Model selection in social interaction frameworks: a bayesian approach.

dc.contributor.advisorSalazar Uribe, Juan Carlos
dc.contributor.advisorRamírez Hassan, Andrés
dc.contributor.authorAlmonacid Hurtado, Paula María
dc.contributor.researchgroupGrupo de Investigación en Estadística Universidad Nacional de Colombia, Sede Medellínspa
dc.date.accessioned2021-08-12T20:55:18Z
dc.date.available2021-08-12T20:55:18Z
dc.date.issued2020-08-12
dc.description.abstractSe propone una metodología para la selección de modelos de interacción social, considerando la complejidad en su especificación. Los modelos de interacción social presentan dos tipos de variables explicativas, las interdependencias entre individuos, denotadas por una matriz de adyacencia, y las características específicas de dichos individuos. De acuerdo con esto, los investigadores deben considerar un número significativo de modelos posibles dados por 2^(k−1) × Z, que representa el número de combinaciones de k variables menos el intercepto en grupos de tamaños 2 a (k − 1), multiplicado por el número de posibles matrices de interacción social Z. La metodología propuesta permite seleccionar simultáneamente las covariables y las matrices de interacción social mediante la implementación de métodos bayesianos tales como Markov chain Monte Carlo model composition (MC3) y Bayesian Averaging Model (BMA). A grandes rasgos, estos métodos permiten obtener estimaciones e inferencias a partir de un promedio de modelos seleccionados luego de reducir su espacio al de mayor probabilidad. Se realizaron varios ejercicios de simulación con el fin evaluar la metodología, así como dos casos de aplicación. Adicionalmente, estos modelos fueron estimados utilizando los enfoques Bayesiano y de Máxima verosimilitud. Después de comparar los resultados, se encontró que el enfoque Bayesiano ofrece múltiples ventajas, ya que es posible, a diferencia del método de Máxima verosimilitud, obtener la distribución posterior de los parámetros, incluir información a priori, en caso de ser necesario, e introducir incertidumbre asociada al espacio de elección de los modelos. (Tomado de la fuente)spa
dc.description.abstractWe propose a methodology oriented towards the selection of social interaction models taking into account the complexity in its specification. This type of models considers as explaining variables the inter-dependencies between individuals, represented by an adjacency matrix and the economic characteristics of a group of individuals. In this sense, researchers have to consider a significant number of possible models given by 2^(k−1) × Z, which represents the number of combinations of k variables without the intercept in groups of sizes from 2 to (k − 1) times the number of potential social interaction matrices W. This new methodology enables the process of simultaneous selection of the covariables and the social interaction matrices, through the application of the Markov Chain Monte Carlo Model Composition (MC3) and Bayesian Model Averaging methods, which are based on the Bayesian approach. These methods produce estimates and inferences from an average of models, which are selected after reducing the probability model space to the highest probability possible. Several simulation exercises were carried out to test the methodology, as well as two applications. Additionally, these Social Interaction Models were estimated, using Bayesian and Maximum Likelihood approaches. After comparing the results, we find that the Bayesian approach offers multiple advantages; such as finding the posterior distribution of the parameters, including prior information, if it is necessary, and introducing model uncertainty. (Tomado de la fuente)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ciencias-Estadísticaspa
dc.description.researchareaAnálisis multivariado y Estadística bayesianaspa
dc.format.extent90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79934
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.referencesAhelegbey, D. F. (2015). The Econometrics of Networks: A Review. Working Papers, 13:27.spa
dc.relation.referencesAnselin, L. and Griffith, D. A. (1988). Do spatial effecfs really matter in regression analysis? Papers in Regional Science, 65(1):11–34.spa
dc.relation.referencesArias, A. S. (2015). Apalancamiento. https://economipedia.com/definiciones/apalancamiento-financiero.htmlspa
dc.relation.referencesAthanasoglou, P. P., Brissimis, S. N., and Delis, M. D. (2008). Bank-specific, industry-specific and macroeconomic determinants of bank profitability. Journal of international financial Markets, Institutions and Money, 18(2):121–136.spa
dc.relation.referencesBerger, J. and Pericchi, L. (2015). Bayes Factors. In Wiley StatsRef: Statistics Reference Online, pages 1–14. John Wiley & Sons, Ltd, Chichester, UK.spa
dc.relation.referencesBlondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008.spa
dc.relation.referencesBlume, L. E., Brock, W. A., Durlauf, S. N., and Ioannides, Y. M. (2011). Identification of social interactions. In Handbook of Social Economics, volume 1, pages 853–964. Elsevier B.V.spa
dc.relation.referencesBlume, L. E., Brock, W. A., Durlauf, S. N., and Jayaraman, R. (2015). Linear social interactions models. Journal of Political Economy, 123(2):444–496.spa
dc.relation.referencesBourke, P. (1989). Concentration and other determinants of bank profitability in europe, north america and australia. Journal of Banking & Finance, 13(1):65–79.spa
dc.relation.referencesBramoullé, Y., Djebbari, H., and Fortin, B. (2009). Identification of peer effects through social networks. Journal of econometrics, 150(1):41–55.spa
dc.relation.referencesBramoullé, Y., Djebbari, H., and Fortin, B. (2020). Peer effects in networks: A survey. In Annual Review of Economics, volume 12, pages 603–629. Annual Reviews Inc.spa
dc.relation.referencesBrock, W. A. and Durlauf, S. N. (2001). Discrete choice with social interactions. The Review of Economic Studies, 68(2):235–260.spa
dc.relation.referencesBrueckner, J. K. (2003). Strategic interaction among governments: An overview of empirical studies. International regional science review, 26(2):175–188.spa
dc.relation.referencesCase, A. C., Rosen, H. S., and Hines Jr, J. R. (1993). Budget spillovers and fiscal policy interdependence: Evidence from the states. Journal of public economics, 52(3):285–307.spa
dc.relation.referencesChandrasekhar, A. and Lewis, R. (2011). Econometrics of sampled networks. Unpublished manuscript, MIT.[422].spa
dc.relation.referencesChipman, H., George, E., McCulloch, R., Clyde, M., Foster, D., and Stine, R. (2001). The Practical Implementation of Bayesian Model Selection on JSTOR. Lecture Notes-Monograph Series, 38:65–134.spa
dc.relation.referencesCingano, F. and Rosolia, A. (2012). People i know: job search and social networks. Journal of Labor Economics, 30(2):291–332.spa
dc.relation.referencesCliff, A. D. (1973). Spatial autocorrelation. Technical report. Comola, M. and Prina, S. (2020). Treatment Effect Accounting for Network Changes *. The Review of Economics and Statistics, pages 1–25.spa
dc.relation.referencesCotteleer, G., Stobbe, T., and van Kooten, G. C. (2011). Bayesian model averaging in the context of spatial hedonic pricing: an application to farmland values. Journal of Regional Science, 51(3):540–557.spa
dc.relation.referencesCrespo Cuaresma, J. and Feldkircher, M. (2013). Spatial filtering, model uncertainty and the speed of income convergence in europe. Journal of Applied Econometrics, 28(4):720–741.spa
dc.relation.referencesCsárdi and Nepusz (2006). The igraph software package for complex network research. Interjournal Complex Systems, page 1695.spa
dc.relation.referencesDe Oliveira, V. and Song, J. J. (2008). Bayesian analysis of simultaneous autoregressive models. Sankhya: The Indian Journal of Statistics, Series B (2008-) ¯, pages 323–350.spa
dc.relation.referencesDe Paula, A. (2016). Econometrics of network models (no. cwp06/16). Technical report, cemmap working paper, Centre for Microdata Methods and Practice.spa
dc.relation.referencesDraper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society: Series B (Methodological), 57(1):45–70.spa
dc.relation.referencesDurlauf, S. (2006). Groups, social influences, and inequality. In Bowles, S., Durlauf, S. N., and Hoff, K., editors, Poverty Traps, chapter 6, pages 141–175. Princeton University Press.spa
dc.relation.referencesEicher, T. S., Papageorgiou, C., and Raftery, A. E. (2011). Default priors and predictive performance in bayesian model averaging, with application to growth determinants. Journal of Applied Econometrics, 26(1):30–55.spa
dc.relation.referencesElhorst, J. P. (2014). Spatial econometrics: from cross-sectional data to spatial panels, volume 479. Springer.spa
dc.relation.referencesFan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96(456):1348–1360.spa
dc.relation.referencesFernandez, C., Ley, E., and Steel, M. F. (2001). Benchmark priors for bayesian model averaging. Journal of Econometrics, 100(2):381–427.spa
dc.relation.referencesFriedman, J., Hastie, T., Tibshirani, R., et al. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2):337– 407.spa
dc.relation.referencesGelfand, A. E. and Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American statistical association, 85(410):398–409.spa
dc.relation.referencesGeorge, E. I. (2010). Dilution priors: Compensating for model space redundancy. In Berger, J. O., Cai, T. T., and Iain M. Johnstone, editors, Borrowing Strength: Theory Powering Applications - A Festschrift for Lawrence D. Brown, volume 6, chapter 21, pages 158–165. Institute of Mathematical Statistics.spa
dc.relation.referencesGilks, W. R., Best, N. G., and Tan, K. (1995). Adaptive rejection metropolis sampling within gibbs sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 44(4):455–472.spa
dc.relation.referencesGoddard, J., Molyneux, P., and Wilson, J. O. (2004). The profitability of european banks: a crosssectional and dynamic panel analysis. The Manchester School, 72(3):363–381.spa
dc.relation.referencesGriffith, D. A. and Lagona, F. (1998). On the quality of likelihood-based estimators in spatial autoregressive models when the data dependence structure is misspecified. Journal of Statistical Planning and Inference, 69(1):153–174.spa
dc.relation.referencesHartmann, W. R., Manchanda, P., Nair, H., Bothner, M., Dodds, P., Godes, D., Hosanagar, K., and Tucker, C. (2008). Modeling social interactions: Identification, empirical methods and policy implications. Marketing letters, 19(3-4):287–304.spa
dc.relation.referencesHassan, A. R. (2017). The interplay between the bayesian and frequentist approaches: a general nesting spatial panel data model. Spatial Economic Analysis, 12(1):92–112.spa
dc.relation.referencesHastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97–109.spa
dc.relation.referencesHeld, P., Krause, B., and Kruse, R. (2016). Dynamic clustering in social networks using louvain and infomap method. In 2016 Third European Network Intelligence Conference (ENIC), pages 61–68. IEEE.spa
dc.relation.referencesHepple, L. W. (1995). Bayesian techniques in spatial and network econometrics: 2. computational methods and algorithms. Environment and Planning A, 27(4):615–644.spa
dc.relation.referencesHodges, J. S. (1987). Uncertainty, policy analysis and statistics. Statistical science, 2(3):259–275.spa
dc.relation.referencesHsieh, C.-S. and Lee, L. F. (2016). A social interactions model with endogenous friendship formation and selectivity. Journal of Applied Econometrics, 31(2):301–319.spa
dc.relation.referencesHuber, P. J. (2004). Robust Statistics. John Wiley & Sons, Hoboken, New Jersey.spa
dc.relation.referencesJackson, M. O. (2010). Social and economic networks. Princeton university press.spa
dc.relation.referencesJunker, N. (2020). Community Detection with Louvain and Infomap | R-bloggers.spa
dc.relation.referencesKelejian, H. H. (2008). A spatial j-test for model specification against a single or a set of nonnested alternatives. Letters in Spatial and Resource Sciences, 1(1):3–11.spa
dc.relation.referencesKelejian, H. H. and Piras, G. (2011). An extension of kelejian’s j-test for non-nested spatial models. Regional Science and Urban Economics, 41(3):281–292.spa
dc.relation.referencesKelejian, H. H. and Piras, G. (2014). Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes. Regional Science and Urban Economics, 46:140–149.spa
dc.relation.referencesKiziryan, M. (2015). Flujo de caja. https://economipedia.com/definiciones/flujo-de-caja.htmlspa
dc.relation.referencesKoop, G. M. (2003). Bayesian econometrics. John Wiley & Sons Inc.spa
dc.relation.referencesKrisztin, T. (2017). The determinants of regional freight transport: a spatial, semiparametric approach. Geographical Analysis, 49(3):268–308.spa
dc.relation.referencesKuan, C.-M. and Liu, T. (1995). Forecasting exchange rates using feedforward and recurrent neural networks. Journal of applied econometrics, 10(4):347–364.spa
dc.relation.referencesLancaster, T. (2000). The incidental parameter problem since 1948. Journal of econometrics, 95(2):391–413.spa
dc.relation.referencesLeamer, E. E. and Leamer, E. E. (1978). Specification searches: Ad hoc inference with nonexperimental data, volume 53. Wiley New York.spa
dc.relation.referencesLee, L.-f. (2007). Identification and estimation of econometric models with group interactions, contextual factors and fixed effects. Journal of Econometrics, 140(2):333–374.spa
dc.relation.referencesLee, L.-f., Liu, X., and Lin, X. (2010). Specification and estimation of social interaction models with network structures. The Econometrics Journal, 13(2):145–176.spa
dc.relation.referencesLeSage, J. P. (2008). An introduction to spatial econometrics. Revue d’Économie Industrielle, (123):19–44.spa
dc.relation.referencesLeSage, J. P. and Fischer, M. M. (2008). Spatial growth regressions: model specification, estimation and interpretation. Spatial Economic Analysis, 3(3):275–304.spa
dc.relation.referencesLeSage, J. P. and Parent, O. (2007a). Bayesian model averaging for spatial econometric models. Geographical Analysis, 39(3):241–267.spa
dc.relation.referencesLeSage, J. P. and Parent, O. (2007b). Bayesian model averaging for spatial econometric models. Geographical Analysis, 39(3):241–267.spa
dc.relation.referencesLin, X. (2005). Peer effects and student academic achievement: an application of spatial autoregressive model with group unobservables. Unpublished manuscript, Ohio State University.spa
dc.relation.referencesLin, X. (2010). Identifying peer effects in student academic achievement by spatial autoregressive models with group unobservables. Journal of Labor Economics, 28(4):825–860.spa
dc.relation.referencesMadigan, D. and Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using occam’s window. Journal of the American Statistical Association, 89(428):1535–1546.spa
dc.relation.referencesMadigan, D., York, J., and Allard, D. (1995). Bayesian Graphical Models for Discrete Data. International Statistical Review / Revue Internationale de Statistique, 63(2):215–232.spa
dc.relation.referencesManjares, A. (2020). EBITDA. https://mispropiasfinanzas.com/concepto/ebitda/spa
dc.relation.referencesManski, C. F. (1993). Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3):531–542.spa
dc.relation.referencesMarden, J. I. (2000). Hypothesis testing: from p values to bayes factors. Journal of the American Statistical Association, 95(452):1316–1320.spa
dc.relation.referencesMetropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6):1087–1092.spa
dc.relation.referencesMoffitt, R. A. et al. (2001). Policy interventions, low-level equilibria, and social interactions. Social dynamics, 4(45-82):6–17.spa
dc.relation.referencesMolyneux, P. and Thornton, J. (1992). Determinants of european bank profitability: A note. Journal of banking & Finance, 16(6):1173–1178.spa
dc.relation.referencesMoser, M. and Hofmarcher, P. (2014). Model priors revisited: Interaction terms in bma growth applications. Journal of Applied Econometrics, 29(2):344–347.spa
dc.relation.referencesMoulton, L. H. and Zeger, S. L. (1991). Bootstrapping generalized linear models. Computational Statistics & Data Analysis, 11(1): 63-63.spa
dc.relation.referencesNeyman, J. and Scott, E. L. (1948). Consistent Estimates Based on Partially Consistent Observations. Econometrica, 16(1):1–32.spa
dc.relation.referencesPiribauer, P. and Crespo Cuaresma, J. (2016). Bayesian variable selection in spatial autoregressive models. Spatial Economic Analysis, 11(4):457–479.spa
dc.relation.referencesPiribauer, P. and Fischer, M. M. (2015). Model uncertainty in matrix exponential spatial growth regression models. Geographical Analysis, 47(3):240–261.spa
dc.relation.referencesRaftery, A. E. (1988). Inference for the binomial n parameter: A hierarchical bayes approach. Biometrika, 75(2):223–228.spa
dc.relation.referencesRaftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25:111–164.spa
dc.relation.referencesRaftery, A. E. (1996). Approximate bayes factors and accounting for model uncertainty in generalised linear models. Biometrika, 83(2):251–266.spa
dc.relation.referencesRaftery, A. E., Madigan, D., and Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92(437):179–191.spa
dc.relation.referencesRosvall, M. and Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105(4):1118–23.spa
dc.relation.referencesSacerdote, B. (2011). Peer effects in education: How might they work, how big are they and how much do we know thus far? In Handbook of the Economics of Education, volume 3, pages 249–277. Elsevier. Short,spa
dc.relation.referencesB. K. (1979). The relation between commercial bank profit rates and banking concentration in canada, western europe, and japan. Journal of Banking & Finance, 3(3):209–219.spa
dc.relation.referencesSong, Y., Liang, X., Zhu, Y., and Lin, L. (2021). Robust variable selection with exponential squared loss for the spatial autoregressive model. Computational Statistics and Data Analysis, 155:107094.spa
dc.relation.referencesStakhovych, S. and Bijmolt, T. H. (2009). Specification of spatial models: A simulation study on weights matrices. Papers in Regional Science, 88(2):389–408.spa
dc.relation.referencesSteel, M. F. and Ley, E. (2007). On the effect of prior assumptions in Bayesian model averaging with applications to growth regression. The World Bank.spa
dc.relation.referencesTibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.spa
dc.relation.referencesTopa, G. (2001). Social interactions, local spillovers and unemployment. The Review of Economic Studies, 68(2):261–295.spa
dc.relation.referencesWang, X., Jiang, Y., Huang, M., and Zhang, H. (2013). Robust variable selection with exponential squared loss. Journal of the American Statistical Association, 108(502):632–643.spa
dc.relation.referencesWeisbrod, B. A. (1964). External Benefits of Public Education. PhD thesis, Princeton University, Princeton.spa
dc.relation.referencesWestreicher, G. (2018). Rentabilidad de los activos, ROA. https://economipedia.com/definiciones/rentabilidad-de-los-activos-roa.htmlspa
dc.relation.referencesWestreicher, G. , S. (2020). Capital de trabajo. https://economipedia.com/definiciones/capital-de-trabajo.htmlspa
dc.relation.referencesWilson, J. H. (1975). The student expenditure impact of a university on the local economy. The Annals Of Regional Science, 9(1):122–126.spa
dc.relation.referencesWithers, S. D. (2002). Quantitative methods: Bayesian inference, bayesian thinking. Progress in Human Geography, 26(4):553–566.spa
dc.relation.referencesWooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. MIT Press, London, second edition.spa
dc.relation.referencesZellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. Elsevier Science.spa
dc.relation.referencesZellner, A. (1999). Bayesian and non-bayesian approaches to scientific modeling and inference in economics and econometrics. Technical report.spa
dc.relation.referencesZhang, X. and Yu, J. (2018). Spatial weights matrix selection and model averaging for spatial autoregressive models. Journal of Econometrics, 203(1):1–18.spa
dc.relation.referencesZou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical association, 101(476):1418–1429.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc519 - Estadísticasspa
dc.subject.lembProcesos de Markov
dc.subject.lembMétodo de Montecarlo
dc.subject.lembTeoría bayesiana de decisiones estadísticas
dc.subject.proposalBayesian Model Averagingeng
dc.subject.proposalMarkov chain Monte Carlo model compositioneng
dc.subject.proposalModelos de interacción socialspa
dc.titleModel selection in social interaction frameworks: a bayesian approach.eng
dc.title.translatedSelección de modelos en el marco de modelos de interacción social: un enfoque bayesianospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
43164806.2020.pdf
Tamaño:
3.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctora en Ciencias-Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: