). Materials Science and Engineering of Carbon: Characterization. Tsinghua University Press Limited. https://doi.org/10.1016/B978-0- 12-805256-3.00001-5spa
dc.relation.referencesInternational Organization for Standatization. (2009). ISO 660 (E). Animal and Vegetable Fats and Oils. Determination of Acid Value and Acidity. (p. 14).spa
dc.relation.referencesIntriago, M., & Muñoz, G. (2014). Feasibility Study for the Establishment of a Company Producing Cassava Starch as a Raw Material for the Guayaquil Market [in Spanish] [Universidad Católica de Santiago de Guayaquil]. http://repositorio.ucsg.edu.ec/handle/3317/2257spa
dc.relation.referencesJi, J., Zhang, G., Chen, H., Wang, S., Zhang, G., Zhang, F., & Fan, X. (2011). Sulfonated graphene as water-tolerant solid acid catalyst. Chemical Science, 2(3), 484–487. https://doi.org/10.1039/c0sc00484gspa
dc.relation.referencesJia, R., Ren, J., Liu, X., Lu, G., & Wang, Y. (2014). Design and synthesis of sulfonated carbons with amphiphilic properties. Journal of Materials Chemistry A, 2(29), 11195– 11201. https://doi.org/10.1039/c4ta01836bspa
dc.relation.referencesJoo, S., Choi, S., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412(6843), 169–172. https://doi.org/10.1038/35084046spa
dc.relation.referencesJun, S., Joo, S., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., & Terasaki, O. (2000). Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 122(43), 10712–10713. https://doi.org/10.1021/ja002261espa
dc.relation.referencesJuszczak, L., Fortuna, T., & Wodnicka, K. (2002). Characteristics of cereal starch granules surface using nitrogen adsorption. Journal of Food Engineering, 54(2), 103–110. https://doi.org/10.1016/S0260-8774(01)00190-Xspa
dc.relation.referencesKastratovic, V., & Bigovic, M. (2018). Esterification of stearic acid with lower monohydroxylic alcohols. Chemical Industry and Chemical Engineering Quarterly, 24(3), 283–291. https://doi.org/10.2298/CICEQ170327040Kspa
dc.relation.referencesKistler, S. (1932). Coherent expanded aerogels. Journal of Physical Chemistry, 36(1), 52– 64. https://doi.org/10.1021/j150331a003spa
dc.relation.referencesKitano, M., Arai, K., Kodama, A., Kousaka, T., Nakajima, K., Hayashi, S., & Hara, M. (2009). Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catalysis Letters, 131(1–2), 242–249. https://doi.org/10.1007/s10562-009- 0062-4spa
dc.relation.referencesKnorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochimica et Biophysica Acta - Proteins and Proteomics, 1764(3), 619–631. https://doi.org/10.1016/j.bbapap.2006.01.017spa
dc.relation.referencesKonwar, L., Mäki, P., & Mikkola, J. (2019). SO3H-Containing Functional Carbon Materials: Synthesis, Structure, and Acid Catalysis. Chemical Reviews, 119(22), 11576–11630. https://doi.org/10.1021/acs.chemrev.9b00199spa
dc.relation.referencesKosonen, H., Valkama, S., Nykänen, A., Toivanen, M., Brinke, G., Ruokolainen, J., & Ikkala, O. (2006). Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin. Advanced Materials, 18(2), 201– 205. https://doi.org/10.1002/adma.200401110spa
dc.relation.referencesKruk, M., Jaroniec, M., Ryoo, R., & Joo, S. (2000). Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. Journal of Physical Chemistry B, 104(33), 7960–7968. https://doi.org/10.1021/jp000861uspa
dc.relation.referencesKunin, R., Meitzner, E. A., Oline, J. A., Fisher, S. A., & Frisch, N. (1962). Characterization of Amberlyst 15. Macroreticular Sulfonic Acid Cation Exchange Resin. I&EC Product Research and Development, 1(2), 140–144. https://doi.org/10.1021/i360002a016spa
dc.relation.referencesLabelle, M., Ispas, P., Tajer, S., Xiao, Y., Barbeau, B., & Mateescu, M. (2023). Anionic and Ampholytic High-Amylose Starch Derivatives as Excipients for Pharmaceutical and Biopharmaceutical Applications: Structure-Properties Correlations. Pharmaceutics, 15(3). https://doi.org/10.3390/pharmaceutics15030834spa
dc.relation.referencesLanxess Energizing Chemistry. (2011). Product Information Lewatit® K 2629. 3. https://www.lenntech.com/Data-sheets/Lewatit-K-2629-L.pdfspa
dc.relation.referencesLeofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41(1–3), 207–219. https://doi.org/10.1016/S0920-5861(98)00050-9spa
dc.relation.referencesLi, W., Yue, Q., Deng, Y., & Zhao, D. (2013). Ordered mesoporous materials based on interfacial assembly and engineering. Advanced Materials, 25(37), 5129–5152. https://doi.org/10.1002/adma.201302184spa
dc.relation.referencesLiang, C., Hong, K., Guiochon, G., Mays, J., & Dai, S. (2004). Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angewandte Chemie - International Edition, 43(43), 5785–5789. https://doi.org/10.1002/anie.200461051spa
dc.relation.referencesLiu, F., Li, B., Liu, C., Kong, W., Yi, X., Zheng, A., & Qi, C. (2016). Template-free synthesis of porous carbonaceous solid acids with controllable acid sites and their excellent activity for catalyzing the synthesis of biofuels and fine chemicals. Catalysis Science and Technology, 6(9), 2995–3007. https://doi.org/10.1039/c5cy01226kspa
dc.relation.referencesLiu, X., Huang, M., Ma, H., Zhang, Z., Gao, J., Zhu, Y., Han, X., & Guo, X. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15(10), 7188–7196. https://doi.org/10.3390/molecules15107188spa
dc.relation.referencesLowell, S., Shields, J., Martin, T., & Thommes, M. (2004). Surface Area Analysis from the Langmuir and BET Theories. In Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density.spa
dc.relation.referencesLu, A. H., Li, W. C., Schmidt, W., & Schüth, F. (2005). Template synthesis of large pore ordered mesoporous carbon. Microporous and Mesoporous Materials, 80(1–3), 117– 128. https://doi.org/10.1016/j.micromeso.2004.12.007spa
dc.relation.referencesLuque, R. (2010). Catalizadores de diseño para la producción de compuestos químicos de alto valor añadido y biocombustibles a partir de biomasa. Anales de La Real Sociedad Española de Química, 106(4), 296–303. http://dialnet.unirioja.es/servlet/articulo?codigo=3347192spa
dc.relation.referencesLuque, R., Budarin, V., Shuttleworthb, P., & Clark, J. (2012). A new Starch is born: Starbons as biomass-derived mesoporous carbonaceous materials. Bol. Grupe Espanol Carbón, June 2014, 1–5.spa
dc.relation.referencesLuque, R., & Clark, J. (2010). Water-tolerant Ru-Starbon® materials for the hydrogenation of organic acids in aqueous ethanol. Catalysis Communications, 11(10), 928–931. https://doi.org/10.1016/j.catcom.2010.03.015spa
dc.relation.referencesLuque, R., & Clark, J. (2011). Biodiesel-Like biofuels from simultaneous transesterification/esterification of waste oils with a biomass-derived solid acid catalyst. ChemCatChem, 3(3), 594–597. https://doi.org/10.1002/cctc.201000280spa
dc.relation.referencesLuque, R., Clark, J., Yoshida, K., & Gai, P. (2009). Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chemical Communications, 35, 5305–5307. https://doi.org/10.1039/b911877bspa
dc.relation.referencesMahajan, A., & Gupta, P. (2020). Carbon-based solid acids: a review. Environmental Chemistry Letters, 18(2), 299–314. https://doi.org/10.1007/s10311-019-00940-7spa
dc.relation.referencesManrique, N. (2006). Production of pregelatinized starches from blends of starches from unconventional sources using a twin-screw extruder [in Spanish]. Instituto Politécnico Nacional.spa
dc.relation.referencesMarkley, K. (1983). Fatty acids: their chemistry properties production and uses (Second edi). Krieger Publishing.spa
dc.relation.referencesMarziano, N., Tortato, C., Ronchin, L., & Bianchi, C. (1998). On the acidity of liquid and solid acid catalysts: Part 1. A thermodynamic point of view. Catalysis Letters, 56(2), 159–164. https://doi.org/10.1023/a:1019096726458spa
dc.relation.referencesMaziarka, P., Wurzer, C., Arauzo, P. J., Dieguez-Alonso, A., Mašek, O., & Ronsse, F. (2021). Do you BET on routine? The reliability of N2 physisorption for the quantitative assessment of biochar’s surface area. Chemical Engineering Journal, 418(March). https://doi.org/10.1016/j.cej.2021.129234spa
dc.relation.referencesMegazyme. (2018). Amylose/Amylopectin: Assay Procedure K-AMYL 06/18. Megazyme Data Booklet, 6, 11. https://www.megazyme.com/amylose-amylopectin-assay kit?sSearch=amylosespa
dc.relation.referencesMena, C. (2014). Synthesis and characterisation of sulfonated Starbons®, biobased catalysts (Issue August). University of York Chemistryspa
dc.relation.referencesMena, C., & Macquarrie, D. (2014). Esterification of lauric acid with methanol using sulfonated Starbons. Research Journal of Chemistry and Environment, 18(8), 1–6.spa
dc.relation.referencesMilescu, R., Dennis, M., McElroy, R., Macquarrie, D., Matharu, A., Smith, M., Clark, J., & Budarin, V. (2020). The role of surface functionality of sustainable mesoporous materials Starbon® on the adsorption of toxic ammonia and sulphur gasses. Sustainable Chemistry and Pharmacy, 15(February). https://doi.org/10.1016/j.scp.2020.100230spa
dc.relation.referencesMohan, D., & Pittman, C. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137(2), 762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060spa
dc.relation.referencesMorishita, T., Ishihara, K., Kato, M., & Inagaki, M. (2007). Preparation of a carbon with a 2 nm pore size and of a carbon with a bi-modal pore size distribution. Carbon, 45(1), 209–211. https://doi.org/10.1016/j.carbon.2006.09.032spa
dc.relation.referencesMorishita, T., Ishihara, K., Kato, M., Tsumura, T., & Inagaki, M. (2007). Mesoporous carbons prepared from mixtures of magnesium citrate with poly (vinyl alcohol). Tanso, 2007(226), 19–24. https://doi.org/10.7209/tanso.2007.19spa
dc.relation.referencesMorishita, T., Tsumura, T., Toyoda, M., Przepiórski, J., Morawski, A., Konno, H., & Inagaki, M. (2010). A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon, 48(10), 2690–2707. https://doi.org/10.1016/j.carbon.2010.03.064spa
dc.relation.referencesNiu, S., Ning, Y., Lu, C., Han, K., Yu, H., & Zhou, Y. (2018). Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Conversion and Management, 163(17923), 59–65. https://doi.org/10.1016/j.enconman.2018.02.055spa
dc.relation.referencesOkamoto, Y., & Yashima, E. (1998). Polysaccharide Derivatives for Chromatographic Separation of Enantiomers. Angewandte Chemie International Edition, 37(8), 1020– 1043spa
dc.relation.referencesOkamura, M., Takagaki, A., Toda, M., Kondo, J., Domen, K., Tatsumi, T., Hara, M., & Hayashi, S. (2006). Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chemistry of Materials, 18(13), 3039–3045. https://doi.org/10.1021/cm0605623spa
dc.relation.referencesOuyang, S., Kuang, X., Xu, Q., & Yin, D. (2014). Preparation of a Carbon-Based Solid Acid with High Acid Density via a Novel Method. Journal of Materials Science and Chemical Engineering, 02(06), 4–8. https://doi.org/10.4236/msce.2014.26002spa
dc.relation.referencesPandolfo, A., & Hollenkamp, A. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065spa
dc.relation.referencesPang, Q., Wang, L., Yang, H., Jia, L., Pan, X., & Qiu, C. (2014). Cellulose-derived carbon bearing -Cl and -SO3H groups as a highly selective catalyst for the hydrolysis of cellulose to glucose. RSC Advances, 40(78), 41212–41218. https://doi.org/10.1039/c4ra05520aspa
dc.relation.referencesParker, H. (2013). Recovery from Waste Streams: Working Towards a Sustainable Future. April. http://etheses.whiterose.ac.uk/4176/1/Helen_Parker_PhD_Thesis.pdfspa
dc.relation.referencesParker, H., Budarin, V., Clark, J., & Hunt, A. (2013). Use of starbon for the adsorption and desorption of phenols. ACS Sustainable Chemistry and Engineering, 1(10), 1311– 1318. https://doi.org/10.1021/sc4001675spa
dc.relation.referencesParker, H., Hunt, A., Budarin, V., Shuttleworth, P., Miller, K., & Clark, J. (2012). The importance of being porous: Polysaccharide-derived mesoporous materials for use in dye adsorption. RSC Advances, 2(24), 8992–8997. https://doi.org/10.1039/c2ra21367bspa
dc.relation.referencesPaterson, G., Issariyakul, T., Baroi, C., Bassi, A., & Dalai, A. (2013). Ion-exchange resins as catalysts in transesterification of triolein. Catalysis Today, 212, 157–163. https://doi.org/10.1016/j.cattod.2012.10.013spa
dc.relation.referencesPekala, R. (1989). Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science, 24(9), 3221–3227. https://doi.org/10.1007/BF01139044spa
dc.relation.referencesPekala, R., Alviso, C., Kong, F., & Hulsey, S. (1991). Aerogels Derived from Multifunctional Organic Monomers. Third International SymPosium on Aerogels, 21.spa
dc.relation.referencesPeng, L., Philippaerts, A., Ke, X., Van Noyen, J., De Clippel, F., Van Tendeloo, G., Jacobs, P., & Sels, B. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today, 150(1–2), 140–146. https://doi.org/10.1016/j.cattod.2009.07.066spa
dc.relation.referencesRodriguez, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159–175. https://doi.org/https://doi.org/10.1016/S0008-6223(97)00173-5spa
dc.relation.referencesRohm & Haas. (2005). AmberlystTM 70 Product Data Sheet. Rohm & Haas: Philadelphia, PA, USA, 1–2.spa
dc.relation.referencesRohm and Haas. (2006). AmberlystTM 35WET Product Data Sheetspa
dc.relation.referencesSaha, D., Payzant, A., Kumbhar, A., & Naskar, A. (2013). Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules. ACS Applied Materials and Interfaces, 5(12), 5868–5874. https://doi.org/10.1021/am401661fspa
dc.relation.referencesSandhu, K., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507. https://doi.org/10.1016/j.foodchem.2006.01.060spa
dc.relation.referencesShi, Y., & Seib, P. (1992). The structure of four waxy starches related to gelatinization and retrogradation. Carbohydrate Research, 227(C), 131–145. https://doi.org/10.1016/0008-6215(92)85066-9spa
dc.relation.referencesShuttleworth, P., Budarin, V., White, R., Gun’Ko, V., Luque, R., & Clark, J. (2013). Molecular-level understanding of the carbonisation of polysaccharides. Chemistry - A European Journal, 19(28), 9351–9357. https://doi.org/10.1002/chem.201300825spa
dc.relation.referencesSilverstein, R. M., & Webster, F. X. (1996). Spectrometric Identification Of Organic Compounds 6th Edition. In John Wiley & Sons Ltd (Vol. 6, pp. 1–482).spa
dc.relation.referencesSing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquérol, J., & Siemieniewska, T. (1985). Reporting phisisorption data for gas/solid systems. Pure and Applied Chemistry, 57(4), 603–619spa
dc.relation.referencesSreedhar, I., Aniruddha, R., & Malik, S. (2019). Carbon capture using amine modified porous carbons derived from starch (Starbons®). SN Applied Sciences, 1(5), 1–11. https://doi.org/10.1007/s42452-019-0482-8spa
dc.relation.referencesSuganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2008). Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. Journal of the American Chemical Society, 130(38), 12787–12793. https://doi.org/10.1021/la8040506spa
dc.relation.referencesTakagaki, A., Toda, M., Okamura, M., Kondo, J., Hayashi, S., Domen, K., & Hara, M. (2006). Esterification of higher fatty acids by a novel strong solid acid. Catalysis Today, 116(2 SPEC. ISS.), 157–161. https://doi.org/10.1016/j.cattod.2006.01.037spa
dc.relation.referencesTamon, H., Ishizaka, H., Yamamoto, T., & Suzuki, T. (1999). Preparation of mesoporous carbon by freeze drying. Carbon, 37(12), 2049–2055. https://doi.org/10.1016/S0008- 6223(99)00089-5spa
dc.relation.referencesTanaka, S., Nishiyama, N., Egashira, Y., & Ueyama, K. (2005). Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chemical Communications, 16, 2125–2127. https://doi.org/10.1039/b501259gspa
dc.relation.referencesTang, M., & Copeland, L. (2007). Investigation of starch retrogradation using atomic force microscopy. Carbohydrate Polymers, 70(1), 1–7. https://doi.org/10.1016/j.carbpol.2007.02.025spa
dc.relation.referencesTian, Y., Li, Y., Xu, X., & Jin, Z. (2011). Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydrate Polymers, 84(3), 1165–1168. https://doi.org/10.1016/j.carbpol.2011.01.006spa
dc.relation.referencesTitirici, M., White, R., Brun, N., Budarin, V., Su, D., Del Monte, F., Clark, J., & MacLachlan, M. (2015). Sustainable carbon materials. Chemical Society Reviews, 44(1), 250–290. https://doi.org/10.1039/c4cs00232spa
dc.relation.referencesToda, M., Takagaki, A., Okamura, M., Kondo, J., Hayashi, S., Domen, K., & Hara, M. (2005). Biodiesel made with sugar catalyst. Nature Communications, 438, 178. https://doi.org/10.1038/438178spa
dc.relation.referencesTorres, P., Rodríguez, J., & Rojas, O. (2005). Extracción de almidón de yuca. Manejo integral y control de la contaminación hídrica. Livestock Research for Rural Development, 17(7), 2005.spa
dc.relation.referencesUriburu-Gray, M., Pinar-Serrano, A., Cavus, G., Knipping, E., Aucher, C., Conesa Cabeza, A., Satti, A., Amantia, D., & Martínez-Crespiera, S. (2020). Mesoporous carbons from polysaccharides and their use in li-o2 batteries. Nanomaterials, 10(10), 1–18. https://doi.org/10.3390/nano10102036spa
dc.relation.referencesvan Soest, J., de Wit, D., Tournois, H., & Vliegenthart, J. (1994). The influence of glycerol on structural changes in waxy maize starch as studied by Fourier transform infra-red spectroscopy. Polymer, 35(22), 4722–4727. https://doi.org/10.1016/0032- 3861(94)90724-2spa
dc.relation.referencesWang, L., Dong, X., Jiang, H., Li, G., & Zhang, M. (2014). Phosphorylated ordered mesoporous carbon as a novel solid acid catalyst for the esterification of oleic acid. Catalysis Communications, 56, 164–167. https://doi.org/10.1016/j.catcom.2014.07.008spa
dc.relation.referencesWang, S., & Copeland, L. (2013). Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food and Function, 4(11), 1564–1580. https://doi.org/10.1039/c3fo60258cspa
dc.relation.referencesWang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch Retrogradation: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585. https://doi.org/10.1111/1541-4337.12143spa
dc.relation.referencesWenchao, W., Fashe, L., & Ying, L. (2019). Kinetics and the fluidity of the stearic acid esters with different carbon backbones. Green Process Synth, 8, 776–785. https://doi.org/https://doi.org/10.1515/gps-2019-0046spa
dc.relation.referencesWhite, R., Brun, N., Budarin, V., Clark, J., & Titirici, M. (2014). Always look on the “light” side of life: Sustainable carbon aerogels. ChemSusChem, 7(3), 670–689. https://doi.org/10.1002/cssc.201300961spa
dc.relation.referencesWhite, R., Budarin, V., & Clark, J. (2008). Tuneable mesoporous materials from alpha-D polysaccharides. ChemSusChem, 1(5), 408–411. https://doi.org/10.1002/cssc.200800012spa
dc.relation.referencesWhite, R., Budarin, V., Luque, R., Clark, J., & Macquarrie, D. (2009). Tuneable porous carbonaceous materials from renewable resources. Chemical Society Reviews, 38(12), 3401–3418. https://doi.org/10.1039/b822668gspa
dc.relation.referencesWhite, R., & Clark, J. (2015). Porous carbon materials from sustainable precursors. In RSC Green Chemistry No. 32 (Vol. 32).spa
dc.relation.referencesWhite, R., Shuttleworth, P., Budarin, V., De Bruyn, M., Fischer, A., & Clark, J. (2016). An Interesting Class of Porous Polymer - Revisiting the Structure of Mesoporous α- D - Polysaccharide Gels. ChemSusChem, 9(3), 280–288. https://doi.org/10.1002/cssc.201501354spa
dc.relation.referencesYalçinyuva, T., Deligöz, H., Boz, İ., & Ali, M. (2008). Kinetics and mechanism of myristic acid and isopropyl alcohol esterification reaction with homogeneous and heterogeneous catalysts. International Journal of Chemical Kinetics, 40(3), 136–144. https://doi.org/10.1002/kin.20293spa
dc.relation.referencesYamamoto, T., Nishimura, T., Suzuki, T., & Tamon, H. (2001). Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. Journal of Non-Crystalline Solids, 288(1–3), 46–55. https://doi.org/10.1016/S0022-3093(01)00619-6spa
dc.relation.referencesYameen, M., AlMohamadi, H., Naqvi, S., Noor, T., Chen, W., & Amin, N. (2023). Advances in production & activation of marine macroalgae-derived biochar catalyst for sustainable biodiesel production. Fuel, 337(December 2022), 127215. https://doi.org/10.1016/j.fuel.2022.127215spa
dc.relation.referencesYang, N., Sheng, X., Ti, L., Jia, H., Ping, Q., & Li, N. (2023). Ball-milling as effective and economical process for biodiesel production under Kraft lignin activated carbon stabilized potassium carbonate. Bioresource Technology, 369(November 2022), 128379. https://doi.org/10.1016/j.biortech.2022.128379spa
dc.relation.referencesZhan, S., Tao, X., Cai, L., Liu, X., & Liu, T. (2014). The carbon material functionalized with NH2+ and SO3H groups catalyzed esterification with high activity and selectivity. Green Chemistry, 16(11), 4649–4653. https://doi.org/10.1039/c4gc01395fspa
dc.relation.referencesZhang, B., Ren, J., Liu, X., Guo, Y., Guo, Y., Lu, G., & Wang, Y. (2010). Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catalysis Communications, 11(7), 629–632. https://doi.org/10.1016/j.catcom.2010.01.010spa
dc.relation.referencesZhang, F., Meng, Y., Gu, D., Yan, Y., Yu, C., Tu, B., & Zhao, D. (2005). A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. Journal of the American Chemical Society, 127(39), 13508–13509. https://doi.org/10.1021/ja0545721spa
dc.relation.referencesZobel, H. (1988). Molecules to Granules: A Comprehensive Starch Review. Starch ‐ Stärke, 40(2), 44–50. https://doi.org/10.1002/star.19880400203spa
dc.relation.referencesZong, M., Duan, Z., Lou, W., Smith, T., & Wu, H. (2007). Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry, 9(5), 434– 443. https://doi.org/10.1039/b615447fspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lccMesoporous materialseng
dc.subject.lccMateriales mesoporososspa
dc.subject.lccCatalystseng
dc.subject.lccCatalizadoresspa
dc.subject.lccStarcheng
dc.subject.lccAlmidónspa
dc.subject.lccTuberseng
dc.subject.lccTubérculosspa
dc.subject.proposalCarboneng
dc.subject.proposalCatalysteng
dc.subject.proposalCassava starcheng
dc.subject.proposalEsterificationeng
dc.subject.proposalMesoporouseng
dc.subject.proposalPorosityeng
dc.subject.proposalStarboneng
dc.subject.proposalCarbónspa
dc.subject.proposalCatalizadorspa
dc.subject.proposalAlmidón de yucaspa
dc.subject.proposalEsterificaciónspa
dc.subject.proposalMesoporosospa
dc.subject.proposalPorosidadspa
dc.subject.proposalStarbonspa
dc.titleDevelopment of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterificationeng
dc.title.translatedDesarrollo de un material tipo Starbon® a partir de almidón de origen colombiano para su uso como catalizador en esterificación de ácidos grasosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032494539.2024.pdf
Tamaño:
5.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: